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Abstract: The gerosuppressant metformin operates as an efficient inhibitor of the mTOR/S6K1 gerogenic pathway due to
its ability to ultimately activate the energy-sensor AMPK. If an aging-related decline in the AMPK sensitivity to cellular
stress is a crucial event for mTOR-driven aging and aging-related diseases, including cancer, unraveling new proximal
causes through which AMPK activation endows its gerosuppressive effects may offer not only a better understanding of
metformin function but also the likely possibility of repositioning our existing gerosuppressant drugs. Here we provide our
perspective on recent findings suggesting that de novo biosynthesis of purine nucleotides, which is based on the
metabolism of one-carbon compounds, is a new target for metformin’s actions at the crossroads of aging and cancer.

It is perhaps not surprising that the cellular energy counter intuitively mimicking the effects of energy
sensor adenosine monophosphate (AMP)-activated depletion (e.g., dietary restriction), despite disrupting
protein kinase (AMPK), a critical suppressor of the AMP biosynthesis [23, 24]. AMPK, the cellular fuel
mTOR gerogene [1-17], has been once again gauge whose activity becomes significantly increased in
highlighted as a conserved life span modulator linking long-lived flies, detects such energy imbalances to
bioenergetics, metabolism, and longevity [12-22]. What causally channel longevity effects resulting from
is certainly surprising is the proximate causation genetically impaired de novo AMP synthesis. While the
through which AMPK activation has now been shown expression of a dominant-negative form of AMPK
to enable its pro-longevity effects. When searching for prevented the lifespan increases driven by heterozygous
mutations capable of disrupting energy balance in mutations in AMP Dbiosynthetic enzymes, animals
metabolically active tissues and slowing aging in the engineered to specifically exhibit AMPK gain-of-
fruit fly Drosophila melanogaster, Stenesen and function in metabolic tissues also had lifespan increases
colleagues [23] recently found that the inactivation of equivalent to those observed in long-lived fly mutants.
genes coding for enzymes involved in the de novo Therefore, enhanced AMPK activity appears to be
synthesis of the purine nucleotide AMP demonstrated sufficient to fully recapitulate the ability of AMP
the strongest pro-longevity effects. Interestingly, biosynthesis pathway mutations to increase the
mutations in AMP biosynthetic enzymes capable of AMP:ATP ratio and longevity.

significantly extending the Drosophila lifespan

impacted cellular bioenergetics by unexpectedly In the novel scenario illustrated by Stenesen and
increasing the AMP:ATP and ADP:ATP ratios, thus colleagues [23], it reasonably follows that small
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molecule drugs capable of mimicking the energy
imbalance imposed by mutations in the AMP
biosynthesis pathway may be expected to increase
healthy life spans by activating AMPK. Moreover,
given that AMPK is a crucial gerosuppressor (and
tumor-suppressor)  that  impedes = mTOR-driven
geroconversion  (and ~ mTOR-driven  malignant
transformation) [1-17], small molecules capable of
activating AMPK by altering the de novo synthesis of
purine nucleotides such as AMP should be expected to
not only inhibit the pro-aging activity of mTOR
gerogenes but also prevent aging-related diseases, such
as cancer. The antidiabetic biguanide metformin may
fulfill all of these requirements. First, epidemiological,
preclinical, and clinical evidence from the last five years
has demonstrated the multi-faceted capabilities of
metformin in preventing and treating human carcinomas
[25-35]. Second, metformin, independently of the
insulin-signaling pathway, has been noted to
significantly extend the healthy lifespan of not only
non-diabetic  mice but also the nematode
Caenorhabditis elegans [36-42]. AMPK, which is
activated in mammals by metformin treatment, has also
been found to be an essential molecular operative for
metformin healthspan benefits in C. elegans [42], thus
suggesting that the metformin gerosuppressant activity
largely depends on its ability to engage the same
metabolic sensor, i.e., AMPK, which is highly
conserved across phyla. Third, metformin prevents
cancer and extends the lifespan of cancer-prone rodent
strains. Moreover, metformin can also prolong lifespan
without affecting cancers in non-cancer-prone rodent
strains [36-41]. Although the latter discrepancy may
suggest that metformin could delay aging (and prolong
life) by mechanisms unrelated to its ability to suppress
cancer, it may not if this discrepancy simply relies on a
cancer-related enhancement of common proximate anti-
aging mechanisms by which metformin can activate the
gerosuppressor/tumor suppressor AMPK. One such
mechanism may be one-carbon metabolism that drives
the de novo synthesis of purine nucleotides (e.g., AMP).

It is well known that the relative contribution of
nucleotide biosynthesis to nucleotide pool maintenance
via the de novo and salvage pathways significantly
varies in different cells and tissues. Proliferating cells,
including cancer cells, usually require a functional de
novo pathway to sustain their increased nucleotide
demands. Indeed, this activity is the basis for the use of
antifolate drugs in chemotherapy against cancer cells,
which generally have higher DNA turnover. Crucially, a
recently identified metabolomic fingerprint of human
cancer cells treated with metformin revealed for the first
time its previously unrecognized ability to significantly
impair one-carbon metabolism and the de novo

biosynthesis of purine nucleotides in a manner that is
functionally similar but mechanistically different than
that of the antifolate class of chemotherapy drugs [43].
Of note, the ability of metformin to activate the AMPK
metabolic tumor suppressor and inhibit cancer cell
growth was notably prevented when the salvage branch
of purine biosynthesis was promoted by exogenous
supplementation with the pre-formed substrate
hypoxanthine, a spontaneous deamination product of
the purine adenine. Remarkably, Stenesen and
colleagues [23] similarly found that dietary
supplementation with adenine, the pre-formed substrate
of AMP biosynthesis, not only markedly reversed the
lifespan extension of AMP biosynthesis mutants but
also the pro-longevity effects of dietary restriction. The
recognition of de novo AMP biosynthesis, adenosine
nucleotide ratios, and AMPK as determinants of the
Drosophila adult lifespan and the finding that the anti-
cancer activity of metformin could be explained in
terms of the secondary activation of AMPK following
the alteration of the essential carbon flow that leads to
the de novo synthesis of purines both strongly suggest
that the flow of one-carbon groups governing the de
novo biosynthesis of purines could represent a crucial
metformin-targeted intersection of aging with cancer

(Fig. 1).

Because a ubiquitous event in cancer metabolism is the
early, constitutive activation of one-carbon metabolism
and because de novo nucleotide biosynthesis may
influence cancer mortality due to its critical role in
DNA synthesis and methylation, the repeatedly
suggested reduction in cancer risk and mortality of
diabetic patients chronically treated with metformin
may therefore represent an unintended metronomic
chemotherapy approach targeting the differential
utilization of de mnovo one-carbon metabolism by
malignant and non-malignant cells [43]. In light of the
findings by Stenesen and colleagues [23], it may be
reasonable to suggest that metformin treatment may
silently operate not only to eliminate genetically
damaged, initiated, or malignant cells addicted to higher
nucleotide concentrations but also activate the
gerosuppressant activity of AMPK by unbalancing the de
novo biogenesis of the purine AMP in metabolically
active tissues (Fig. 1). It may be argued that the ability of
metformin to activate AMPK following the inhibition of
one-carbon metabolism indicates its teratogenic potential
[43, 44]. Although one study reported no alterations in
embryonic growth and no major malformations during
mouse embryogenesis, it is noteworthy that the
metformin analog phenformin, an AMPK activator that is
more potent than metformin, remarkably produced
embryolethality and embryo malformations, including
neural tube closure defects and craniofacial hypoplasia
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[44]. Future studies may elucidate whether phenformin
has a stronger inhibitory effect on de novo purine
biosynthesis compared with metformin.

Nevertheless, we should acknowledge that while high
doses of metformin have been reported to increase the
lifespan of C. elegans in an AMPK-dependent manner
[42], this metformin effect could not be observed in
fruit flies [45]. Thus, while AMPK activation increases
lifespan in Drosophila, metformin supplementation
does not. Forthcoming studies should determine
whether the lack of equivalence between feeding
metformin and activating AMPK may be due to either
off-target detrimental metformin effects or the
detrimental effects of systemically activating AMPK in
relevant versus non-relevant tissues for lifespan
extension [24]. In this regard, it should also be
considered that while previous studies in fibroblasts and
rat hepatoma cells have shown that AMPK activation by
metformin occurred by mechanisms other than changes
in the cellular AMP:ATP ratio [46], recent evidence in
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primary hepatocytes has revealed that metformin
activates AMPK by decreasing the cellular energy
status via a significant rise in the cellular AMP:ATP
ratio [47]. Moreover, metformin has been reported to
mimic a low-energy AMPK-activating state by
increasing AMP levels through the inhibition of AMP
deaminase (AMPD) in skeletal muscle cells and the
development of fatty liver [48, 49]. Curiously, when
Stenesen and colleagues [23] tested the longevity
effects of an insertional mutation in AMPD that
catalyzes the hydrolytic deamination of AMP into
inosine monophosphate, i.e., the opposite direction of
the longevity genes adenylsuccinate synthetase,
adenylsuccinate lyase, adenosine kinase, and adenine
phosphoribosyltransferase, they failed to observe any
effects on lifespan. Whether the metformin ability to
directly [48] or indirectly inhibit AMPD, such as
through the accumulation of intermediates during the
folate-dependent metabolism of one carbon unit [43],
could counteract the longevity induced by AMPK
activation certainly merits further exploration.
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Figure 1. De novo biosynthesis of purine nucleotide at the crossroads
of aging and cancer: A new target for the gerosuppressant metformin.
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The molecular mechanism(s) through which the
gerosuppressant metformin could increase life span and
delay tumor formation and progression remain unclear.
Most studies have focused on ultimate causes, which
mostly involve the reasons why metformin has
beneficial effects. An ever-growing experimental body
of evidence strongly suggests that metformin operates
as an efficient inhibitor of the mTOR/S6K1 gerogenic
pathway due to its ability to ultimately activate the
AMPK energy-sensor in a cell-autonomous manner. If
an aging-related decline in the AMPK sensitivity to
cellular stress is a crucial event for mTOR-driven aging
and aging-related diseases, including cancer, it is now
time to explore molecular events that primarily involve
the “how” questions; unraveling new proximal causes
through which AMPK activation endows its
gerosuppressive effects may offer not only a better
understanding of metformin function but also the likely
possibility of repositioning our existing gerosuppressant
drugs.
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