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Abstract: Males, who are bigger and stronger than females, die younger in most species from flies to mammals including
humans. Cellular mass growth is driven in part by mTOR (Target of Rapamycin). When developmental growth is completed,
then, instead of growth, mTOR drives aging, manifested by increased cellular functions, such as hyper-secretion by
fibroblasts, thus altering homeostasis, leading to age-related diseases and death. We hypothesize that MTOR activity is
elevated in male mice compared with females. Noteworthy, 6 months old males were 28 % heavier than females. Also
levels of phosphorylated S6 (pS6) and phospho-AKT (p-AKT, Ser 473), markers of the mTOR activity, were higher in male
organs tested. Levels of pS6 were highly variable among mice and correlated with body weight and p-AKT. With age, the
difference between levels of pS6 between sexes tended to minimize, albeit males still had hyperactive mTOR. Unlike
fasting, the intraperitoneal (i.p.) administration of rapamycin eliminated pS6 in all organs of all females measured by
immunoblotting and immunohistochemistry without affecting p-AKT and blood insulin. Although i.p. rapamycin
dramatically decreased levels of pS6 in males too, it was still detectable by immunoblotting upon longer exposure. Our
study demonstrated that both tissue p-AKT and pS6 were higher in young males than young females and were associated
with increased body weight and insulin. These data can explain larger body size and faster aging in males. Our data suggest
higher efficacy of rapamycin compared to fasting. Higher sensitivity of females to rapamycin may explain more
pronounced life extension by rapamycin observed in females compared to males in several studies.

INTRODUCTION There is no reason for them to be naturally selected for

slower aging. Therefore, animals with a high accidental
death rate tend to age faster. It is exceptionally
important for such males early in life to be bigger and
stronger (even at the cost of accelerated aging).

One of the most long-standing mysteries of gerontology
is that the females of most species live longer than the
males [1-12]. Not only most mammals but also women
of different nations and at most historical periods live

longer [2]. Ironically, it may seem that males do not age Growth is driven by the mammalian Target of

faster but simply are weaker at any age. In fact, the
mortality rate is higher in young males and teenagers
too. Importantly, however, old males die from age-
related diseases, whereas young males mostly die from
risky behavior and physical competition with each
other. While risky competition increases chances of
mating and offspring, this simultaneously results in high
accidental mortality (from fights) and males die young.

Rapamycin (mTOR) pathway [13-23]. (Note: mTOR is
also very recently renamed as MechanisticTarget of
Rapamycin (MTOR), so we will continue to use mTOR
in this paper). TOR is conserved from yeast to mammals,
including humans [24-26]. The mTOR pathway
stimulates protein synthesis and many cellular functions,
including secretion of mitogens, insulin and cytokines,
which remind the senescent phenotype [27-30]. In
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postmitotic non-dividing cells, instead of size growth
mTOR drives aging [31-37]. mTOR can convert
reversible quiescence into irreversible senescence
(geroconversion) [27, 38-43]. TOR pathway is involved
in aging from yeast to worms to mammals [44-59] as
well as in age-related diseases in mammals [15, 60-71].

Rapamycin suppresses cellular senescence [27, 31-36,
38-41, 72-80] and prolongs life span and health span in
diverse species [45, 46, 50, 67, 71, 81-91]. By inhibiting
TOR [36, 77, 92-94] p53 can suppress geroconversion
[76, 95-98] and affect lifespan [99], [100] and diseases
of aging [101]. Also some drugs, other than rapalogs,
can alter lifespan by targeting the mTOR pathway [102-
109]. Therefore, TOR emerges as a reasonable
candidate gene that may determine both growth and

aging.

In brief, early in life, TOR drives growth, robustness
and reproduction, while causing aging and age-related
diseases later in life [110-113]. This example of
antagonistic pleiotropy is in line with the evolutionary
theory [110]. We speculate that aging as a continuation
of growth driven by the same mTOR pathway, leading
to aging and diseases of aging culminating in
organismal damage and death. The mTOR pathway is
extremely complex [114-124]. It is stimulated by
nutrients (food), insulin, insulin-like growth factor 1
(IGF-1), testosterone, oxygen, and pro-inflammatory
cytokines [39, 55, 62, 114-130]. The TOR kinase
forms 2 complexes: mTORC1 and mTORC2 [121].
mTORCI1 is rapamycin-sensitive. This complex is
characterized by the classic features of mTOR as a
nutrient/energy/redox sensor, which controls protein
synthesis and growth. Most importantly it promotes
geroconversion (conversion from resting state to
senescent phenotype) that is partially suppressed by
rapamycin. Its most studied target is S6 kinase, which
phosphorylates S6 and rapamycin prevents this
phosphorylation. Therefore we used pS6, as a marker of
mTORCI1 activity, the most relevant to growth and
aging. mMTORC2 is rapamycin-insensitive. mTORC?2 is
a regulator of the cytoskeleton through its stimulation of
F-actin stress fibers, paxillin, and protein kinase Ca
(PKCa). mTORC2 phosphorylates the serine/threonine
protein kinase Akt/PKB at a serine residue 473 (S473).
Phosphorylation of the serine stimulates Akt
phosphorylation at a threonine 308 residue by PDKI1
and leads to full Akt activation [20, 116, 117, 121, 131-
136].

In this study we used pS6 as a marker of mTORCI1
activity - the major pro-aging pathway, and p-Akt S473
as a presumable marker of TORC2 activity, although it
is also an activator of TOR, acting upstream of mTOR
complexes.

In sum, mTOR may drive both growth and aging,
associated with hyper-functions coupled with signal-
resistance and malfunction, loss of homeostasis, leading
to development of deadly diseases of aging such as
cardiovascular and metabolic diseases, neuro-
degeneration, cancer and organ atrophy or failure [65].
We hypothesize that males have a higher levels of
mTOR activity, providing advantage (and bigger size)
for young males even though accelerated aging and
early death might follow.

RESULTS
Insulin and weight are higher in young male mice

First, we compared 6 months old male and female mice.
The most noticeable difference between males and
females was body weight (Fig. 1A). At the age of 6
months, males were 28 % heavier than females.
Females and males did not differ in levels of fasted
triglycerides (Fig. 1B) and glucose (Fig. 1 C), as
expected. Fasted insulin levels were slightly, but
statistically significantly, increased in males (Fig. 1D).
We also measured insulin response to re-feeding.
Induction of insulin upon re-feeding was significantly
higher in males (Fig. 1E). Moreover, levels of insulin
after fasting correlated with higher levels of insulin after
re-feeding (re-fed) and levels of both fasted and “re-fed”
insulin were preferentially higher in males (Fig. 1F).

The mTOR pathway is over-activated in 6 months
old males

In first series of experiments, blood was collected twice
(after fasting and 2 hour after re-fed) and animals were
sacrificed to measure pS6 and pAkt levels (Fig. 2 A).
Levels of pS6 were variable, whereas levels of p-AKT
were less variable between individual mice (individual
mice were identified by numbers shown above each
blot). (Note: Levels of total S6 (non-phosphorylated)
were difficult to determine because S6 location on the
blots is coincided with mouse immunoglobulin Gs,
contaminating organs and recognizable by the
secondary anti-mouse antibody.) However, as it is often
observed in culture, pS6 coincided with disappearance
of S6 (Fig. 2A).

The most important discovery was that levels of pS6
were significantly (p <0.0001) higher in male hearts
(Fig. 2B). Similarly, levels of p-AKT were higher in
males when measured in the hearts (significance p =
0.0001) (Fig. 2C). Importantly, levels of pS6 and p-
AKT in the hearts strongly correlated in a combined
group of all males and females taken together (high p-
AKT corresponded to high pS6) (Fig. 2D). Also we
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found strong correlation between surge of insulin after
re-feeding and levels of pS6 in the hearts (Fig. 2E).
Furthermore, pS6 and p-AKT were elevated in male
livers (Fig. 3). In male livers, levels of pS6 were
several times higher and statistically significant in
comparison to females (Fig. 3A). Similarly, levels of p-
AKT were also statistically significantly higher in males
(Fig. 3B). There was a strong correlation between the
levels of p-AKT and pS6 in livers of all mice in this
study (Fig. 3C). To confirm results obtained by immuno-

H
o

blotting we stained for pS6 sections of the livers from
all the mice. Immunohistochemistry demonstrated that
all individual male mice had elevated levels of pS6
compared with females (Fig. 3D). Noteworthy, pS6
was localized in the cytoplasm of hepatocytes. Levels
of pS6 in females were so low compared with males,
that it was possible to see staining as small
cytoplasmic grains (Fig. 3D). Thus two different
methods and two different organs demonstrated the
same results.
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Figure 1. Metabolic profile of 6 months old males and females. (A) Weight (grams) of 6 months old
female and male mice. Data present mean % SE. (B) Fasting serum triglyceride levels of females and males. Data
are mean + SE. (C) Fasting serum glucose levels in fasted blood of females and males. Data are mean * SE. (D)
Insulin serum levels in females and males. Data are mean * SE. (E) Percent of increase in insulin levels in response
to re-feeding after fasting by females and males. Data present mean + SE. (F) Correlation between fasting insulin
levels and levels of insulin 2 h after re-feeding. r — Pearson coefficient.
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Effect of fasting and rapamycin injections in 10
months old mice

In next series of experiments, we subdivided 10 months
old mice in 3 sub-groups: fasted, fed ad libitum
(control), and control mice treated with rapamycin (Fig.
4). First, we noticed that the difference in p-AKT and
pS6 in hearts between control and fasted females as well

as between control and fasted males (Fig. 4A) were not
significant (Fig. 4 C,E)). We combined two sub-groups
of males (individuals with numbers 17-22 plus 23-28)
into the male group and, similarly, two sub-groups of
females (individuals with numbers 1-5 plus 6-10) into
the female group (Fig. 4. B, D) to compare pS6 (Fig. 4
B) and p-AKT (Fig. 4 D) directly between two groups:
females vs males (Fig. 4B, D).
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Figure 2. Comparison of pS6 and p-Akt levels in the hearts of 6 month old females and males. (A) Immunoblot analysis of protein
lysates from the hearts of 6 months old females and males, which were fed ad libitum, fasted overnight for blood collection and then re-fed for 2
hours. Numbers above blots represent individual mice. All mice, except numbers 21-30 underwent this schedule and were well fed before organ
collection. In addition some females (21-30) received food ad libitum all the time (without transient fasting). Two conditions were considered as
fed ad libitum (at least for 2 hours before sacrifice and organ collection). There was no difference in pS6 and Akt between two subgroups of mice
(numbers 1-10 versus 21-30). Also there was no difference between levels of insulin and triglycerides in two sub-groups of females (Fig. 1S),
confirming that they were of similar feeding status at the time of organ collection. Because of that we combined two female subgroups for
further statistical analysis to increase statistical power to compare with males that were all similar re-fed for 2 hours as females. Now, all
comparison of pS6 and p-AKT could be done between males and females as fed ad libitum for the last 2 hours.

Quantitative analysis of data shown in Figure 2A. (B) Quantified intensities of phosphorylated S6 (pS6) signal in the hearts of female
(n=20) and male (n=10) mice. Data are presented as mean * SE. (C) Quantified intensities of p-AKT signal in the hearts of female (n=20) and
male (n=10) mice. Data are presented as mean * SE. (D) Correlation between levels of pS6 and p-AKT in the hearts. r — Pearson coefficient.
(E) Correlation between levels of pS6 (in hearts) and an increase in insulin levels upon re-feeding in both females and males taken together.
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Figure 3.

Levels of pS6 and pAKT in the livers of 6 months old females and males. (A) Quantified

intensities of pS6 signal in livers of females (n=8) and males 10). Data are mean * SE. (B) Quantified
intensities of p-Akt signal in livers of females (n=8) and males 10). Data are mean * SE. (C) Correlation
between levels of pS6 and p-AKT in livers. (D) Immunohistochemistry. pS6 in the livers of individual males
and females. Mice were fasted overnight, then re-fed and sacrificed 2 h later. Bar — 30 um.

(Note: rapamycin-treated mice were not included in such
groups and were compared with non-treated groups
separately in Fig. 4 C, E). There was a tendency to a
higher pS6 in male hearts (Fig. 4 B); however a number
of mice was likely to be too small to obtain statistical
significance. P-AKT was statistically and dramatically
over-expressed in the hearts of males compared with
females (Fig. 4 D).

Most measurements were done using 18-well gel/blots.
In order to compare levels of pS6 and p-AKT on
different blots, produced at different times, with
different antibody manufactures and different times of
exposure, we decided to include cell culture lysates as
loading/exposure controls in each gel. In Fig. 4A, we

used 10 pg of the HT-p21-9 lysates used by us in
previous studies. For tissues we used 30 ug of protein
per well. We found that levels of pS6 in mice tissues
were at least an order of magnitude lower than levels of
pS6 in cultured cells (Fig. 4A). This result may reflect
more “contact-inhibited” conditions in the organs and
also less stimulation of the mTOR pathway in normal
cells in the organism compared with cancer cells (HT-
p21-9 cells). Comparison of levels of mTOR activation
in the organism and cell culture will be the subject of
separate investigation. Also interestingly, levels of p-
AKT were much higher in animal organism than in
cultured cells. Levels of p-AKT were significant higher
in male hearts compared to females (Fig. 4C).
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Figure 4. Levels of pS6 and p-AKT in the hearts of 10 months old mice: control, fasted, rapamycin. (A)
Immunoblot analysis of protein lysates from the hearts of females and males. Numbers above blots are individual
mice in each group. Standard loading (SL) — 10 microgram lysates from cultured cells were loaded onto each upper
and lower gels and blots were exposed to comparable intensities in SL lanes,. Fasted: mice were fasted for 16 h and
sacrificed, control: mice were fed ad libitum, Rapa: “control” mice were treated with 1.5 mg/kg rapamycin (i.p.) 1 h
before sacrifice. (B, D) — Quantified intensities of pS6 and p-Akt signal in hearts of females versus males. Female and
male groups were comprised of all animals un-treated with rapamycin (n = 9 in female group and n = 11 in male
group) regardless of feeding status. Data are mean * SE. (C, E) Quantified intensities of pS6 and p-Akt signal in each
sub-group. Mean + SE in each subgroup separately: F — fasted; C — control; R —rapamycin-treated subgroup.

Rapamycin decreased pSé6 but did not affect p-AKT

While rapamycin decreased pS6 in male and female
hearts; it did not affect levels of p-AKT (Fig. 4A, B, and
O).

Rapamycin did not completely inhibit pS6 in males
compared to females

Next we performed immunoblot of tissues obtained
from livers from fasted, control and rapamycin-treated
males and females (Fig. 5A). Levels of pS6 and p-AKT
in males were statistically higher then these levels in
females (Fig. 5B and C). Using longer exposure, evidenc-

ed by the signal obtained from of loading control
lysate (SL), we found that pS6 was detectable in the
livers from males treated with rapamycin (Fig. 5A).
Like in hearts (shown in Fig. 4), rapamycin also did
not affect p-AKT in livers of both males and females
(Fig. 5A).

These results were confirmed in four organs (heart,
liver, intestine, kidney) performed by immuno-
histochemistry (Fig. 6, 7). First, there was no significant
difference between fasted and fed ad libitum animals,
indicating that fasting just marginally inhibited pS6. In
contrast, in rapamycin-treated mice, levels of pS6 were
dramatically decreased in all 4 organs (Fig. 6, 7).
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Figure 5. Levels of pS6 and p-AKT in the livers of 10 months old mice: control, fasted, rapamycin. (A) Immunoblot
analysis of protein lysates from livers of older (10 months old) females and males. Numbers indicate individual mice in each
group. SL — standard loading,1 ug lysates from cultured cells was loaded onto each gel (left and right) and blots were over-
exposed to obtain comparable intensities in standard loading lanes. (B) Quantified intensities of phosphorylated S6 (pS6) signal in
livers of females and males. Left panel — female and male groups were comprised of all the animals from 3 groups (fasted, control
and rapamycin) — n = 15 in female group and n = 18 in males group. Data are mean + SE. (C) Quantified intensities of
phosphorylated AKT (Ser 473) in livers of females and males. Data presented as described in legend B. (D) Correlation between
levels of pS6 and p-AKT in livers from all the mice under study. (E) Comparison of older (~10 months old) female and male mice

However, the effect of rapamycin was more pronounced
in females compared to males (Fig. 6 vs 7). In males,
rapamycin decreased levels of S6 phosphorylation but
pS6 staining was still well detectable in all 4 organs
(Fig. 7). However, in female organs rapamycin not only
decreased levels of pS6 but also completely eliminated
it, making it undetectable (Fig. SA and 6).

DISCUSSION
Why males, who are robust in young age, usually

undergo unhealthy and rapid aging and die relatively
fast? There are many explanations including unhealthy

life style, at least, in humans. But the universality of the
phenomenon is startling. Among hundreds of theories
there were some that propose that women live longer
after menopause for the purpose to help their daughters
to raise grandchildren [137-139]. Such theories imply
that diseases like menopause may be programmed. In
contrast, menopause is an age-related disease because it
increases mortality [140]. Like aging and diseases,
menopause is not programmed but quasi-programmed
[12]. Still females live longer. Females compete to a
lesser extent and their accidental death rate is lower
than in young males. Therefore, they are often smaller
and weaker than males. Taking this into consideration,
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hyperfunction theory allowed us to solve the mystery of
female longevity. Young females, which are smaller
than males, might have a lower activity of the mTOR
pathway. Since phosphorylation of S6 was inhibited by
rapamycin, we consider it as the most reliable marker of
mTORCI activity, which is rapamycin sensitive. Here
we assessed the activity of the mTOR pathway by pS6
(a marker of mMTORCI1) and p-AKT (Ser 473), which is
a rapamycin-insensitive marker of mTORC2. At age of
6 months, males were significantly heavier than
females. Both pS6 and p-AKT were statistically higher
in at least some male organs, as indicated by both
immunoblotting and immunohistochemistry (Fig. 2 and
3). Levels of pS6 significantly correlated with body
weight and p-AKT (Fig. 2 and 3). Male mice had
significantly higher fasted insulin levels and higher
insulin response to re-feeding when compared to
females (Fig. 1D and E). From 6 to 10 months age, the
difference between males and females become less

Females fasted
- iy

o
£
=
»
)
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£

prominent. Since levels of pS6 were variable among
individual mice, fasting decreased the average pS6 only
marginally (control and fasted mice are different
individuals) and a larger study may be required. In
contrast to fasting, intraperitoneal (i.p.) administration
of rapamycin dramatically decreased pS6 in all organs
tested (the liver, the heart, the intestine, the kidney)
(Fig. 4A, 5A, 6 and 7). The magnitude of S6
dephosphorylation by rapamyin was more pronounced
in females than in males as seen on overexposed
immunoblot of liver samples (Fig. SA) and on immuno-
histochemically stained slides of four organs (Fig. 6 and
7). In conclusion, our study demonstrated that both p-
AKT and pS6 were higher in young males than in
young females. These data can explain robust growth
and faster aging in male species. Higher sensitivity of
females to rapamycin explains superb life extension
observed in females compared to males in several
studies [86-88].

control Rapamycin

\(“ G .:.

Figure 6. Females: Immunochemistry of pS6 in the organs. pS6 in different organs of females (~ 10
months old). Fasted - mice were fasted overnight and sacrificed; control — mice received food ad
libitum; rapamycin — mice received 1.5 mg/kg rapamycin i.p. and sacrificed 1 h later Bar. — 30 um.
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Figure 7. Males: Inmunochemistry of pS6 in the organs.
pS6 in different organs of males (~ 10 months old). Fasted - mice
were fasted overnight and sacrificed; control — mice received
food ad libitum; rapamycin — mice received 1.5 mg/kg rapamycin
i.p. and sacrificed 1 h later. Bar — 30 um.

Many questions remain. Is p-AKT predominantly a
marker of mTORC?2 activity or also a marker of the
activity of the AKT/mTOR pathway, acting upstream of
mTOR. What other kinases are involved in S6
phosphorylation? What are other kinase pathways
involved in senescence? What are other sites of
phosphorylation and modification of multiple
components of the mTOR pathway (including Akt,
AMPK, TSC, IRS, PI-3K, elongation factors, raptor,
TOR itself and so on) could be biomarkers of longevity,
health and aging? How does the activity of the MTOR
pathway affect the difference in longevity among
species?

For millennia, people erroneously thought that
biological aging is caused by accumulation of all sorts
of damage, a process similar to the decay of the Egypt
pyramids or car rusting. More recently aging has been
believed to be caused by accumulation of molecular
damage such as DNA damage by free radicals [141-
154] but this has been practically disproved [113, 155-
168]. Also, mild hormesis that increases life span
induces molecular damage [169-172].

Consider the simplest paradox of the molecular theory
of aging. Obviously, nutrients provide energy to repair
molecular damage. If this damage is a cause of aging,
animals would live longer. However, it is exactly
opposite: nutrients and obesity accelerate aging,
whereas calorie restriction increases lifespan [55, 148,
149, 173-188]. It is possible to speculate about a
mysterious allocation of energy to the anti-aging repair
during famine and starvation (perhaps we can even
doubt the law of energy conservation). But the fact is:
the more energy (nutrients), the shorter lifespan. But
the very simple solution to this paradox is that aging is
not caused by accumulation of molecular damage
[189]. Instead, aging is driven by the mTOR pathway,
which is activated by growth factors, nutrients (food),
insulin (which is induced by nutrients), testosterone and
some other factors that all stimulate cellular and
organismal growth. When development is completed
the same still active mTOR pathway then drives aging
and age-related diseases [189]. In other words, aging is
a quasi-program of development, an aimless
continuation of growth driven by nutrient/insulin-
sensing signaling pathways [60]. Therefore, males live
shorter not because they are too weak but because they
are too robust (due to hyperactive mTOR).

Our work complements outstanding discoveries by
Bartke and co-workers that high levels of growth
hormone shorten life span. In fact, high levels of growth
hormone (GH), IGF-1, insulin all decrease lifespan in
mice. Such mice are big and short-lived. In contrast,
mice deficient in GH/IGF-1 signaling live longer [190-
198]. The GH/IGF-1 axis activates the mTOR pathway.
In line with the hyperfunction theory is an excellent
observation that big mice die young: early life body
weight predicts longevity in genetically heterogeneous
mice [199]. Our data provide mechanistic explanation:
the higher the TOR activity, the bigger the mice. Early
life growth hormone treatment shortens longevity [200,
201] and instead antagonists of these hormones may
extend life span, treat cancer and some age-related
diseases [202-206].

TOR-driven cellular hyperfunction and aging cause
organ damage. For example, cancer cells are not weak
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but instead robust despite high levels of damage
including DNA damage. An organism dies because
cancer cells are too robust not because they are weak
due to damage. Robustness, in part, can be explained by
hyperactive TOR in cancer cells, which is the most
common alteration in cancer and a target for therapy
[125, 136, 207-239].

The hyperfunction theory suggests that if aggressive
males must have high mTOR activity early in life, they
must age fast too. Furthermore, the theory suggests that
these aging-promoting genes like mTOR are
antagonistically pleiotropic [110]. Active and robust
mTOR pathway provides advantage early in life
including reproduction (noteworthy, mTOR increases
spermatogenesis and fertility). At the same time mTOR
decreases survival much later in life, when an organism
would not exist in dangerous for males natural
environment anyway. And this mechanism is much
more important to males than to females. It was
theoretically described why and how males must age
faster and die younger than females [12]. However, for
the first time this hypothesis was supported
experimentally.

MATERIALS AND METHODS

Mice. All animal studies were conducted in accordance
with the regulations of the Committee of Animal Care
and Use at Roswell Park Cancer Institute. Mice were
kept in polypropylene cages (30 x 21 x 10 cm) under
standard light/dark regimen (12 hours light: 12 hours
darkness) at 22 + 2 °C and received standard laboratory
chow (5% fat).

Study in 6 months old mice: Mice of C57BL/6NCr
strain, 6 months old, were divided into 3 groups: 10
females and 10 males were fasted overnight and 10
females were fed ad libitum. Fasted and non-fasted
blood sera were prepared, accordingly, for biochemical
analysis. Fasted animals were re-fed and sacrificed 2
hour later.

Study in 10 months old mice: 16 females and 18 males
of C57BL/6NCr strain were randomly assigned to 3 of
the following groups: fasted, control (received food ad
libitum) and rapamycin treated. Mice in rapamycin
group received rapamycin (purchased from LC
laboratories, USA) at 1.5 mg/kg intraperitoneally (i.p.)
and sacrificed an hour later. Mice in fasted group were
fasted overnight and sacrificed. Non-fasted (fed) and
fasted blood was collected. Blood was also collected
after re-feeding during sacrifice. Glucose levels were
measured directly in blood upon collection using Accu-
Chek Aviva strips (McKesson, Atlanta, GA). Sera were
prepared and used for biochemical analyses.

Insulin concentration in blood sera. Was measured
using Insulin (Mouse) Ultrasensitive ELISA kit
(ALPCO Diagnostics, Salem, NH) according to
manufacture’s protocol. Data were analyzed using range
of insulin standards and four parameter logistic fit.

Statistical analyses. 7 test and correlation analyses
(Pearson 7 coefficient and p value (two tailed)) were
performed using GraphPad Prism version 5.00 for
Windows, GraphPad Software, San Diego California
USA, www.graphpad.com.

Western blot analysis. Tissues were homogenized in a
Bullet blender using stainless steel 0.5 mm diameter
beads (Next Advantage, Inc, Averill Park, NY, USA)
and RIPA lysis buffer supplemented with protease and
phosphatase inhibitor tablets (Roche Diagnostics,
Indianapolis, IN, USA). Lysates were cleared by
centrifugation at 4°C at 13,000 rpm. Equal amounts of
protein were separated on gradient Criterion gels
(BioRad) and immunoblotting was performed with
rabbit anti-phospho S6(Ser 240/244), anti-phospho
AKT (Ser473), anti-AKT and mouse anti-S6 antibodies
from Cell Signaling Biotechnology as described
previously [ 36, 39, 40]. Rabbit anti-actin antibody was
from Sigma-Aldrich. Secondary antibodies were from
Cell Signaling.

Immunochemistry. Dissected tissue samples were fixed
in 10% buffered formalin, embedded into paraffin. 4
um thin histological sections were stained with anti-
phospho S6 (Ser240/244) antibody (Cell Signaling),
followed by biotinylated goat-anti-rabbit secondary
antibody (Vector, cat # BA-1000, Burlingame, CA) and
counterstained with Hematoxylin.
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Figure S1. Levels of insulin and triglycerides in two sub-groups
of females: individual mice 1-10 versus individual mice 21-30.
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