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Abstract: The P53 gene and it product p53 protein is the most studied tumor suppressor, which was considered as
oncogene for two decades until 1990. More than 60 thousand papers on the topic of p53 has been abstracted in Pubmed.
What yet could be discovered about its role in cell death, growth arrest and apoptosis, as well as a mediator of the
therapeutic effect of anticancer drugs. Still during recent few years even more amazing discoveries have been done. Here
we review such topics as suppression of epigenetic silencing of a large number of non-coding RNAs, role of p53 in
suppression of the senescence phenotype, inhibition of oncogenic metabolism, protection of normal cells from
chemotherapy and even tumor suppression without apoptosis and cell cycle arrest.

Not for the first time in the recent years, but the hero of short interspersed nuclear elements. These elements
again remains p53. Importantly that it was not from one that were transcribed are near-centromeric satellite
single discovery but instead from several different DNAs consisting of tandem repeats and multiple
discoveries and most were unexpected. Gudkov and co- species of noncoding RNAs. Amazingly, the abundance
workers recently reported (also on line first) that p53, a of these transcripts exceeded the level of beta-actin
tumor suppressor protein, recently renamed TP53, mRNA by more than 150-fold. Accumulation of these
cooperated with DNA methylation to maintain the transcripts, was accompanied by a strong, endogenous,
silencing of a large portion of the mouse genome. apoptosis-inducing type I IFN response. This work was
(Leonova KI, Brodsky L, Lipchick B, Pal M, recently discussed in detail [1, 2]. This phenomenon,
Novototskaya L, Chenchik AA, Sen GC, Komarova which Gudkov and co-workers named "TRAIN" (for
EA, Gudkov AV. p53 cooperates with DNA "transcription of repeats activates interferon"), was
methylation and a suicidal interferon response to observed in spontaneous tumors in two models of
maintain epigenetic silencing of repeats and noncoding cancer-prone mice. The authors proposed that p53 and
RNAs. PNAS U S A. Epub 2012 Dec 10.) It was IFN cooperate to prevent accumulation of cells
previously known that mammalian genomes contained containing activated repeats and provide a plausible
various classes of interspersed and tandem repeat DNA explanation for the deregulation of IFN function
sequences that were transcriptionally inactive. An frequently observed in tumors. Therefore, p53 and IFN
essential unanswered question was why they are so are key for genetic stability and therefore relevant to
many and why are they transcriptionally inactive? both tumorigenesis and aging.

The answer to this question was recently provided by This phenomenon may be linked to another discovery
the Gudkov team. The transcription of these sequences about the role of p53 and INF in long-lived and cancer-
was determined to be blocked by p53 in conjunction resistant rodents. Gurbunova et al [3] demonstrated that
with DNA methylation. In p53-deficient, but not in p53 in the blind mole rat Spalax, a small subterranean rodent
wild-type mouse embryonic fibroblasts, treatment with a which is distinguished by its adaptations to life
DNA demethylating agent caused massive transcription underground, there was a remarkable longevity (with a
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maximum documented lifespan of 21 years), and
resistance to spontaneous cancer induction. Spontane-
ous tumors have never been observed in these rodents.
Cells obtained from blind mole rats proliferated for 7-20
population doublings, after which the cells began
secreting [FN-beta, and the cultures underwent necrotic
cell death. In another long-lived and cancer-resistant rat
model, the release of IFN-beta was determined to result
in the sequestration of p53 and Rb-rescued necrotic cell
death. The precise link between two discoveries needs
to be further elucidated. Noteworthy, IFN-beta is
currently undergoing phase I clinical trials in various
drug combinations [4].

Next we discuss a third phenomenon published in
summer of 2012. It was shown that hypoxia, by
inhibiting mTOR in human cells, prevented the
development of senescent phenotype in non-dividing
but not senescent cells [S]. mTOR is known to drive
cell senescence in culture [6-9] and its inhibition
extends the lifespan of mice [10-16].

As recently proposed, aging is not caused by
accumulation of DNA damage but is driven by
signaling pathways such as TOR [13-36]. Aging and
age-related diseases are quasi-programs, an aimless
continuation of developmental growth. The hyper-
function theory was initiated by the hypothesis that
active growth-promoting pathway must drive aging
instead of growth, if the cell cycle is blocked [37, 38].
This increases cellular functions, leading to
hyperfunction, age-related diseases and malfunctions.
This theory, Recently named “the hyperfunction
theory”, this point of view is becoming increasingly
accepted [17 ,39, 40].

Besides rapamycin and other rapalogs, mTOR is
inhibited by p53 and hypoxia [5, 7]. Long-lived rats that
live underground frequently experience hypoxia. Could
hypoxia also contribute to their exceptional longevity?
Also, it was known that fibroblasts from long-lived
mutant mice exhibit lower mTOR activity after nutrient
deprivation or oxidative stress [41].

Two recent papers demonstrated that rapamycin can
increase life-span in p53- deficient mice, substituting
p53 by rapamycin [42, 43]. This may be due to natural
inhibition of mTOR by p53, as suggested recently, so
rapamycin could potentially substitute for p53-
dependent mTOR inhibition and extend lifespan [44].
p53 may not only initiate cell cycle arrest (a condition
suitable for conversion to senescence driven by mTOR),
but may also suppress this conversion from arrest to
senescence by inhibiting mTOR [7]. The choice

between senescence and quiescence/apoptosis may be
determined by inhibition of mTOR by p53 [5, 8, 45-50].

But the most unexpected discovery was the tumor
suppression observed in the absence of p53-mediated
cell-cycle arrest, apoptosis, and senescence [51, 52].
What could this result in? Most scientists remain
skeptical. Could this missing tumor-suppression activity
be gerosupression by p53 as recently discussed [53].
But still this could be a very unique case in exceptional
conditions and special mice.

There were numerous exciting reports increasing the
diverse roles of p53 as a tumor suppressor [54-75]
emphasizing its functions in apoptosis [76-81] and
especially prevention of p53-mediated apoptosis by
HIF-1 through a secreted neuronal tyrosinase [82] cell
cycle arrest [83-86]. p53 has also been shown to be
involved in the inhibition of invasiveness [87], and
interact with other genes to suppress cancer [88], as
well as suppress p63 to prevent induction of a pro-
invasive secretome [89]. Moreover p53 has been shown
to regulate telomere function [90] and p53 can suppress
telomere-driven  tetraploidization [91]. Interesting
breakthroughs were in the identification of p53 as
inhibitor of metabolism, [58, 92-94] its role in
autophagy, [95, 96] it roles in induction of necrosis [97]
and other diverse activities [98-110].

In fact, some of metabolic effects of p53 are associated
with gerosuppression by p53 [53]. Noteworthy,
rapamycin, like p53, may not only suppress oncogenic
metabolism but also decrease lactate production by
cancer cells [111, 112].

Given that the PI3K/mTOR pathway is activated in both
aging [13] and cancer [113-125], aging and cancer share
such characteristics as an increased metabolism,
anabolic phenotype and other metabolic features [126].
By themselves, aerobic cancer cell and stromal
metabolism  become therapeutic targets [127].
Additional promising cancer-specific targets are gluta-
minase [128] and PKM?2 [126-134]. PKM2 expression
is necessary for aerobic glycolysis and cell proliferation
in vivo [129-134]. Pyruvate kinase M2 regulates glucose
metabolism by functioning as a coactivator for hypoxia-
inducible factor 1 in cancer cells [129-135]. Cancer
cells universally express the M2 isoform of the
glycolytic enzyme pyruvate kinase (PKM2). Although
isoform selective inhibition of PKM2 with small
molecules is feasible and support the hypothesis that
inhibition of glucose metabolism in cancer cells is a
viable strategy to treat human malignancy [125], the
cancer-selectivity of PKM2 was recently doubted [136].
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But here is a new twist: p53 may protect cells lacking
p53 (all normal cells), thus in theory decreasing side
effects, without decreasing the therapeutic effects
against cancer cells lacking p53. Thus, it was shown
that p53-mediated senescence impairs the apoptotic
response to chemotherapy and clinical outcome in
breast cancer [137]. But here is a silver edge of the
cloud [138]. By inducing cytostatic levels of p53 and
causing quiescence, we can protect normal cells from
chemotherapy, without protection of cancer cells
lacking p53. Protection of normal cells was called
cyclotherapy [139-142]. Protection of normal cells by
induction of p53 was further confirmed recently [143-
147].

Finally, the role of p53 in somatic cell reprogramming
was recently discussed in detail [148-153].
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