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Hypothesis

Big mice die young but large animals live longer
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Abstract: It has been known for millennia that large animals live longer, inspiring numerous theories of aging. For
example, elephants and humans live longer than mice, which in turn live longer than worms and flies. The correlation is
not perfect, with many explainable exceptions, but it is still obvious. In contrast, within each species (e.g., mice and some
other mammals) small body size is associated with longevity and slow aging. The concept that aging (and age-related
diseases) is an aimless continuation of developmental growth, a hyperfunction driven by the same nutrient-sensing and
growth-promoting pathways such as MTOR, may explain this longstanding paradox.

INTRODUCTION

The excellent study by Miller et al “Big mice die
young: early life body weight predicts longevity in
genetically heterogeneous mice” [1] has set in stone
the paradigm that large mice live shorter [2-9]. Weight
in 2-month-old mice is a significant predictor of life
span [1]. The rule is common in mammals, within (but
not between) species, and even including humans in
some special studies [10-16] (note: we will also
discuss opposite tendency favoring taller people to live
longer).

Yet, it has been known for millennia and is absolutely
obvious that larger animals of different species live
longer. Elephants live longer than mice and 75 ton
bowhead whales may live up to 150-200 years, which is
at least 3000 times longer than the lifespan of small C.
elegans. So how do two rules co-exist? Based on a
new view on aging, named for brevity “ hyperfunction
theory” [17-19], we can explain why and how the two
phenomena coexist. Various applications and aspects of
hyperfunction theory have been already extensively
reviewed [19-35] (with references on other articles
within), so here only a brief summary is needed in order
to answer a particular question: “ Why big mice die
young but large animals live longer”.

MTOR-driven quasi-programmed aging (hyper-
function theory)

Mechanistic  (formally, mammalian) Target of
Rapamycin (MTOR) is activated by nutrients (glucose,
amino acids, fatty acids), oxygen, hormones (such as
insulin), growth factors and cytokines and, in turn,
stimulates growth and metabolism and is involved in
pathological conditions such as diseases of aging [20,
38-53].

MTOR mechanistically links cellular mass growth and
senescence, whereas aging is a continuation of growth
[26, 54]. When actual cellular growth becomes
impossible (post-mitotic and arrested cells), MTOR
drives cellular aging/senescence [55-61], a process
named geroconversion [62]. Importantly, MTOR
stimulates cellular functions such as secretion and
lipogenesis [63-65]. Senescent cells are
hyperfunctional, leading to age-related diseases and
conditions, an increasing the probability of death
(organism aging) [34, 62]. This topic is beyond the
scope of this article, it was discussed before [34] and
cannot be discuss here in detail.

When the developmental program of an organism is
completed, full MTOR activity is not needed. Then,
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instead of actual growth, MTOR drives aging and age-
related diseases [19, 20]. Thus, aging is an aimless
continuation of developmental programs (Figure 1),
driven by the same “MoTOR” in the same direction (at
first) and may be at almost the same speed [27]. A
quasi-program for aging is not a program (it has no
purpose) but a blindly-running program of develop-
mental growth that has been already completed but not
switched off [31]. At least initially, the MTOR-driven
quasi-program causes no visible harm to the organism.
In humans, adulthood may seem very healthy indeed,
despite subclinical changes of homeostasis [19]. Overt
diseases and organ damages arise much later in life.
But natural selection is not at play at such ages, because
rare animals survive until deep aging in the wild.
Exceptions will be discussed here.
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Figure 1. MTOR-driven quasi-programmed aging
(hyperfunction model). Aging is a continuation of
developmental growth driven by growth-promoting pathways
such as MTOR. Green: robustness. Red: hyperfunction-driven
diseases leading to death. See Ref. 19.

Why do large animals live longer?

Larger animals live in more protected environments
with less accidental death from extrinsic causes, So
natural selection favors slow aging. For example,
elephants or whales (unless hunted by men) may die
from “old age”: so natural selection has been at work to
further increase their life span. Large size by itself is
protective from predators. Large, complex organisms

with sophisticated behaviors require prolonged periods
of development, so large animals develop slower. Then
aging, a continuation of developmental growth, is also
slow (Figure 2). Second, due to low extrinsic death
rate, natural selection may favor slow aging in large
animal types, and the most natural way to do so is to
repress growth-promoting/gerogenic pathways such as
MTOR.  This will automatically  decelerate
developmental growth: the most certain way to slow
aging is to slow the developmental growth. In other
words, slow development turns into the slow quasi-
program of aging and age-related diseases. Taking these
two reasons together, there is a positive feedback loop
between slow development and low incidental death
rate, ensuring that large animals are long-lived. In
brief, species with large body size and low accidental
death rate have undergone (or even undergo now)
selection for longevity. Because aging is a quasi-
progammed hyperfuntcion and continuation of
growth, slow aging can be a result of slow
development in large animals.

Why the correlation is not perfect

Yet low accidental death rate can be dissociated from
body size. Then, even smaller animals, which live in
protected environments in the wild, live longer than
equally-sized animals. Examples include bats and naked
mole-rats, compared with rats. In such animals, natural
selection favors slow aging and aging-tolerance (the
term discussed in [27, 33]). Hypothetically, in durable
safe environments with low accidental death rates,
natural selection may favor a “decelerator” of MTOR,
slowing down aging after development. Another way is
to increase aging-tolerance, despite the same rate of
aging. For example, changes in the developmental
program that increases the number of collateral arteries
in vital organs such as the heart (aging-tolerance) can
extend lifespan despite the same rate of atherosclerosis

(aging).
Why do big mice age faster?

Big mice grow faster than slow-growing mice. They are
bigger than slow-growing counterpart at the same age
[1]. This is an advantage earlier in life in any
environment. (Note: one may argue that this may be
disadvantage in the wild because large mice need to eat
more to stay alive. However, a cause-effect relationship
may be opposite: it is food, which activates MTOR and
growth, that makes mice bigger at the time of plenty).
But if they are larger because nutrient- and growth
factor-sensing pathways like MTOR are over-active,
then such fast-growing mice should age faster too
(Figure 2).
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Figure 2. Big mice and large mammals. Big mice grow faster than normal
and especially dwarf mice. Fast growth is translated in fast aging. In contrast,
large mammals develop for a prolonged period of time and aging (a
continuation of developmental growth) is slow too. Given that very large
animals may have very low extrinsic death rate and therefore may die from
aging, natural selection may, in theory, favor deceleration of aging (curve 2).

Calorie  restriction  decreases  size,  prolongs
development, delays reproduction and, on the other
hand, delays aging, age-related diseases, loss of
reproduction [28, 66]. In contrast, by stimulating
MTOR, overeating causes the opposite effects. While
nutrients, insulin, growth factors all activate the MTOR
pathway, they accelerate gerogenic conversion and
hyperfunctional aging.

Similarly, mice overproducing growth hormone and
IGF are bigger and live shorter lives [6-70]. In contrast,
small (slow-growing) mice which have defects at
different points of the growth pathway (such as
RasGrfl-/-, growth hormone-deficient, GH receptor-
deficient, IRS1-/-, S6K1-/-) live longer [5, 8, 71-78].
For all these examples, short life span is associated with
increased MTOR activity, while long-lived strains have
a decreased MTOR activity [36]. This was discussed in
detail [36]. Whether long-lived strains are insulin
sensitive (see Figure 2 in Ref. [36] or insulin-resistant
(Figure 3 in Ref. [36]) is co-incidental. Thus, insulin
resistance may result from MTOR overactivation (bad
condition). Other types of insulin/IGF1 resistance may
result in deactivation of MTOR (benevolent condition)
(see figures in [36]).

The activity of MTOR, in theory, determines both body
size and lifespan, as discussed in detail [19-35] (with
references on other articles within).

Noteworthy, fibroblasts from long-lived mutant mice
exhibit lower MTOR activity [79]. In contrast, in the
muscle of long-lived Ames dwarf mice, the
PI3K/Akt/MTOR pathway is deactivated compared
with their normal size siblings at the same age of 2
months [80].

In sum, to achieve prematurely big body weight, a
mouse needs hyperactive growth-promoting
pathways (genetic mutation, overfeeding), which
later drives accelerated aging. This happens because
two processes are continuation of one another and
because growth-promoting pathways such as MTOR
are involved in both growth and aging (Figure 2).

Importantly, slow-aging mice were developed in the
laboratory. Small size and late reproduction and
infertility are disadvantages in the wild with high risk of
accidental death. Yet slow-growing, slow-aging GH-
and GH receptor-deficient mice are an excellent model
to illustrate that aging is a continuation of developmen-
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tal growth and is driven by the same growth-promoting
signals. What if this gerogenic force could be
diminished to decelerate aging after the completion of
development. In an outstanding study by the Miller
group [81], long-lived Snell dwarf mice received 11
weeks of GH that increased their weight, although they
remained much smaller than controls. The treatment
also restored fertility to male dwarf mice and did not
diminish life span [81]. I suggest that GH induces IGF-I
and thus activates the MTOR pathway [82], which
drives growth and then aging [26].

IGF levels correlates with body size and short longevity
in mice [83-85]. In the Miller study, GH had been
discontinued before mice reached full size and therefore
only developmental growth was affected and promoted.
Aging remained slow. The quasi-program of aging was
not affected. (Another study, however, demonstrated
that seemingly similar treatment with GH affected the
speed of aging [86]. The difference may depend on
dosage, duration and age of treatment [86]. As noted by
Panici et al [86], the dosages were effectively declining
in the Miller study [81]. Also, the age of nutritional
intervention may switch the_mouse to a slow aging
trajectory [87].

And vice versa, deceleration of a quasi-program can be
achieved in normal mice by administration of
rapamycin, even when developmental growth program
has been completed [88-90].

Males age faster than females

In many species, males are bigger than females. Could
that be a special case of the rule that “big mice age
fast.” Males must be strong and robust because of the
competition for mates, fights and dangerous behavior.
In the wild, an accidental death rate is very high for
young males, so there is no need to age slower,
especially given that fast aging is “a continuation” of
the program of robustness and growth. Natural selection
does not need to turn off the “MoTOR of aging”
(MTOR). Especially because, as discussed previously
[91, 92], MTOR brings about robustness earlier in life.

Besides increasing strength and muscle size,
testosterone  stimulates MTOR. And rapamycin
decreases both spermatogenesis and testosterone,

although completely reversibly [93]. So low MTOR is a
disadvantage for young males, where high MTOR
activity is an advantage, providing hypertrophy and
increased of functions. But hypertrophic functions
become later hyperfunctions, causing loss of
homeostasis, diseases and organ damage. In sum, males
age faster and develop age-related diseases earlier than

females. It was recently shown that young male mice
have increased MTOR activity in the heart and the liver,
and this activity correlates with body weight [94]. This
supports the hypotheses explaining why males live
shorter [94].

Emergence of slow-aging individuals in extremely
protected environment

Several studies demonstrated that people with low body
weight live longer. This could be explained by the low
activity of the GH/IGF1I/MTOR pathway, consistent
with the “within species” rule. On the other hand,
human life span is constantly increasing but people
become taller. One hypothetical explanation is that (in
the past) long-developing individuals died young from
infections, starvation and accidents [95]. Now slow-
developing and therefore slow-aging individuals survive
until aging: the average lifespan is increasing. In
principle, as speculated, their phenotype can be
associated with “weak” MTOR and prolonged
development [95]. In analogy, C. elegans lacking PI3K,
an upstream component of the MTOR pathway, have
prolonged developmental times and (under very
protective environments) they mature into extremely
long-lived adults (10-fold extension of both median and
maximum adult lifespan) [96]. In humans, delayed
puberty (slow development) is associated with
exceptional longevity [97].

Instead of conclusion

Fast versus slow aging may depend on whether the
organism “grows fast” or “develops longer”: first case
should be associated with high MTOR. Exceptions may
be numerous. Small size is not always related to the
GH/IGF/MTOR pathway but instead may be caused by
defects that shorten life span. But understanding of each
exception will further illuminate the rules [98, 99]. On a
wider scale (from worm to whale), large animals live
longer because aging is quasi-programmed. In contrast,
“big” mice live shorter because they grow faster than
dwarf mice and growth is driven by the same pathways
that drive aging. Fast-growing mice are expected to
have over-activation of growth-promoting pathways
(either by excessive calorie consumption or due to
genetic mutations), which drive aging and age-related
diseases later. Cellular hyperfunction is the key feature
of aging cell, leading to organismal death [17-19] Yet,
there are also two other crucial aspects of hyperfunction
theory: (a) aging as a quasi-program of developmental
growth and (b) both processes are driven by the same
growth-promoting-signaling pathways including
MTOR.
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