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Abstract: In recent years, the wealth of basic science research supporting resveratrol’s potential to treat, delay, and even
prevent age-related chronic diseases has led to a number of human clinical trials. While such translational research has
yielded promising results in clinical populations, recently published conflicting results from studies evaluating resveratrol’s
potential for primary prevention of chronic disease in healthy / asymptomatic individuals have generated considerable
controversy and do not initially appear consistent with findings from animal models. We argue that trials targeting
healthy humans are often fundamentally flawed owing to inappropriate use of paradigms only applicable to populations
with overt clinical disease and the consequent misleading (typically negative) results can severely retard advancement of
drug development. To appropriately perform translational research centered on resveratrol as a primary prevention agent
in non-clinical populations, it is critical to utilize study designs which can provide adequate information on clinically
relevant outcome measures, avoid paradigms and assumptions from interventions which are specific to clinical
populations, and maintain realistic expectations compared to interventions which provide the theoretical maximal
response (e.g., caloric restriction and aerobic exercise training).

Treatment with resveratrol, a polyphenol found in red
wine, has been suggested as an intervention to prevent
chronic disease and promote longevity. Recently, the
results from multiple human clinical trials exploring the
health impact of resveratrol treatment have emerged,
with a general focus on treating individuals with
obesity, diabetes, and cardiovascular disease. Basic
research in a variety of animal models has shown
benefits of resveratrol including increased longevity,
amelioration of cardiovascular disease, improved
sensitivity  to  insulin, reduced aging-related
neurocognitive decline and neuropathies, and reduced
cataract formation through mechanisms largely centered
on pathways ultimately related to Sirtuin gene
activation [1-3]. In many, but not all cases, the results
of these trials are consistent with laboratory animal
data, suggesting potential clinical value for resveratrol
in these populations [4]. There is also considerable

interest in using resveratrol as an agent for primary
prevention. Reports of improved healthspan in
laboratory  models [5] have  spurred the
commercialization of resveratrol supplements [6],
which are marketed for improving health and
preventing chronic disease in healthy populations,
rather than treating existing disease. Several recent
papers have reported the effects of resveratrol treatment
in clinically healthy populations; however, conflicting
results have fueled appropriate skepticism towards
resveratrol’s clinical potential.

Yoshino [7] concluded that resveratrol treatment “does
not have beneficial metabolic effects in non-obese,
postmenopausal women with normal glucose tolerance.”
Likewise, Poulsen [8] stated that lack of significant
findings in otherwise healthy obese individuals “raises
doubt about the justification of resveratrol as a nutritional
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supplement in metabolic disorders” and that “it is likely
that a certain degree of baseline metabolic abnormalities
is a prerequisite to benefit from resveratrol treatment.”
Agarwal [9] concluded “resveratrol may have protective
effects against atherosclerosis in individuals who would
not be considered high risk with the current screening
criteria” and Timmers [10] noted that resveratrol
“induces metabolic changes in obese humans, mimicking
the [beneficial] effects of calorie restriction.” Naturally,
conclusions from each study were appropriate to reported
results, which were driven by differences in study design,
cohorts, and clinical outcomes. Discrepancies in results
between studies highlight the unique challenge of
evaluating resveratrol efficacy in a healthy population -
how does one define clinical improvement in individuals
who are already clinically healthy at baseline?
Appropriate Clinical Outcome Markers Are
Necessary for Appropriate Conclusions

Identifying outcome measures for interventional trials in
populations with overt clinical disease is relatively
straightforward, as patients’ signs, symptoms, and
abnormal biomarker values can be monitored at specific
intervals and improvement can be clearly identified (e.g.,
resolution of signs, values moving towards the normal
healthy reference ranges). In animal models, resveratrol
treatment can be started early in life and effectiveness of
primary prevention interventions can be directly
measured through serial biomarker measurements, age at
onset of disease, maximal lifespan, and post-mortem
pathological evaluations (e.g., [2]). Comprehensive
nutritional primary prevention studies in humans are
more difficult to perform due to time constraints, costs,
and limitless confounding factors [11] which can lead to
a bias towards negative findings [12]. Thus, various
biomarkers associated with risk for chronic disease are
often utilized as a surrogate to predict the development of
pathology or risk for disease-associated mortality (e.g.
[13]) and anti-aging therapeutics are evaluated in part
through their ability to treat age-related pathologies [14].

Research paradigms which are typically applied to
populations with overt clinical syndromes or disease are
not necessarily relevant to asymptomatic, healthy
populations. Perhaps the clearest example of this is
based on the tenet that if pathology causes a change in
an outcome measure in one direction (e.g., increased
blood glucose or blood pressure), a change in the
opposite direction is indicative of improved health (e.g.,
decreased blood glucose or blood pressure). Indeed, the
paradigm that resveratrol is efficacious in clinical
populations, including obese individuals, individuals
with  cardiometabolic  dysfunction, and elderly
individuals is well supported through clinical trials [15-

18]. However, when resveratrol clinical trials have
applied this paradigm to healthy populations, the results
are often disappointing (e.g. [7, 8]). In the absence of
pathological deviations from healthy reference range for
a given outcome at baseline, therapeutic-induced
changes in said outcomes are difficult to interpret.
Reductions in many parameters, such as electrolytes,
glucose, or blood pressure, may be deleterious if they
fall below “normal” values (Figure 1a). On the other
hand, a reduction in plasma C-reactive protein, as an
example of an inflammatory marker, does not have a
clear interpretation if the basal levels were already in a
low-risk category (Figure 1b). Thus, the recently
reported very small, yet statistically significant
decreases in TNFa and IL-6 in healthy athletes
following resveratrol treatment is of unknown clinical
value[19].  Only longitudinal studies of substantial
duration that incur natural progression of disease (or
biomarkers thereof) would be of value to highlight a
retarded progression of age-related diseases induced by
therapeutics (e.g., similar to those using statin drugs
[20, 21], fish oil [22], or vitamin supplements [23] for
prevention of cardiovascular disease). However, cross-
sectional studies suggest that the natural history for
many biomarkers of age-related disease could require
decades of follow-up for clinical trial studies, which is
typically not feasible.

Pathological Ideal Responses to Undesirable

Range (High) Resveratrol Response to
Resveratrol
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Reference I Homeostatic

Range Mechanisms

________________________ _Healthy_ Thresho!d______,_______,__,_________
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Range (Low)

Figure 1. Unique challenges in selecting outcome measures
which are responsive to resveratrol treatment in healthy
individuals. (A) When there is a continuum for an outcome
measure such that values above or below a reference range are
pathological (e.g., fasting glucose or blood pressure), it is
advantageous for resveratrol treatment to produce an effect in
the pathological population. However, in healthy individuals,
homeostatic control mechanisms should prevent these values
from dropping below a certain healthy threshold to create
pathology. As such, these types of outcome measures are likely
to exhibit a limited range of response to resveratrol.

Given that resveratrol mimics effects of caloric
restriction [24-28] and exercise training [29, 30] across
model species, it is appropriate to use these two inter-
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Figure 1. Unique challenges in selecting outcome measures
which are responsive to resveratrol treatment in healthy
individuals. (B) When plasma biomarkers are above normal
reference range, there is often known benefit in reducing them.
However, in the healthy population, most biomarkers associated
with pathology (e.g., inflammatory cytokines) are found at very
low concentrations. The physiological benefits of further
reducing these biomarkers remains unknown, and the limited
possible range for response creates statistical limitations.

ventions as benchmarks to define the theoretical
maximal response to resveratrol treatment. It may be
unreasonable to expect even the largest tolerable dose of
any nutraceutical alone to provide an equivalent
metabolic response to a 40% caloric restricted diet [31] or
replicate the multiple cardiovascular and metabolic
adaptations resulting from aerobic exercise [32] (e.g.,
30% increase in SIRT1 activation following 6 weeks of
high-intensity interval training [33]). Thus, it would be
expected that resveratrol treatment would elicit at least a
somewhat lower magnitude of response compared to
those achieved through “best case scenarios” of the two
reference interventions, with the greatest responses likely
observed in the elderly or individuals with
cardiometabolic dysfunction (Figure 2). If resveratrol
treatment can mimic the effects of exercise training,
albeit at a reduced magnitude, athletes should serve as a
model for many of the expected physiological responses.

Indeed, athletes do exhibit extreme values in certain
measurements (e.g., high maximal aerobic capacity, low
body fat) and exercise training does substantially reduce
the risk of cardiovascular and metabolic disease [32]
and thus may be regarded as an anti-aging intervention
[34]. Yet, many relevant measures of physiologic
function in athletes remain unchanged compared to the
general healthy population. For instance, resting
arterial blood pressure and HOMA is not significantly
reduced in most competitive athletes [35] and
hypertension is not uncommon in athletic populations
[36]. It is not surprising that these particular
measurements do not severely decline in response to

resveratrol treatment in normotensive normoglycemic
individuals (i.e., individuals who do not have “loss of
homeostasis” [37]), given that hypotension and
hypoglycemia are indicative of disrupted homeostasis
and would be pathologic, rather than advantageous.
Thus, if the “best case scenario” (years of exercise
training) does not significantly impact these variables, it
seems unlikely that a short period of resveratrol
treatment would influence these in healthy individuals
whose baseline values are also already within a normal
reference range. Thus, when resveratrol does not
influence tightly regulated biomarkers in the
asymptomatic healthy population, it should not be
interpreted as a negative finding (e.g., [7, 8]). In fact,
deviation of parameters such as glucose or blood
pressure from “normal values” would easily be
construed as adverse events.

Likewise, some outcome measures are not fully
representative of overall function. This is exemplified in
evaluating general cardiovascular fitness or endurance
performance through measuring maximal aerobic
capacity (VOamax). In mice, resveratrol promotes
mitochondrial biogenesis and improves endurance
performance [38] and thus, VO,.x has served as an
outcome measure in one resveratrol human trial [10]
and will likely appear in future trials as a measure of
overall cardiometabolic function. However, VOrnax
reflects the interdependent functioning of multiple
systems and, given the serial nature of oxygen transport,
a major improvement at one site without parallel
improvements elsewhere will have limited influence on
VOomax [39]. While resveratrol treatment does induce
some physiologic adaptations, such as increased blood
flow [40-42]) and enhanced skeletal muscle
mitochondrial function [10] in humans, other variables
are still likely to limit aerobic function (e.g., maximal
cardiac output [43]). Endurance performance is also
influenced by other variables independent of VO;naxs
such as movement economy and fractional utilization
[44], and factors which are only likely to adapt to
exercise training itself (e.g., neuromuscular activation
patterns [45]). Because exercise is the only intervention
that can directly increase absolute VOjn.x in healthy
individuals, it should not be considered a negative
finding when resveratrol fails to enhance a multifaceted
measurement that all other dietary (e.g., [46]) and very
few pharmaceutical (namely erythropoietin [47, 48])
interventions also fail to improve.

and

Dosage, Inter-Individual

Interactions

Variability,

As research in non-clinical populations becomes more
common, disparity in dosing protocols and clinical
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endpoints will likely continue to cause conflicting
findings. The wide range of daily resveratrol dosage
used in clinical trials for healthy individuals (75mg [7]
to 5000mg [49]) would be expected to result in different
clinical responses. Brown [49] confirmed this,
demonstrating 2500mg to be more effective than both
lower (500mg and 1000mg) and higher dosages
(5000mg) in reducing plasma IGF-1 concentrations.
Though 1000mg resveratrol did not alter IGF-1
concentrations, it was sufficient to reduce IGFBP-3
concentrations. This demonstrates that there may not be
a single optimal dose of resveratrol, but rather the ideal
dose may vary depending on the target outcome
measures, which is not uncommon for various drugs
(e.g., low vs. high dosages of corticosteroids to induce
anti-inflammatory vs. immunosuppressive responses
[50]). Further, that only relatively high dosages are able
to influence at least some variables counters Yoshino’s
[7] argument that 75mg of resveratrol should be
sufficient to observe a physiological response in healthy
individuals. In vitro studies have demonstrated time of
exposure influences the cellular response to resveratrol
(e.g., [51]), and thus it is possible that short-duration
peaks can produce very different effects than sustained
elevations in plasma resveratrol concentration. Thus, it
is quite difficult to compare the physiologic response of
a resveratrol treatment that maintains high plasma
concentrations (i.e., Poulsen’s 500mg three times per
day [8]) to protocols in which there is greater circadian
fluctuation in plasma resveratrol concentration (i.e., any
of the once daily dosing protocols).

Highly Responsive
Outcome Measure

Baseline Physiologic Function

Post-

Baseline
Resveratrol

It is accepted that genetic factors can account for inter-
individual responses to drug therapy, including both
efficacy and toxicity, and the issue of individualized
medicine based on pharmacogenomics remains an active
topic of discussion in the medical community [52, 53].
Additionally, inter-individual wvariability in gene
expression and single nucleotide polymorphisms, such as
those related to sirtuins, AMPK, and NAD(P)H oxidase,
in the general population may be related to metabolism
[54-57], and cardiovascular health [58-61], and response
to cardiometabolic drug targets [62], and could therefore
influence response to resveratrol. Likewise, physiologic
responses to resveratrol and other natural products may
also be expected to depend on a complex array of
multiple individual factors which ultimately influence
baseline status for sirtuin activity, NAD+ levels, and
other molecular pathways associated with resveratrol’s
mechanisms of action (e.g., age [63-65], sex [63], race
[66], diet [67, 68], exercise practices [64]). There is also
emerging evidence that inter-individual variability in the
human gut microbiota can have a major influence on
resveratrol metabolism, which likely has consequences
for both bioavailability and physiologic responses [69].
As such, it is critical that studies involving healthy
humans control either control for as many of these
confounders as possible to determine the effects of
resveratrol on a specific population of interest, or ensure
that there is adequate sample size to overcome inter-
individual variability and detect overall responses when
examining the general population and to allow subgroup
analyses whenever possible.

Minimally Responsive
Outcome Measure

Post-

Baseline Resveratrol

Figure 2. Model comparing expected changes in highly responsive vs. poorly responsive outcome measures to
resveratrol treatment in pathological and healthy individuals. The y-axis represents baseline physiologic function, with each
dashed line corresponding to the following categories: Letters represent the following: (A) Maximal physiological response attainable
through optimal stimulus (i.e., high intensity exercise training, caloric restriction). (B) Healthy normal. (C) Metabolic dysfunction
(e.g., diabetes mellitus). For an outcome measure which resveratrol treatment produces a large effect in a pathologic individual, it is
expected to show a smaller effect in an already healthy individual. In healthy individuals, highly responsive outcome measures (left)
will show a large response to an optimal physiologic stimulus (e.g., high intensity aerobic exercise, caloric restriction), but may have a
smaller, yet detectable response, to resveratrol treatment. However, outcome measures which are minimally responsive to such
optimal stimuli in the healthy population would be expected to have an undetectable response to resveratrol treatment.
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There is evidence that resveratrol’s bioavailability can
be enhanced when it is administered with other
polyphenols [70], which has led to some studies
incorporating resveratrol into a polyphenol matrix (e.g.
[9, 71]). While polypharmaceutical treatments do not
allow one to differentiate between the effects of
resveratrol versus the complete matrix, it can be
argued that maximizing clinical utility is more
important than differentiating the physiological effects
of one small molecule from another. Limitless
possibilities in formulation of resveratrol supplements
create challenges in generalizing conclusions
regarding the clinical efficacy of resveratrol [72].
Therefore, some attempt should be made to collect
data using a standardized dose and / or a standardized
set of outcome measures whenever possible. When
possible, clinical trials should utilize sufficient sample
size to study multiple dosages of resveratrol (e.g.,
250mg vs. 500mg per day), different administration
schedules to achieve a total dose (e.g., 500mg once per
day vs. 250mg twice per day), different formulations
(e.g., resveratrol alone vs. resveratrol within a
specified matrix), or some combination thereof.
Admittedly, this will not provide answers to all of the
unknowns related to optimal dosage, but may shed
light on what dosage protocol appears most
advantageous, and whether different outcome
measures require different dosage protocols.

To better understand the relationships between dosage,
bioavailability, and physiological response, research
studies should consider plasma bioavailability in their
analysis. In other words, grouping individuals with
high and low plasma bioavailability together does not
allow for a true assessment of physiologic response to
resveratrol. Indeed, it is possible that individuals who
appear to be “non-responders” to resveratrol may not be
absorbing as much bioactive compound as those who
have more pronounced responses or may demonstrate a
different metabolite profile (e.g., [73-75]). In the
absence of such pharmacokinetic data, it is
inappropriate to conclude that resveratrol was not
effective when it may have produced -clinically
meaningful effects in some individuals. When outcome
measures which can realistically respond to treatment
(as described earlier) remain unchanged, the particular
resveratrol treatment protocol used (e.g., orally
administered tablet containing a specified amount of
resveratrol at given time intervals) may be deemed
ineffective in the population studied, however, it is
premature to conclude that resveratrol itself does not
produce physiological effects in humans. It is hoped
that novel delivery methods or resveratrol congeners
which overcome limitations in absorption and
bioavailability may reduce the wide inter-individual

variability in bioavailability and considerably increase
the magnitude of physiologic response [76, 77].

The general paradigm for resveratrol human clinical
trials has been that of using resveratrol as a stand-alone
treatment, rather than a molecule which may potentially
enhance the effects of other interventions. While there
is merit in finding low-cost, safe alternatives to
pharmaceutical products for treating existing disease, it
may be unrealistic to find a nutraceutical that is a
complete alternative to healthy behaviors (i.e., proper
dietary and exercise practices). For instance, the French
Paradox strongly suggests that red wine consumption
lowers one’s risk for cardiovascular disease [78], but
one would be hard pressed to find a clinician who
recommends moderate wine consumption as an equal
alternative to aerobic exercise. Likewise, it follows that
the benefits of resveratrol should not be viewed in
isolation, but rather as one of many components in
primary prevention. Thus, future clinical trials should
explore whether resveratrol can interact with other
supplements, pharmaceuticals, or even diet and exercise
interventions to accelerate or amplify health benefits.
Indeed, such Dbeneficial interactions have been
demonstrated in animal models [79-81].

Novel Biosensors for Studying Responses to Anti-
Aging Interventions in Healthy Individuals

Clinical trials have generally examined changes in
multiple biomarkers and evaluated them independently of
one another. This assumes that changes in each
biomarker occur separately, and thus the physiological
effects are generally considered in isolation. Further, the
biomarkers measured between studies are inconsistent,
and therefore it is possible that biomarkers which change
in response to resveratrol treatment are not even
measured in some studies. The effect size may be small
for many of the biomarkers measured, especially in
healthy individuals whose values are already within
normal reference ranges, as consistently observed across
multiple plant-derived food and beverage interventions
[82]. However, it is possible that small changes
consistent across multiple biomarkers may have major
clinical implications. Thus, it may be especially useful to
interpret biomarkers holistically.

We feel it is not possible to model a theoretically near-
infinite array of biomarkers and N-factorial interactions
and further interpret how complex interactions between
each coalesce to cause in vivo physiologic changes.
Chronic vascular disease is tightly associated with the
condition of the endothelium [83-85]. As endothelial
cells detect injury, they recruit inflammatory cells to aid
in the resolution of insults. However, chronic mild
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inflammatory processes result in substantial remodeling
and occlusive, fragile and coagulative phenotypes in
susceptible regions, such as the aortic arch, carotids,
coronary and cerebrovascular arteries [83, 85]. We
postulate that small modifications of plasma
composition, caused by diet, infectious disease or
environmental insults, can lead to endothelial cells
responses that, over many decades, contribute to such
pathological vascular remodeling associated with aging.
In the short term, however, such insults are modifiable
and to a limited extent reversible. Nutraceuticals that
can offset the negative impacts of environmental toxins
may have a dramatic life-long benefit in this paradigm.
Thus, in the setting of chronic cardiovascular disease,
there is good reason to combine in vitro techniques with
human specimens, allowing primary human cells to
provide net inflammatory readouts of the cumulative
impacts of serum components (Figure 3).

This is the approach taken by Agarwal [9], in which
baseline and post-treatment plasma from human
subjects was incubated with human primary coronary
endothelial cells.  Gene expression of canonical
response elements associated with atherosclerosis
(ICAM and VCAM) and inflammation (IL-8) decreased
in cells incubated with post-treatment plasma from
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healthy human subjects treated with resveratrol, but not
those treated with placebo. Authors concluded that the
inflammatory potential of the circulation was reduced
by resveratrol. It is noteworthy that the magnitude to
which expression of endothelial cell adhesion molecules
and chemokines increased from air pollutant exposure
[86] is comparable to the reduction afforded by
resveratrol treatment [9]. Moreover, this paradigm is
translational and can be conducted in animal studies to
better ascertain mechanistic pathways or validate the
relationship between acute response and chronic disease
[87]. Interestingly, when examining baseline inflam-
matory potential in the serum from subjects on this study
[9], a very apparent and significant trend for increasing
plasma inflammatory potential was noted in subjects over
60 years old (Figure 4). These subjects were otherwise
healthy and undiagnosed in terms of cardiovascular, renal
or liver disease, and their plasma cytokine profiles were
unremarkable compared to younger subjects (Figure 4).
While follow —up was not possible in these subjects,
these findings suggest an important age-related increase
in plasma inflammatory potential that may reflect
ongoing or early-stage disease (such as sub-clinical
chronic kidney disease) and may also explain
associations between organ-specific diseases (ie, lung
[88, 89] or kidney disease [90]) and atherosclerosis.
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Figure 3. Biosensing of plasma components allows an unbiased approach to determine if therapeutics have altered
the endothelial environment in an anti-inflammatory manner. Endothelial cells respond positively or negatively to a wide
range of serum components, including cytokines, hormones, growth factors, prostaglandins and other metabolites; however,
conducting even a massive bioinformatic screening for all potential factors does not link the various measured components to a
cumulative bioactivity. As the development of atherosclerotic disease is a decades-long process, maintaining the blood in a low-
inflammatory phenotype is beneficial for the long term. Healthy individuals may not show overt signs of vascular disease progress
in the relatively short period of a clinical trial for a nutritional supplement or diet, but their plasma composition can change rapidly
and the relative inflammatory potential (and therapeutic efficacy) can be assessed with this or related techniques.
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Figure 4. Assessment of aging-related plasma inflammatory potential reveals greater complex than presence of
cytokines. Replotted baseline data (before treatment) from subjects studied in a month-long trial of resveratrol treatment [9].
Plasma cytokines, including tumor necrosis factor-alpha (TNF), interleukin-6 (IL6), interleukin-1beta (IL1b) and interferon
gamma (IFNg), were not significantly altered as a function of age (left). However, serum from those subjects applied to primary
human coronary artery endothelial cells elicited responses that increased dramatically in individuals 60-70 years of age. These
findings, along with the results of the resveratrol study and environmental health research, strongly suggest that the complex

milieu of the circulation — and its ultimate inflammatory potential -

In Agarwal et al [6], the mechanism of action for the
reduced plasma inflammatory potential is unclear.
Certainly, it stems from either a reduction in generation
of pro-inflammatory factors or an enhancement in the
clearance of such factors. Basic studies of resveratrol
note broad spectrum benefits in terms of increased
insulin sensitivity, mitochondrial numbers, increased
capacity for vasorelaxation, and reduction in a number
of plasma factors [1, 2, 38]. Interestingly, while the
plasma factors reduced by resveratrol treatment,
including triglycerides and fasting glucose, may be
considered drivers of vascular disease, they may also
reflect overall liver function, which in turn may be
processing many other components out of the plasma
[91]. Certainly in the setting of metabolic syndrome,
hepatic function lowers circulating glucose and results
in reduced levels of advanced glycation end-products
that are deleterious for vascular function [91, 92]. Liver
function may reflect an important acute readout of
nutraceutical benefit in otherwise healthy individuals, as
this organ is responsive to acute environmental changes
(e.g., [93, 94]), ranging from dietary/pharmaceutical
input to pathological states.

This method of treating primary cells with
serum/plasma from research subjects provides an
advantage over in vitro work involving treatment of
cells with drugs or nutraceuticals, in that cultured cells
are exposed to conditions representative of those
occurring in vivo (i.e., all components of the plasma,
multi-organ involvement in plasma processing, physio-

should be addressed in functional, holistic assessments.

logically attainable concentrations of resveratrol,
physiologically accurate resveratrol metabolite profile),
which results in a more complete and interpretable
functional response.  Additionally, direct in vitro
treatment with resveratrol, and likely numerous other
nutraceutical compounds, often requires exceedingly
high concentrations to elicit responses that are coherent
with in vivo outcomes [95]. These observations
highlight the value of biosensors in clinical research and
emphasize the need for novel paradigms which bridge
the gap from “bench to bedside” in evaluating
resveratrol’s utility.

While our research has focused on endothelial cells and
vascular disease, other groups have focused on the
impact of the systemic milieu that is the serum on other
cell types with an emphasis on aging, growth, and
senescence. Efforts from the de Cabo lab have explored
directly the impacts of serum from calorie restricted
animals and humans on cultured hepatocytes, observing
reduced rate of growth and increased survival in the
face of oxidative stress [96, 97]. In a recent related
study, the effects of various forms of exercise training
were tested in endothelial cell lines, revealing variable
impact on cellular response to oxidative stress, growth
and aging [98]. The collected findings reported to date
have been in healthy human subjects and reflect minor
perturbations that, in theory, contribute to the chronic
advancement of inflammatory vascular disease.
Though we infer that such changes are modest and
likely reversible, such approaches may be of greater
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value than biomarkers induced only in the setting of
major clinical disease (e.g., CRP) or under tight
homeostatic control (e.g., blood pressure).

Conclusions

As long as some human clinical trials continue to
produce positive results, resveratrol will remain a
popular candidate for the prevention and treatment of
chronic diseases. If one searches for a natural
compound which consistently transforms ordinary
individuals into  “superhumans” with  optimal
physiologic function, inducing similar physiologic
adaptations to those observed from caloric restriction or
exercise training, resveratrol and other known
substances are bound to disappoint. However, if
clinical trials are designed such that sufficient sample
sizes and study durations are combined with realistic
clinical outcome variables, appropriate conclusions may
be reached. Only long-term epidemiological studies
and meta-analyses can provide more definitive answers
on resveratrol’s effectiveness as a primary prevention
measure to reduce the incidence, delay the onset, or
decrease the severity of chronic diseases. Until then,
researchers should be prudent in selecting outcome
measures that are sensitive enough to respond to short-
to-moderate term resveratrol treatment in healthy
individuals. When possible, clinical trials should use
multiple formulations or dosages to better determine the
optimal administration protocols to achieve the most
powerful clinical effects. In addition to exploring the
effects of stand-alone resveratrol interventions, it is also
important to investigate whether resveratrol can further
enhance clinically wvalidated treatments, including
existing pharmaceutical treatments and exercise
training. Most importantly, assessing factors that
contribute to chronic diseases in a sensitive and holistic
manner may greatly improve our understanding of the
value of resveratrol for primary prevention of
cardiometabolic diseases.

Conlflicting findings between basic science and human
clinical trials, and between different clinical trials, for
resveratrol treatment are due to major differences in
research protocols, including inappropriate outcome
variables and ineffective dosing protocols, which
preclude valid assessment of physiological response
within humans Biomarkers which are highly responsive
to treatment in individuals with chronic disease (eg,
blood pressure, insulin sensitivity) are not likely to be as
sensitive to interventions in healthy humans, due to
normal homeostatic control mechanisms, and therefore
should not be used as clinical endpoints in primary
prevention studies in non-clinical populations.

The theoretical maximal response for clinical endpoints
to optimal treatments (e.g., exercise training, caloric
restriction) must be determined to appropriately
interpret response to resveratrol treatment, as these
responses will vary depending on the health and age of
the cohorts studied.

As optimal dosing of resveratrol may vary for different
outcome measures, it is not appropriate to make
generalized conclusions regarding resveratrol’s clinical
utility in healthy individuals until considerable
uncertainties regarding optimal dosing protocols and
factors influencing bioavailability are addressed, and its
interactions with other primary prevention interventions
are thoroughly explored.

Novel methods that incorporate in vitro techniques into
human clinical trials, such as whole cell biosensors, can
provide a more holistic evaluation of physiologic
response.
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