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Will calorie restriction work in humans?
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Abstract: Calorie Restriction (CR) without malnutrition slows aging and increases average and maximal lifespan in simple
model organisms and rodents. In rhesus monkeys long-term CR reduces the incidence of type 2 diabetes, cardiovascular
disease and cancer, and protects against age-associated sarcopenia and neurodegeneration. However, so far CR
significantly increased average lifespan only in the Wisconsin, but not in the NIA monkey study. Differences in diet
composition and study design between the 2 on-going trials may explain the discrepancies in survival and disease.
Nevertheless, many of the metabolic and hormonal adaptations that are typical of the long-lived CR rodents did not occur in
either the NIA or WNPRC CR monkeys. Whether or not CR will extend lifespan in humans is not yet known, but accumulating
data indicate that moderate CR with adequate nutrition has a powerful protective effect against obesity, type 2 diabetes,
inflammation, hypertension, cardiovascular disease and reduces metabolic risk factors associated with cancer. Moreover, CR
in human beings improves markers of cardiovascular aging, and rejuvenates the skeletal muscle transcriptional profile. More
studies are needed to understand the interactions between CR, diet composition, exercise, and other environmental and
psychological factors on metabolic and molecular pathways that regulate health and longevity.

Calorie Restriction (CR) without malnutrition is the of the longevous Ames/Snell dwarf mice and growth
most powerful nutritional intervention that has hormone receptor knock-out mice expire without
consistently been shown to increase maximal and pathological evidence of disease severe enough to be
average lifespan in a variety of organisms, including recorded as the cause of death [21-23], suggesting that
yeasts, worms, flies, spiders, rotifers, fish and rodents in mammals the occurrence of lethal chronic disease can
[1-7]. Far from merely stretching the life of an old, ill be completely prevented by dietary and genetic
and weak animal, CR extends longevity by preventing manipulations that down-regulate the key cellular
chronic diseases, and by preserving metabolic and nutrient-sensing pathways [2]. However, whether or
biological functions at more youthful-like state [6-12]. not CR with adequate nutrition will significantly slow
In rodents, the CR-mediated preventive effects are aging and extend lifespan in non-human primates, and
widespread with major reductions in the occurrence most importantly in human beings, is not yet clear.
and/or  progression  of cancer, nephropathy,

cardiomyopathy, obesity, type 2 diabetes, neuro- Currently there are two ongoing randomized control
degenerative disease, and several autoimmune diseases studies on the effects of CR without malnutrition in
[7, 13-19]. Moreover, unlike ad-libitum fed rodents, Rhesus monkeys: the Wisconsin National Primate
~30% of the CR rodents die in old age without any Research Center (WNPRC) and the National Institute
pathological sign of disease [20]. Likewise, 25 to 50% on Aging (NIA) CR monkey studies. The WNPRC
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study, started in 1989, involves 46 male and 30 female
rhesus monkeys [24]. The NIA controlled trial, started
in 1987, involves 60 male and 60 female rhesus
monkeys [25]. Monkeys in both trials have been
randomized with a 1:1 ratio to 30% CR or to an ad-
libitum diet in the WNPRC and a slight CR diet (to
avoid the development of obesity) in the NIA study.
Baseline characteristics of the WNPRC and NIA
monkeys are recapitulated in Table 1. To date, data
from these two trials indicate that long-term 30% CR
without malnutrition is feasible and safe in Rhesus
monkeys. Importantly, regardless of significant
differences in diet composition and study design
between the 2 trials, the accumulated data show that CR
causes similar metabolic and physiologic adaptations
[26], which as we will discuss later emulate only in part
those detected in CR mice and rats. Moreover, data on
CR-mediated lifespan extension are apparently
contradictory in the WNPRC and NIA study.

In 2009 the WNPRC group published a paper in Science
indicating that long-term (20 yrs) CR reduced by 50% the
incidence of cardiovascular disease and cancer, and
completely prevented glucose intolerance and type 2
diabetes in rhesus monkeys. They also found that CR
protects monkeys against age-associated sarcopenia and
grey matter volume shrinkage of several key subcortical
regions [27-28]. Similarly, in 2012 Mattison et al.
published a paper in Nature indicating that young-onset
CR resulted in a complete prevention of cancer, and in a
50% reduction in type 2 diabetes when compared with
the mildly restricted control monkeys [29]. In the
WNPRC study, CR significantly increased survival when
considering only age-associated deaths (i.e. 37% of
controls versus 13% of the CR group) [27]. However,
when considering all the causes of death, including
endometriosis, gastric bloat, complications of anesthesia,
and injury, the investigators noted a trend for improved
survival that has not reached statistical significance yet (P
=0.16). In contrast, data from the NIA CR monkey study
suggest that CR initiated in both young/adult (1-14 yrs)
and old (1623 yrs) animals does not result in a
significant improvement in survival [29]. Nonetheless, it
should be noted that in the NIA study 4 CR and 1 control
monkeys have lived more than 40 years, which is a very
long life for a Rhesus monkey [29]. So far 50% of the
young-onset monkeys have died, of which 24% of the
mildly CR control monkeys have died from age-related
diseases compared to 20% of the CR monkeys, and it will
take another 10 years before the final data on average and
maximal lifespan will be available for both the NIA and
WNPRC studies.

The discrepancies in survival and disease incidence
between the WNPRC and NIA studies raise several

important questions that may help to further understand
the mechanisms that regulate aging and mediate health
and longevity.

1 — Is the degree of CR in the NIA and WNPRC
monkeys sufficient to trigger an anti-aging effect?

In the WNPRC study, the average difference in body
weight between the CR and control monkeys was 3-5
kg in the males, and 1.5-2.5 kg in the females, even if at
times the CR monkeys gained a considerable amount of
weight and the control monkeys lost weight [30]. In
contrast, in the NIA study the difference in body weight
between the CR and control monkeys was on average
only 2.5 kg [31]. The problem is that in the WNPRC
study the CR group calorie intake was individually
calculated from the baseline consumption of every
monkey, whereas in the NIA study the CR monkeys
received an amount of food on the basis of a standard
calculation (i.e. recommended caloric intake for age and
body weight) for the whole group to accommodate for
the growing phase of the young monkeys [26]. In the
Wisconsin trial the difference between CR and control
group was kept around 30% of food intake for the males
and around 25% for the females, adjusting the
restricted-diet intake whether there was a period of
lowered intake among the control group. However, as
the monkeys got older the practice of group-wide
reductions in the CR animal allotments when controls
voluntarily reduced their intakes, has been discontinued,
and food intake adjustments for the CR group have been
based on animal health. In the NIA study, on the other
hand, the actual food intake of the CR group had been
reduced only 22-24% below control levels and this the
mild restriction of the control group is based on the fact
that the monkeys received a controlled allotment of
food each day, they were not freely fed with access to
food all day [26].

Interestingly, in both the NIA and WNPRC studies
many of the metabolic and hormonal adaptations that
are typical of the long-lived CR mice and rats did not
occur in the CR monkeys. In the NIA study, unlike in
CR rodents, serum concentrations of glucose, total
cholesterol, LDL-cholesterol, C-reactive protein,
testosterone and estrogen were not reduced, and serum
cortisol were not increased in the CR monkeys [29, 32-
33]. Similarly, no difference in serum concentrations of
total cholesterol, LDL-cholesterol, HDL-cholesterol,
triiodothyronine, DHEA, IGF-1, or cortisol have been
found between the CR and control monkeys in the
WNPRC study [34]. No data have been published yet
on the effects of CR on serum testosterone and estradiol
concentration in the WNPRC study. How can we
explain the difference in metabolic and hormonal
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Table 1. Baseline characteristics of the NIA and WNPRC CR monkey studies

Total number of Rhesus
monkeys

Age at baseline

Animal origin

Housing

Randomization

Diet composition and nutrients

Dietary Restriction regimen

Feeding schedule

Food intake measurement

Body weight follow-up

Blood draws

NIA

120 (60 m, 60 f)

1987: 30 m
1988: 30 m
1992: 60 £

Juvenile (20 m, 20 f)
Adolescent (20 m, 20 f)
Old (20 m, 20 f)

India, China

Single caged

1 Control: 1 CR

Natural ingredient

3.77 kcal/gr

17,3% P

5%F

56.9% CHO

(3.9% from Sucrose)

5-7% crude Fiber

Vitamin supplementation +40% of RDA
for both CON and CR; all had same diet
22-24% actual restriction from BL intake
levels based on NRC guidelines

Twice a day

1 week per year

Quarterly under anesthesia; additional

measures while awake

Every 3 months under anesthesia

WNPRC

76 (46 m, 30 f)

1989: 30 m
1994: 16 m
1994: 30 f

All adult

India

Single caged

1 Control: 1 CR

Semipurified pellet

3.9 kg/gr

15% P (lactalbumin)

10% F (corn oil)

65% CHO

(28.5% from Sucrose)

5% Fiber

Vitamin supplementation beyond RDA
only for CR monkeys

30% restriction from a BL intake assessed
individually

Morning ration, plus 100 Kcal integration
of food at late afternoon

Daily quantification for each animal

Weekly (awake)

Routine blood sampling every 3 months on
awake, manually restrained animals. Blood
samples are collected under anesthesia only
for specific testing (i.e. glucose tolerance
testing).

www.impactaging.com

509

AGING, July 2013, Vol. 5 No.7



adaptations in response to CR between CR rodents and
monkeys? Can this discrepancy be explained by species
differences? The data collected in lean humans
practicing long-term (on average 7 years) CR without
malnutrition argue against this hypothesis, and suggest
that the degree of CR in the two Rhesus monkey studies
might be insufficient to trigger the classical CR-
mediated metabolic/hormonal reprogramming that
mediate longevity in rodents. In fact, we found that
serum concentrations of glucose, total cholesterol, LDL-
cholesterol, triiodothyronine, testosterone and estradiol
were significantly lower in lean individuals practicing
long-term moderate CR (i.e. CRONies) than in age- and
sex-matched controls [35-37]. In contrast, the NIA-
funded “CALERIE phase 1” randomized clinical trials
have failed to demonstrate a significant reduction in
serum IGF-1, testosterone and estradiol, and an increase
in cortisol levels in men and women who underwent
20% CR for 6-12 months [38-41]. The truth is that the
CALERIE phase 1 trials were just weight loss studies in
overweight men and women who lost some body weight
and body fat (average BMI and body fat at the end of
the study was ~24 kg/m” and 29%, respectively), but not
enough to elicit the distinctive metabolic, hormonal and
molecular adaptations induced by moderate/severe CR
in lean rodents and in the CRONies (average BMI and
body fat was 19.6 kg/m” and 12%, respectively). It is
our working hypothesis that in order to trigger a
powerful anti-aging response, the body needs to
perceive a CR-induced low energy availability that
results in major simultaneous metabolic adaptations (i.e.
low circulating levels of leptin, insulin, IGF-1,
testosterone, estradiol, triiodothyronine and inflam-
matory cytokines coupled with increased serum
concentrations of adiponectin, ghrelin and cortisol) with
energy resources shifted from growth and reproduction
towards maintenance and repair activities. Interestingly,
leanness (low adiposity) induced by chronic exercise
training (i.e. high energy expenditure coupled with high
energy intake) also does not result in some of the same
key metabolic adaptations that have been hypothesized
to play a role in the CR-induced longevity, including a
decrease in triiodothyronine, IGF-1 and core body
temperature [36, 38, 42]. Consistently, data from
experimental murine studies have shown that only CR
slows aging and extends both average and maximal
lifespan, whereas life-long exercise extends only
average lifespan [43].

2 —Is diet composition as important as calorie intake
in mediating healthy longevity?

A remarkable difference between the NIA and WNPRC
trials has been diet composition. The Wisconsin
monkeys ate a pellet semi purified diet providing 3.9

kcal/g, with 15% calorie from dairy proteins (i.e
lactalbumin), 10% calories from oil (i.e. corn oil), and
approximately 65% calories from refined and processed
carbohydrates (principally sucrose and cornstarch)[24].
In contrast, the NIA monkey diets are based on natural
ingredients calculated on estimated requirements for
nonhuman primates, with soy oil, fish, wheat, corn and
alfalfa meal as fat source. A mixture of fish, soybean,
wheat, corn, and alfalfa meal provided the great
majority of protein in the NIA study, and carbohydrates
were primarily from ground wheat and corn [44].
Sucrose was only 3.9% in the NIA study, while the
WNPRC diet was 28.5% sucrose. The NIA diet
macronutrient composition was 56.8% carbohydrates,
17.3% protein, 5% fat, and 5-7% crude fiber, with an
energy density of 3.77 kcal/g. Concentration of vitamins
and minerals were increased by 40% above the adequate
amount for both the CR and control animals, to be sure
to meet the 100 percent of the recommended daily
allowance and eliminate variables between the groups.
In contrast, in the WNPRC study only the CR monkey
diets were supplemented. Moreover, in contrast to the
WNPRC  semi-purified diets, the NIA natural
ingredient-based diets contain a wide variety of
phytochemicals, minerals, and omega-3 fatty acids,
which are known to have independent positive health
effects on several metabolic pathways [45-47]. For
examples, certain plant foods contain a wide range of
phytochemicals (i.e. polyphenols, catechins, stilbenes,
isothiocyanates, terpenes, sterols, indoles, and
organosulfur compounds) and vitamins that have shown
beneficial effects against inflammation, oxidative stress,
and on other molecular pathways that regulate blood
pressure, atherosclerosis and carcinogenesis [48]. In
summary, the WNPRC diet resembles more closely the
typical modern Western diet rich in refined and
processed foods; in contrast, the NIA diet is more
similar to the traditional Mediterranean or Japanese diet,
rich in fish and minimally processed plant-based foods.
Therefore, it is possible that the beneficial effects on
lifespan of the combination of phytochemical-rich
pescovegetarian diets and mild CR in the NIA control
monkeys are already maximized. Consistently, average
lifespan for both the NIA CR and control monkeys was
markedly higher (35.4 years for males and 27.8 years
for females) than in Rhesus monkeys in captivity (~27
years), with endometriosis (a nonlethal disease in
humans) being the biggest factor leading to a shorter
lifespan in females than males [29].

3 — Is protein intake a key determinant of longevity
in CR primates?

Accumulating data suggest that protein intake and
dietary aminoacid composition play an important role in
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regulating mTOR activity, serum IGF-1 concentrations,
and longevity [2, 38, 49-54]. Our data show that in
humans, unlike in rodents, severe CR does not reduce
serum IGF-1 concentration unless protein intake is also
reduced close to the USDA recommended intake (i.e.
10% calories from protein, or 0.8 g/kg/day) [38]. Data
from genetic animal and human studies indicate that
serum IGF-1 concentration is an important regulator of
aging [2, 55-56], and has been found to be inversely
correlated with median lifespan in 31 genetically
diverse inbred mouse strains [57]. Interestingly, back in
1950 the Okinawan centenarians were consuming a CR
diet (approximately 1800 cal/day) with only 9% of
calories coming from protein [58]. In contrast, both the
WNPRC and NIA monkey diets contain 15% or more
calorie from protein, which is similar to the average
protein intake of US men and women [59], and may
explain why serum IGF-1 concentrations were similar
between CR and control monkeys. More studies are
needed to understand the role of protein intake (and
aminoacid composition of foods) with and without CR
in regulating the pro-longevity PI3K/AKT and mTOR
pathways in rodents and primates. The old dogma that
only calorie intake, and not macronutrient composition
(and in particular protein intake), is an important
regulator of lifespan is based on a flawed interpretation
of a study published by the Masoro’s group in 1985. In
this experiment the authors restricted calorie intake in
one group of rats by 40% and compared them to rats
given free access to a diet in which protein content was
reduced by 40%. The control group ate a usual protein
content diet ad libitum [60]. In this experiment the 40%
CR diet increased maximal longevity ~35%, while the
reduced protein diet had no effect. The control diet
provided 20% of calories from protein, compared to
12% of calories from protein for the “protein restricted”
diet. The problem the authors failed to recognize is that,
despite the 40% reduction, protein intake was still more
than adequate, i.e. was above the threshold needed to
cause an inhibition of the IGF/mTOR pathway, as
evidenced by the finding that weight gain for these
young, growing animals was the same in the 12% and the
20% protein diet groups [60]. In contrast, the CR
animals gained little weight and were markedly stunted
as adults, suggesting that only 40% CR and not 40%
protein restriction, inhibits the PI3K/AKT/mTOR
pathways.

Despite Rhesus monkeys (Macaca mulatta) representing
one of the most closely related species to human
primates, sharing a ~93% DNA sequence identity with
the human genome [61], major differences in longevity
exist between monkeys and humans. Even under the
best husbandry and dietary conditions (i.e NIA CR
monkey study), average and maximal lifespan of rhesus

monkeys is ~31 and ~40 years, respectively. In contrast,
average and maximal lifespan in humans is ~80 and
~120 years, respectively. The reason why Rhesus
monkeys lifespan is much shorter than in humans is not
known, and may involve a different rate of
accumulation of unrepaired molecular and cellular
damage with time. Therefore, it is extremely important
to study the health and longevity effects of CR without
malnutrition in humans.

Whether or not CR without malnutrition will extend
lifespan in humans is not known yet, but accumulating
data indicate that moderate CR with adequate nutrition
has a powerful protective effect against the
development of obesity, type 2 diabetes, inflammation,
hypertension and cardiovascular disease, which are
major causes of morbidity, disability and mortality [37].
Accordingly, Lloyd-Jones and colleagues found that in
men and women from the Framingham Heart Study
with normal cardiovascular risk profile at age 50 (i.e.
total glycemia <125 mg/dl, blood pressure <120/80
mmHg, cholesterol <180 mg/dl, BMI <25 kg/m* and no
smoke) the lifetime probability of developing an
atherosclerotic cardiovascular disease was very low
(i.e., 6.7% versus 59.5% in participants with >2
cardiometabolic risk factors) and average lifespan
markedly longer (i.e. >39 versus 29.5 years in
participants with >2 cardiometabolic risk factors) [62].
In humans calorie restriction without malnutrition also
results in a consistent reduction in circulating levels of
growth factors, anabolic hormones, adipokines and
inflammatory cytokines, which are associated with an
increased risk of some of the most common types of
cancer [63]. It is important to note that none of the 50
men and women (age range 30-82 yrs) practicing long-
term CR with adequate nutrition is taking any
medication or has developed any chronic disease so far.
Moreover, CR in these individuals resulted in an
amelioration of two well-accepted markers of
cardiovascular aging, i.e. left ventricular diastolic
function and heart rate variability [64-65]. These data
indicate that CR exerts direct systemic effects that
counter the expected age-associated changes in
myocardial stiffness and autonomic function so that LV
diastolic function and heart rate variability indexes in
CR individuals are similar to those of individuals 20
years younger on a typical Western diet. Consistently,
we recently found that CR without malnutrition results
in dramatic changes of the human skeletal muscle
transcriptional profile that resemble those of younger
individuals, including a down-regulation of the
PI3K/Akt/FOXO pathway, suggesting that CR in
humans can slow the age-associated transcriptional
modifications in skeletal muscle [66].
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More studies are needed to understand how macro- and
micro-nutrients, endurance exercise, and other
environmental and psychological factors interact with CR
in modulating metabolic and molecular pathways that
regulate health and longevity. Both excessive dietary
restriction and overnutrition are different forms of
malnutrition that lead to organ dysfunction and increased
mortality. Even in rodents, excessive CR imposed on
some strains of mice increases mortality. For example, it
has been shown that wild-caught mice undergoing 40%
CR do not live longer than ad-libitum fed mice, despite a
much lower cancer incidence [67]. This may be caused
by excessive CR during the developmental age, because
40% CR caused higher mortality early in life, but lower
mortality late in life, with the longest lived 8% of mice
all coming from the CR wild-caught rodents.
Furthermore, in C57BL/6]J mice 40% CR increases
mortality when started just after weaning (i.e. 4 weeks of
age), but increase lifespan when started in middle age
[68-69]. The problem is that the rate of physiologic
development and sexual maturation varies among
different strains of rodents, so that the lifespan response
to CR may be different. Forty percent CR may be optimal
in some strains of mice, but can cause severe starvation
and increased mortality in others, which would benefit
from a lower degree of CR. The same applies to humans,
in which severe CR could be detrimental in some
populations (e.g. children, older adults, pregnant women,
etc.). Additional studies are warranted to identify the
precise CR-induced metabolic and molecular adaptations
associated with healthy longevity, so that dietary energy
content and macro-nutrient composition can be tailored
based on age, sex, disease predisposition and
biological/genetic phenotype of each individual.

Randomized, CR-controlled, long-term survival studies
in humans will never be performed because of obvious
problems with long-term compliance and costs of such a
long study. Nonetheless, we hope that by following the
health status of individuals practicing long-term CR
without malnutrition (i.e. the CRONies), in particular of
those who are now in their 70s and 80s, we could gain
soon some information about the effects of CR on
successful aging and healthy longevity in humans as
well. Because we have detailed information about their
close relatives’ disease and survival histories, if we
observe that as the CRONies age, they not develop any
of the metabolic abnormalities and/or chronic diseases
typical of their parents/siblings, and live substantially
longer than their relatives, this will be the best available
proof that CR works in humans.
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