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Abstract: Making headlines, a thought-provocative paper by Neff, Ehninger and coworkers claims that rapamycin extends
life span but has limited effects on aging. How is that possibly possible? And what is aging if not an increase of the
probability of death with age. | discuss that the JCI paper actually shows that rapamycin slows aging and also extends
lifespan regardless of its direct anti-cancer activities. Aging is, in part, MTOR-driven: a purposeless continuation of
developmental growth. Rapamycin affects the same processes in young and old animals: young animals’ traits and

phenotypes, which continuations become hyperfunctional, harmful and lethal later in life.

Found by chance on the mystical Easter island [1], the
anti-aging drug rapamycin gave birth to numerous
myths. This time, it is claimed that rapamycin prolongs
lifespan and prevents aging-associated changes by
aging-independent mechanisms, not by affecting aging
itself [2]. But what is then aging itself.

What is aging?

Aging is an exponential increase of the probability of
death with age [3]. No one has died from health or
without a cause. Most elderly humans die from age-
related diseases [4-10], which are also called “natural
causes”, if a precise diagnosis is unnecessary. In
mammals, death from aging means death from age-
related diseases. Not only humans and other mammals
but also aging worms and flies die from pathologies
[11-27].

Diseases are biomarkers of aging

Age-related diseases are biomarkers of aging [8]. The
most common are cardiovascular diseases (associated
with  atherosclerosis, hypertension and cardiac
hypertrophy), cancer, diabetes (and other complications
of metabolic syndrome), Alzheimer and Parkinson
diseases, macular degeneration and so on. Many
manifestations of aging are not considered as diseases
because they develop in everyone (e.g. female
menopause).

The distinction is arbitrarily. For example, cancer-prone
transgenic mice can exclusively die from cancer but still
cancer is a disease. But many alterations, although
associated with age, are not involved in aging. And
these phenotypes are not affected by rapamycin.

Cellular aging

Unless we believe in vitalism, organismal aging should
be linked to cellular aging. Cellular aging is, in part,
MTOR-dependent process. The MTOR (mechanistic or
mammalian target of rapamycin) pathway is activated
by growth factors, hormones (such as insulin and
testosterone), nutrients, oxygen and some conditions
such as obesity [28-38]. Figuratively, MTOR is a
“molecular hypothalamus”, a sensing pathway in every
cell [39]. In turn, MTOR stimulates specific functions
of differentiated cells and cellular mass growth. In
proliferating cells, growth is balanced by division. In
resting cells, active MTOR causes cellular hypertrophy,
hyperfunctions (such as hypersecretion). MTOR-driven
geroconversion is a conversion from quiescence to
senescence [40-59]. And cellular senescence is
characterized by increased cell-type-specific cellular
functions (hyperfunctions), altering homeostasis and
leading to age-related diseases [9].

Systemic hyperfunctions and aging
Except of terminal stages of age-related diseases, aging
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is associated with systemic hyperfunctions: increased
blood pressure (hypertension), increased platelet
aggregation (hyper-aggregation), hyper-contractility of
arterial smooth muscle cells, hyper-coagulation,
hyperlipidemia,  hyperglycemia, hyperinsulinemia,
increased resistance to hormones, pro-inflammatory
conditions, organ hypertrophy, fibrosis and hyperplasia.
These hyperfunctions are damaging to the organs and,
when damage occurs, then some functions are lost. So
only late stages of aging are decline and loss of
functions. Terminal stages are MTOR-independent and
will not be reversed by rapamycin. For example,
hyperfunctional osteoclasts cause osteoporosis, leading
to a broken bone and a sequence of events
(immobilization, pneumonia, etc), which require
standard medical interventions, not anti-aging drugs
[60]. Not only in mammals, but also in C elegans and
Drosophila, life-limiting pathologies are caused of
exacerbated and intensified normal processes and
functions [19, 25, 61, 62].

ging processes do not spring from nothing. They
are continuations of normal cellular, tissue, organ
and system functions in young animals. Unless|
miracle is possible, rapamycin must affect the
same processes in old and young animals. And it
does.

Aging is a quasi-program (not a program)

Why systemic hyperfunctions arise? Aging is an
unintended continuation of organismal growth, like
cellular senescence is a continuation of cellular growth
[63]. In other words, aging is a quasi-program (not a
program): an unintended and purposeless continuation
of developmental programs, which are not switched off
upon their completion [64-67], causing age-related
diseases. For example, blood pressure is increased from
birth to adulthood and continuation of this trend leads to
hypertension. Menopause is a hyperfunctional
continuation of reproductive program [68]. Aging-
associated pathologies are continuation of normal
functions of the young organism. Therefore, rapamycin
must affect the same processes in young and old
animals, because aging is a continuation of normal
functions. Aging processes do not spring from nothing.
They are continuations of normal cellular, tissue, organ
and system functions in young animals.

Rapamycin extends life span independently of its|
anti-cancer effect and prevents cancer by slowing
down aging.

Cancer and aging

Cancer is an aging-related disease and interventions that
slow aging (e.g. calorie restriction) delay cancer [69-
78]. Furthermore, compared with calorie restriction,
rapamycin stronger inhibits MTOR. It is predictable that
if rapamycin slows aging, it should delay cancer [79,
80]. Studies support these predictions [81-84] and
rapamycin extended lifespan and delayed cancer, even
when calorie restriction did not [85]. _ Although
rapamycin is a potent cancer-preventive agent, it is only
modestly effective for cancer treatment. Rapalogs are
most effective in drug combinations [86-93]. They also
may decrease side effects by suppressing senescence of
normal cells [51, 58, 59, 94, 95]. Also, senescence of
normal cells creates cancer-promoting  micro-
environment [96-103]. If rapamycin indeed prevents
cancer by slowing aging (not by killing cancer cells),
the prevention must be started before cancer is initiated.
In other words, if rapamycin treatment is started too late
in life, then its anti-cancer effect will be blunted. This
was shown in cancer-prone p53+/- mice [104]. The
same was shown by Neff et al: rapamycin rapamycin
did not prevent cancer when the treatment was started at
middle and old age [2]. Thus, the JCI study confirms the
notion that rapamycin delays cancer by slowing aging
(see also discussion here in the last section). Anti-
cancer effects simply cannot be responsible for life
extension by rapamycin. First, effective anti-cancer
drugs that are curative in lymphomas, testicular and
ovarian cancers (methotrexate, cisplatin, paclitaxel)
would greatly shorten murine lifespan, especially when
started in young age. Even further, typical anti-cancer
drugs accelerate cancer. For example, radiation (a
classic anti-cancer intervention) dramatically
accelerates cancer in p53+/- mice and shortens life span
[105-109]. And anti-cancer drugs cause secondary
cancers in patients. In contrast, not only rapamycin
extends lifespan, it is the only known drug that extends
life span consistently. Second, apart from cancer-prone
strains of mice, cancer is not the main cause of death in
most animals. MTOR is involved in most age-related
diseases and rapamycin prevents them in mammals [64,
110-123] and slows down aging [81, 124-127]. Finally,
yeast, worm and flies do not die from cancer and still
inhibition of the MTOR pathway extends lifespan [128-
137].

Inhibition of TOR slows aging: converging evidence
[124]

1. Rapamycin suppresses geroconversion: conversion
from cellular quiescence to senescence. Geroconversion
is cellular basis of organismal aging

2. Genetic manipulations that inhibit the TOR pathway
extend life-span in diverse species from yeast to
mammals
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3. Rapamycin extends lifespan in all species tested

4. Calorie restriction, which inhibits MTOR, extends
lifespan

5. MTOR is involved in diseases of aging and
rapamycin prevents these diseases in animal models

Rapamycin slows aging: the JCI paper [2]
How does the Neff et al study support the model of
quasi-programmed aging?

1. As shown by Neff ef al, chronic administration of
rapamycin extends lifespan in male C57BL/6J mice,
when started at both young and old age. Note:

This extension is impressive given that (a) effects of
rapamycin in male mice are blunted compared with
female mice in previous studies, (b) C57BL/6J mice are
intrinsically long-lived and (c) rapamycin was
administrated in everyday schedule (chronic or
immunosuppressive schedule) instead of intermittent or
pulse administration (anti-aging schedule).

2. C57BL/6J mice are refractory to many tumors
http://jaxmice.jax.org/strain/000664.html

Therefore, life extension is difficult to explain by anti-
cancer effects of rapamycin.

3. In fact, rapamycin did not prevent cancer when the
treatment was started at middle and old age, but still
extended life span. As stated by Neff er al [2]:
“Rapamycin ... had no measurable effect in the 25-
month cohort (vehicle, 1 of 5; rapamycin, 2 of 8; P =
1.0, Fisher exact test) or the 34-month cohort (vehicle, 1
of 5; rapamycin, 3 of 10; P = 1.0, Fisher exact test).” As
we discussed here, this indicates that effects of
rapamycin are probably due to suppression of aging.
Rapamycin treatment decreased cancer incidence only
when it was started in young mice.

4. Rapamycin counteracted certain aging-related
alterations in both young and old mice. This suggests
that aging is a continuation of normal traits in young
organisms. Aging is driven by intensified and
exacerbated normal cellular functions.

5. Rapamycin did not affect many parameters that are
not aging-specific such as alterations in plasma sodium,
calcium and chloride concentrations. This is expectable.
Aging is not associated with alterations of electrolyte
homeostasis. These alterations are terminal phases of
medical conditions due to organ (e.g. renal) failure.

6. Some age-related alterations actually counteract
aging. For example, although RNA/protein synthesis is
decreased with aging in model organisms, yet its further
inhibition prolongs life span further [138-141]. As
shown by Neff et al, rapamycin did not prevent anti-
aging alterations such as a decrease in testosterone
levels. Noteworthy, testosterone activates mTOR.

7. Some trends reported by Neff et al are not typical
for aging. For example, while Neff reported a decrease

in blood glucose and lipids with age, these parameters
tend to increase with age, especially when age-related
diseases develop. Perhaps mice with hyperglycemia and
hyperlipidemia died during the study, while only
surviving (the healthiest) mice were examined at the
end of the study.
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