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Abstract: Telomeres play a central role in cellular senescence and are associated with a variety of age-related disorders
such as dementia, Alzheimer’s disease and atherosclerosis. Telomere length varies greatly among individuals of the same
age, and is heritable. Here we performed a genome-wide linkage scan to identify quantitative trait loci (QTL) influencing
leukocyte telomere length (LTL) measured by quantitative PCR in 3,665 American Indians (aged 14 — 93 years) from 94
large, multi-generational families. All participants were recruited by the Strong Heart Family Study (SHFS), a prospective
study to identify genetic factors for cardiovascular disease and its risk factors in American Indians residing in Oklahoma,
Arizona and Dakota. LTL heritability was estimated to be between 51% and 62%, suggesting a strong genetic predisposition
to interindividual variation of LTL in this population. Significant QTLs were localized to chromosome 13 (Logarithm of odds
score (LOD) = 3.9) at 13q12.11, to 18¢22.2 (LOD = 3.2) and to 3p14.1 (LOD = 3.0) for Oklahoma. This is the first study to
identify susceptibility loci influencing leukocyte telomere variation in American Indians, a minority group suffering from a
disproportionately high rate of type 2 diabetes and other age-related disorders.

INTRODUCTION viduals at birth and afterward [10]. However, little is
known about the genetic basis underlying the
Telomeres are repetitive DNA sequences and their interindividual variability in telomere length.
protective proteins on the distal ends of the
chromosomes. They are critical in maintaining genomic Leukocyte telomere length (LTL) has been shown to be
stability during mitotic cell proliferation [1, 2]. highly heritable, with heritability estimates ranging
Telomere length shortens progressively during each from 36% to 84% [10, 11]. Genome-wide linkage
round of cell division and declines significantly with analyses have mapped putative loci for LTL onto
age, thus emerging as a valuable biomarker for cellular human chromosomes 3p26.1 [11, 12], 10926.13 [11],
senescence [2]. Shorter telomere length has been 12p11.2 [13], and 14q23.2 [11], but these loci have not
associated with a wide range of age-related disorders, been replicated in independent studies [12, 14].
such as dementia [3], cancer [4-6], cardiovascular Genome-wide association studies (GWAS) have also
disease [7, 8], diabetes [8] and Werner syndrome [9] as reported genetic variants influencing LTL at or near
well as increased mortality. In addition, there is a genes coding for the telomerase RNA component
considerable variation in telomere length among indi- (TERC) (3g26.2) [12, 14, 15], oligonucleotide/oligosac-
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charide-binding fold-containing protein 1 (OBFC1)
(10q24.33) [14-16], phosphatidylinositol 3-kinase, class
3 (VPS34/PIK3C3) (18ql12.2), and more recently,
conserved telomere maintenance componenl (CTC1)
(17p13.1) and zinc finger protein 676 (ZNF676)
(19p12) [15]. A recent GWAS meta-analysis also
identified seven loci, five of which contain candidate
genes that are known to be involved in telomere biology
[17]. However, these loci have not been convincingly
replicated in other populations and inconsistent results
were reported among different studies [18]. In addition,
common variants in known candidate genes related to
telomere maintenance did not exhibit a strong effect on
telomere length variation [19]. To date, no study has
investigated the genetic determinants of LTL in
American Indians. The purpose of this study was to
perform a genome-wide linkage scan to localize
quantitative trait loci (QTLs) for LTL measured by
quantitative PCR in a large population of American
Indians participating in the Strong Heart Family Study
(SHFS).

RESULTS

After excluding participants with missing covariate data
(N=77) and telomere data (N=I), a total of 3,587
individuals were included in the current analysis. All
relative pairs utilized in this study are shown in Table 1.
Table 2 shows the characteristics of the study
participants according to study center. The mean age of
the study participants was 39.9 years old (standard
deviation = 17). Women accounted for 60% of the study
population. The SHFS participants had a high
prevalence of diabetes, especially those from the
Arizona center. A high prevalence of cigarette smoking
and alcohol consumption was also noted. Age, sex,
BMI, study center, and total triglyceride were identified
to be significant factors influencing LTL. These
covariates accounted for 5.8%, 15.9%, and 22.9%
interindividual variability in LTL for participants from
OK, AZ and DK, respectively. In analysis using all
samples, the proportion of variance due to covariates
was 14.1%.
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Figure 1. Multipoint LOD scores on chromosome 13 for log-transformed leukocyte telomere length
for each center and combined samples. Model was adjusted for age at enrollment, sex, BMI, and
total triglyceride. The analysis for combined sample additionally adjusted for study center.
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Table 1. Relative pairs utilized in this study

Relationship All AZ DK OK
Identical sib pairs 4 1 2 1
Parent —offspring 2808 856 1017 935
Siblings 2659 880 950 829
Grandparent-grandchild 1055 361 368 326
Avuncular 6662 1983 2549 2130
Half siblings 938 310 317 311
Grand avuncular 2996 783 1223 990
Half avuncular 1359 432 416 511
First cousins 8997 2864 3418 2715
First cousins, once removed 12379 3768 4815 3796
Half first cousins 1303 531 359 413
First cousins, twice removed 1443 353 360 730
Half first cousins, once removed 1594 815 263 516
Second cousins 7003 2201 2972 1830
Second cousins, once removed 2670 867 944 859
Third cousins 929 180 575 174
Half second cousins 792 428 133 231
Half second cousins, once removed 144 62 20 62
Second cousins, twice removed 147 - 144 3
Third cousins, once removed 123 - 120 3
Half third cousins 4 4 - -
Other relationships 2909 634 1129 1146
Total 58,918 18,313 22,094 18,511

Multivariate-adjusted heritability of LTL was estimated
to be 62.4%, 54.8% and 50.9% for participants from
OK, AZ and DK, respectively, with an average
heritability of 55.6% for all subjects (Table 3).

Table 4 presents the results of multipoint genome-wide
linkage analyses for LTL, including LOD scores and
their locations for all linkage peaks with LOD score >
2.0. Among participants from the Oklahoma population,
we identified significant evidence for linkage on
chromosome 13 at 6 cM (marker D13S175, LOD score
3.9, Figure 1), chromosome 18 at 101 c¢M (marker

D18S61, LOD score 3.2, Figure 2), chromosome 3 at
91cM (marker D3S1285, LOD score 3.0, Figure 3), and
suggestive evidence for linkage on chromosome 20 at
100 cM (marker D20S171, LOD score 2.0) and
chromosome 1 at 241 cM (marker D152800, LOD score
2.0). A suggestive linkage was also observed on
chromosome 7 at 141cM (marker D7S640, LOD score
2.4) in the Arizona pedigrees. No significant or
suggestive linkage (LOD score > 2.0) was observed in
the Dakota center. Supplementary Figures 1-4 display
genome-wide linkage results for all chromosomes
according to study center and all centers combined.
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Table 2. Basic characteristics of the Strong Heart Family Study participants by center

Arizona Oklahoma Dakotas
Number of subjects 1208 1189 1190
Age (years ) 37.02+15.84 43.63+17.35 39.07+17.08
Female sex (%) 62.6% 58.8% 59.0%
Current alcohol drinker (%) 59.3% 47.5% 66.3%
Current smoker (%) 25.5% 33.3% 42.5%
Type 2 diabetes (%) 33.1% 20.6% 14.2%
Body mass index (mean + SD, kg/m®) 35.43+8.79 31.11+6.9 30.19+6.83
Total cholesterol (mean + SD, mg/dL) 174.35+£34.33 185.67+£37.26 181.85+39.09
High-density lipoprotein (mean + SD, mg/dL) 48.55+14.11 52.96+15.4 50.79+13.84
Total triglyceride (mean + SD, mg/dL) 169.54+134.85 172.4£171.53 161.2+202.1
eGFR (mean+SD, ml/min/1.73m?) 111.86+32.37 92.86+23.88 95.57+£24.84
Low-density lipoprotein (mean + SD, mg/dL) 93.79+25.93 99.8+30.4 100.68+31.11
Telomere length (mean + SD, T/S ratio) 0.95+0.21 0.97+0.22 1.02+0.26
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Figure 2. Multipoint LOD scores on chromosome 18 for log-transformed leukocyte telomere length
for each center and combined samples. Model was adjusted for age at enrollment, sex, BMI, and
total triglyceride. The analysis for combined sample additionally adjusted for study center.
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Table 3. Multivariate-adjusted heritability of LTL in SHFS

Center Heritability (SE) P value cP;?/z ;)ir;:;): of variance due to
All 0.556 (0.03) 1.4x 10" 0.141
Arizona 0.548 (0.06) 3.8x 107 0.159
Dakotas 0.509 (0.05) 8.0x 10" 0.229
Oklahoma  0.624 (0.05) 43x10™ 0.058

Adjusting for age, sex, center, BMI and total triglyceride
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Figure 3. Multipoint LOD scores on chromosome 3 for log-transformed leukocyte telomere length
for each center and combined samples. Model was adjusted for age at enrollment, sex, BMI, and
total triglyceride. The analysis for combined sample additionally adjusted for study center.
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DISCUSSION

In this study, we demonstrated that LTL in American
Indians has a strong genetic component, with
heritability estimates ranging from 51% to 62%. A
genome-wide linkage scan identified significant
evidence of linkage for LTL on chromosomes
13q12.11, 18g22.2 and 3pl4.1 in the Oklahoma
population. In addition, we observed suggestive
evidence for linkage on chromosome 1g42.2 and 20q13
from Oklahoma families, and one suggestive linkage on
chromosome 7933 in the Arizona population. No
significant or suggestive evidence of linkage was
obtained in the Dakota pedigrees. There is no overlap
between observed linkage peaks of different centers,
suggesting potential genetic heterogeneity among
American Indians from different geographic regions.
The strongest evidence of linkage for LTL in our
genome-wide scan was localized to chromosome 13q12
in the Oklahoma population. This region has not been
previously reported to harbor loci affecting
interindividual variation in LTL in any ethnic groups,
thus may represent a novel genetic locus influencing
LTL. The one-LOD unit support interval (8.8 Mb) of
this linkage signal contains over 50 annotated genes.
Among these, two genes could represent promising
candidate genes for LTL in American Indians. One is
the well-known aging gene Klotho (KL), which is
located ~ 10 Mb downstream from the peak 13q LOD
score. This gene encodes a type-I membrane protein and
functions as an ageing-suppressor gene [20].
Overexpression of this gene extended life span in mice,
and klotho-deficient mouse (klotho -/-) manifested a
wide range of aging-related phenotypes, such as short
life span, atherosclerosis, and osteoporosis [21-23]. In
human population studies, genetic variants in the KL
gene have been associated with longevity [24] and
several age-related disorders, such as cardiovascular
disease and its associated risk factors [24, 25] and
cognitive function [26], all of which are consistent with
its association with life span [21]. Another possible
candidate gene located in this 13q region is poly (ADP-
ribose) polymerase family, member 4 (PARP4) [27].
The PARP enzymes recognize DNA strand damages,
and DNA binding by PARP controls telomere length
and chromosomal stability by triggering its own release
from DNA ends. Telomeres are the terminal DNA
structure of chromosomes and are, therefore, potential
targets of PARP. Mice lacking PARP displayed
telomere shortening and chromosomal instability,
lending further support for an important role of PARP in
telomere maintenance [28, 29].

Apart from KL and PARP4, the 13q linkage peak also
includes known candidate genes for inflammation, e.g.,

arachidonate S-lipoxygenase-activating protein
(ALOX5AP), and cancer, e.g., breast cancer 2 early
onset (BRCA2), all of which may be involved in the
aging process. In a recent GWAS meta-analysis, the
gene encoding zinc finger protein 676 (ZNF676) was
related to the regulation of human telomere homeostasis
[15]. Interestingly, several genes encoding zinc finger
proteins, such as zinc finger, DHHC-type containing 20
(ZDHHC20), zinc finger, MYM-type 2 (ZMYM2), and
zinc finger, MYM-type 5 (ZMYMS5), are also located
within the 13q linkage region identified in our study.
The possible role of these zinc finger proteins in
telomere maintenance warrants further research.

We also identified evidence for linkage on chromosome
18g22.2 in the gene region of docking protein 6
(DOKG®6), a member of the DOK family of intracellular
adaptors that play an important role in RET (rearranged
during transfection) signaling cascade [30]. Activated
RET signaling causes phosphorylation of key docking
tyrosines that bind to several adaptor proteins, resulting
in the activation of downstream signal transduction
pathways [31], thereby controls key cellular processes,
such as cell proliferation, differentiation, and survival
[32]. Aberrant RET signaling has been associated with
papillary thyroid carcinoma, multiple endocrine
neoplasia types 2 syndromes, and Hirschsprung's
disease [33]. Genetic defects in genes encoding docking
proteins have the potential to cause abnormal
interaction with the RET signaling, which in turn may
result in aging neurons and contribute to aging-related
disorders such as Parkinson’s disease [34] and
Alzheimer’s disease [35].

In a previous GWAS for LTL measured by Southern
blot analysis, two SNPs (rs2162440 and rs7235755) on
chromosome 18q12.2 were significantly associated with
telomere length in the gene region of VPS34/PIK3C3 in
Caucasians [36]. Our linkage signal on chromosome
18922.2 is ~28Mb downstream of this VPS gene region.
Given the relatively large map distance between these
two regions, it is uncertain whether these two loci
belong to a same genetic locus influencing telomere
variation in different populations. It is also possible that
the VPS locus in Caucasians and the DOKG6 locus in
American Indians may represent a long-distance Cis-
regulatory element influencing telomere variation.

Another linkage peak identified in our genome-wide
scan was located on chromosome 3pl4.1 in the gene
region of ADAMTS9 (ADAM metallopeptidase with
thrombospondin type 1 motif, 9). As a member of the
ADAMTS family, ADAAMTS9 has been implicated in
proteoglycan cleavage, organ shape control during
development, and angiogenesis inhibition. Genetic
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polymorphisms in the ASAMTS9 gene have been
associated with body fat distribution [37, 38],
diabetes[39] and Alzheimer’s disease [40]. Previous
studies reported association and replication of genetic
variants in the telomerase RNA component (TERC)
gene, located on 3q26, with telomere length variation
[12, 14], but the genomic region we identified in
American Indians localizes on the short arm of
chromosome 3, and thus may represent a novel locus for
LTL.

Except for the above-mentioned results, we also
observed several loci with marginal evidence of linkage.
Although these signals do not meet the genome-wide
significance threshold, these genomic regions may still
provide valuable information that is worthy of further
investigation.

The major strength of this study includes the large,
multi-generational pedigrees with well-characterized
phenotypes including demographic, clinical and
environmental information. The lack of overlap for
linkage regions from different study centers further
highlights the potential differences in genetic
architecture between American Indians from diverse
geographic regions. However, the genetic background
of American Indians is likely to be more homogeneous
than other population-based studies from urban areas.

In summary, we identified strong evidence for novel
genetic loci affecting variation in leukocyte telomere
length on chromosomes 13q12, 18q22.2 and 3pl4.1 in
American Indians who suffer from high rates of
diabetes and cardiovascular disease. Several other loci
with suggestive linkage were also localized. Our
findings are independent of adjustments for multiple
covariates, including age at enrollment, sex, center,
BMI and total triglyceride, suggesting that these factors
may not contribute to the observed linkage signals for
telomere length. Our linkage results, coupled with
plausible biological functions of the potential candidate
genes related to aging, such as Klotho, PARP4, DOKG®,
and ASAMTS9, make these genomic regions good
candidates for further investigation of causal variants
influencing LTL in this minority population. Future
research to fine map these candidate regions and to
determine causal variants, including rare variants and
structural variants, will provide valuable information on
telomere biology and aging-related disorders.

METHODS

The Strong Heart Family Study (SHFS) is a multicenter,
family-based prospective study designed to identify
genetic factors for cardiovascular disease (CVD),
diabetes and their risk factors in American Indians. The

study was initiated in 1998 and has examined 3,665
individuals (aged 14 to 93 years) from 94 multi-
generational families residing in Arizona (AZ), North
and South Dakota (DK) and Oklahoma (OK).
Participants were followed up about every four to five
years to collect information on morbidity and mortality
for CVD, diabetes and associated risk factors. At each
visit, study participants underwent a clinical
examination including a personal interview and physical
examination. Information on demographic factors,
socioeconomic status, medical history, medication use,
and lifestyle factors was collected by personal interview
using standard questionnaires. A physical examination
was conducted, and fasting blood samples were
collected for laboratory tests, including fasting glucose,
glycosylated hemoglobin, insulin, lipids, lipoproteins,
and inflammatory biomarkers as well as a 75-gram
glucose tolerance test. The study design and methods of
the SHFS have been reported previously [41, 42]. The
SHEFS protocol was approved by the participating tribes
and Institutional Review Boards of the Indian Health
Service and the participating institutions. All
participants gave informed consent. All SHFS
participants with complete genotype and telomere data
are included in the current investigation.

Measurement of leukocyte telomere length (LTL).
Genomic DNA from peripheral blood was isolated
according to standard protocols. Leukocyte telomere
length (LTL), as measured by T/S ratio, was performed
by Dr. Elizabeth Blackburn’s laboratory at the
University of California San Francisco using a high-
throughput telomere length assay system. Primers for
the telomere polymerase chain reaction (PCR) (T runs)
are tellb [5'-CGGTTT(GTTTGG)sGTT-3'] with a final
concentration of 100 nM, and tel2b [5'-
GGCTTG(CCTTAC)sCCT-3"] with a final concentra-
tion of 900 nM. The primers for the single-copy gene
(human pB-globin) PCR (S runs) are hbgl [5'
GCTTCTGACACAACTGTGTTCACTAGC-3"] at a
final concentration of 300 nM, and hbg2 [5'-
CACCAACTTCATCCACGTTCACC-3'] at a final
concentration of 700 nM. All primers were purchased
from the Integrated DNA Technologies (Coralville,
Towa) in a standard desalted form.

The telomere length assay determines the ratio of
telomeric product/single copy gene (T/S) obtained using
quantitative PCR (qPCR) according to protocols
described previously [43, 44]. The rationale of this
method is that the longer the telomeres are in each
sample, the more PCR product will be generated in PCR
reactions using primers specific for the telomeric DNA.
This can be quantified by qPCR using a serially diluted
standard DNA and the standard curve method. To
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normalize the quantity of the input DNA, a single copy
gene was amplified in parallel as well. The ratio of the
telomeric product versus the single copy gene reflects
the average length of the telomeres. The qPCR
amplification curves were analyzed by the Roche
LightCycler software (Roche Applied Science,
Penzberg, Germany), which uses the second derivative
maximum method to determine the values of crossing
points (Cp’s). All standard serial dilution Cp’s from all
182 qPCR runs were averaged to form the reference set
of Cp’s to which all runs were normalized. This was
done for the S runs and T runs separately. The average
PCR efficiencies of S and T runs were 95% and 84%,
respectively, and the Cp values were scaled
accordingly. Each sample was assayed three times, each
time as triplicate wells in the 384 well assay plate. T/S
ratio was calculated by dividing the mean of the T
concentration and the S concentration for each of the
runs. Three of these T/S ratios were averaged, and
standard deviation and percent of coefficient variation
(%CV) were calculated. In cases where the %CV were
larger than 7%, an S or T Cp value that reduced the
%CV most if removed was discounted. The T/S ratios
were normalized to the mean of all samples and
reported.

For quality control, seven control DNA samples from
various cancer cell lines were included in each assay
plate. These control samples allowed us to create
standard curves, which were then integrated into a
composite standard curve wused for T and S
concentration calculations. In our study, 4.1% of the
total sample was run in duplication and telomere length
of the replicate samples were significantly correlated (r
= 0.95, p<0.0001). The average inter-assay and intra-
assay CV was 2.5% and 4.4%, respectively. Lab
technicians were blinded to the knowledge of clinical
data.

Measurements of risk factors. Body weight (kg) and
height (cm) were measured when participants wore light
clothes and no shoes by trained research staff. Body
mass index (BMI) was calculated by dividing weight in
kilograms by the square of height in meters. Waist
circumference (WC) was measured at the level of the
umbilicus while the participant was supine. Hip
circumference was measured at the level of widest
circumference over greater trochanters with the legs
close together. Waist/hip ratio (WHR) was calculated as
waist circumference divided by hip circumference.

Cigarette smoking was assessed via questionnaire and
participants were grouped as smokers (current plus
former smokers) and compared to never smokers.
Participants were categorized into current drinkers,

former drinkers and never drinkers based on their
history of alcohol consumption. Physical activity was
assessed by the mean number of steps per day
calculated by averaging the total number of steps
recorded each day during a 7-day period. Hypertension
is defined as blood pressure levels of 140/90 mm Hg or
higher or wuse of antihypertensive medications.
According to the 1997 American Diabetes Association
(ADA) criteria [45] diabetes was defined as fasting
plasma glucose >7.0 mmol/L or receiving insulin or oral
hyperglycemic treatment. Impaired fasting glucose
(IFG) was defined as a fasting glucose of 6.1-7.0
mmol/L. Fasting glucose <6.1 mmol/L is defined as
normal.

Genotyping. The procedures for genotyping in the
SHFS have been described previously [46]. In brief,
genomic DNA was isolated from fasting blood samples.
Genotype data for ~ 400 microsatellite markers (spaced
at approximately 10 cM intervals) were generated using
the ABI PRISM Linkage Map Set-MD10 Version 2.5
(Applied Biosystems, Foster City, CA). Pedigree
relationships were verified using the pedigree
relationship statistical tests package,[47] which employs
likelihood-based inference statistics for genome-wide
identify-by-descent (IBD) allele sharing. Mendelian
inconsistencies were detected using Sim Walk2 [48].
Marker allele frequencies were estimated from all
individuals using computerized algorithms. With these
screening, less than 1% of all genotypes were excluded
from analysis. The chromosomal map used in this study
was based on marker locations reported in DeCode
Genetics [49].

Quantitative genetic analysis. Prior to analysis, telomere
length was log-transformed to improve normality.
Backward stepwise linear regression was used to choose
the most significant covariates associated with telomere
length. The following variables were included in the full
model for selection: age at enrollment, sex, study
center, BMI, fasting glucose, fasting insulin, systolic
blood pressure, smoking status, alcohol consumption,
physical activity, lipids and socioeconomic status. Only
variables significantly associated with telomere length
were included in the final statistical model for linkage
analysis.

Heritability was estimated using maximum likelihood
variance  components  decomposition-method by
partitioning the total phenotypic variance in LTL into
additive genetic and environmental components [50].
An  extension of the variance components
decomposition method was used to localize quantitative
trait loci (QTL) influencing the variation in LTL. Both
heritability and genome-wide linkage analyses were
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conducted using  the computer program, sequential
oligogenic linkage analysis routines (SOLAR), version
4.0 [50]. This approach takes into account the identity-
by-descent (IBD) relationship matrix estimated using
the LOKI package [51], which employs a Markov chain
Monte Carlo stochastic procedure by computing the
IBD allele sharing at points throughout the genome
conditional on the genotype information available at
neighboring loci. Fine-mapping at 1cM intervals was
performed on all points around locations having a LOD
score higher than 0.5. All analyses were first conducted
separately for each study center, and then combined
across all three centers.
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Supplementary Figure 1. Genome-wide multi-point linkage results of log-transformed leukocyte
telomere length in combined samples from all three centers. Model was adjusted for age at
enrollment, sex, BMI, total triglyceride and study center.
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Supplementary Figure 2. Genome-wide multi-point linkage results of log-transformed leukocyte telomere

length in Oklahoma center. Model was adjusted for age at enroliment, sex, BMI and total triglyceride.
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Supplementary Figure 3. Genome-wide multi-point linkage results of log-transformed leukocyte telomere
length in Arizona center. Model was adjusted for age at enrollment, sex, BMI and total triglyceride.
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Supplementary Figure 4. Genome-wide multi-point linkage results of log-transformed leukocyte telomere
length in Dakota center. Model was adjusted for age at enrollment, sex, BMI and total triglyceride.
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