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Aging on a different scale — chronological versus pathology-related
aging
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Abstract: In the next decades the elderly population will increase dramatically, demanding appropriate solutions in health
care and aging research focusing on healthy aging to prevent high burdens and costs in health care. For this, research
targeting tissue-specific and individual aging is paramount to make the necessary progression in aging research. In a
recently published study we have attempted to make a step interpreting aging data on chronological as well as
pathological scale. For this, we sampled five major tissues at regular time intervals during the entire C57BL/6J murine
lifespan from a controlled in vivo aging study, measured the whole transcriptome and incorporated temporal as well as
physical health aspects into the analyses. In total, we used 18 different age-related pathological parameters and
transcriptomic profiles of liver, kidney, spleen, lung and brain and created a database that can now be used for a broad
systems biology approach. In our study, we focused on the dynamics of biological processes during chronological aging and
the comparison between chronological and pathology-related aging.

INTRODUCTION

Aging is generally considered the result of time- patients [13, 14] to over 100 years for centenarians.
dependent deterioration due to stochastic, accumulative Many pro-aging factors are likely controlled to some
‘wear and tear’ causing gradual degeneration. extent by genetic variation [2, 15]. However, even in
Therefore, time is the prevailing determinant in age- genetically identical, inbred animals aging rate varies
related processes [1, 2]. However, although aging is substantially among individuals [4, 16, 17]. This
highly correlated with time, additional factors indicates that other factors besides time are of
significantly influence the rate of aging and as a significance. Genomic instability due to accumulation
consequence, individual aging differs greatly [3-6]. of stochastic damage in DNA over time [16-28] causing
Moreover, the rate of age-related deterioration and cell death and cellular senescence is believed to be one
functional decline varies within every individual in a of the drivers of aging [29-43]. It has proved difficult to
tissue-specific manner [7-12]. In humans, lifespan mechanistically dissect processes involved in individual
ranges from less than 10 years for the severe progeria and tissue-specific aging.
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Dynamics in aging,
pathology-related aging

chronological aging and

To investigate general health deterioration and loss of
homeostasis in aging, we attempted to determine 1) the
dynamics of biological processes during aging and 2)
correlate patho-physiological aging end points to
transcriptomic responses, which are generally believed
to determine the cellular phenotype [44]. Previously,
large scale studies provided valuable new insights into
aging mechanisms in multiple species, tissues and
genotypes [10, 12, 45-52]. Several of these studies
focussed on young versus old comparisons [10, 45, 47,
50], making correlation studies difficult to execute.

We attempted to fill part of the hiatus between
chronological aging rate and its associated patho-
physiological patterns in the mouse by full genome gene
expression profiling of five organs at six ages covering
the entire lifespan in mice [4]. Firstly, using the
intercurrent gene expression profiles from the six time
points, we were able to follow the dynamics of
biological processes during chronological aging. For
instance, energy homeostasis, lipid metabolism, IGF-1,
PTEN and mitochondrial function in liver were slightly
up-regulated during the first half of the lifespan but
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declined during the last 25% of the lifespan (Figure 1)
[4]. These processes have previously been correlated to
chronological aging by others [12, 53-67], but
interpreting the dynamics of biological functions
throughout the lifespan in multiple tissues has been
proved difficult so far. Our data can contribute to
unravelling the dynamics of functional pathways
throughout time in several tissues.

Besides focusing on the dynamics of processes during
chronological aging, we additionally scored a range of
age-related pathologies (n=18, of which some are
possibly novel as an aging-marker, Table 1) in a
systematic fashion over time in these five organs to
address pathology-related aging. The age-related
pathological parameters shown in Table 1 changed over
time per age group; nevertheless, substantial individual
variation was found (exemplified for instance by the
hepatic lipofuscin accumulation in Figure 2A). Not only
age-related pathological findings were tissue-specific,
but the overall age-related changes in the gene
expression profiles were also highly tissue-specific,
arguing for caution to consider aging as a systemic
generic process and take into account tissue-specific
aging [7-12, 68-73].
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Figure 1. Dynamics of metabolism, energy and mitochondrial-related processes throughout aging in liver (adapted from [4]).

www.impactaging.com

783

AGING, October 2013, Vol. 5 No.10



A. Chronological scale - lipofuscin levels

Pathological scale - lipofuscin levels

600 600
* *
500 500
400 400
.‘; # Lipofuscin
€ 300 300
& — Average
<& — <&
200 200 °
OO
100 100 50 ..W’
* aad
0 0 1 000606000000000000000000¢
13 26 52 78 104 130 weeks
-15 1.5
B. Chronological aging Pathological aging [ eee—

A A A AN A A

Rab31

w Cri
3 rip1
8 Dok
© Top1000
Fli1
13 26 52 78 104 130 weeks v
C. Functional Pathway Analysis
Chronological aging
A\ 4

H Mitochondrial/organelle
M Lipid metabolism
HImmune

M Other

A A A A DDA A DDA D AN NDNN A A

c
Clec7a T
9
c
Csprs @
a3
Clectb §
o
C73.9Rik &
m
Q
)
[}
-
&

Pathological aging - lipofuscin related

H Mitochondrial/Organelle
H Lipid Metabolism

M Immune

11 Cell motility/proliferation
M Oxidative stress

H Other

Figure 2. Functional pathways analyses on chronological and pathology-related scale. (A) Pathological age-related parameter
lipofuscin accumulation was scored at regular intervals during aging. On average per age group lipofuscin levels increase with
aging (left panel), however individual differences between chronological ages are notable (right panel). (B) Gene expression
profiles were investigated according to a chronological scale (left panel, DEGs = differentially expressed genes) and
pathological scale (right panel). For the latter, gene expression profiles are ranked according to correlation to the severity of
the pathological parameter. (C) Functional genomics analyses using the top1000 of either chronological age-related genes or
pathology-related genes indicate that besides overlapping responses, also differences are visible, e.g. immune response
appeared highly correlated to hepatic lipofuscin accumulation. Numbers in diagrams represent the number of pathway hits.

To relate biological functions to age-related patho-
physiological end point, we substituted chronological
time for the severity of the scored age-related
pathological variables in each tissue, as is demonstrated
in Figure 2A for lipofuscin accumulation in liver. On a
pathological scale, a liver sample of a 2 year old mouse
(orange) could be considered younger than the liver of a
1 year old mouse (green) for a certain pathological
parameter when the severity of this pathological
condition was lower in the 2 year old sample.

Pathology-related  transcriptomic  profiles  were
generated by ranking gene expression profiles based on
their correlation with the degree of age-related
pathologies (Figure 2B, right panel) and subsequently
assessing the biological functions of those correlated
gene expression profiles (Figure 2C, right panel). These
analyses revealed several biological processes that have
previously been found associated with age and appeared
in both our chronological and pathology-related aging
analyses (Figure 2C, Figure 3). Overlap analysis, based
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on a ranked topl000 as input between hepatic
chronological aging (Fig. 2C, left) and lipofuscin-
related output in liver (Fig. 2C, right) yielded
overlapping  Dbiological pathways functional in
mitochondrial processes and lipid metabolism for
example. However, also ample differences between
aging on a chronological and a pathological scale were

apparent. In liver, immune responses, cell
motility/proliferation/activation and oxidative stress
responses paralleled the kinetics of lipofuscin

accumulation, which is a generally accepted biomarker
for aging and an indicator of cumulative cellular
oxidative stress (Figure 2C) [74-86]. Apparently, the
lipofuscin-correlated transcripts were overrepresented in
many more functional pathways than the 1000 FDR-
ranked chronological genes, resulting in an increase in
the number of functional (mostly immune-related)
pathways. Immune responses, cell motility/adhesion
and oxidative stress have been previously linked to
(hepatic) injury and aging [87-98] and according to our
results these related processes might be contributing
factors to the biological diversity in hepatic injury and
aging per individual.

Figure 3 depicts an overlap analysis of functional
pathways between chronological and all pathology-
related aging parameters for liver (for detailed
information on the other tissues see [4]). Results
indicate that, besides existing overlap between
chronological and pathological aging processes (e.g.
mitochondrial processes and lipid metabolism), many

divergent functional responses were revealed using a
(often tissue-specific) pathological scale. These
divergent responses leave us with numerous interesting
anchor points for future aging research to correlate age-
related biological pathways to actual patho-
physiological end-points and reveal possible underlying
mechanisms, as exemplified for hepatic lipofuscin
accumulation. We hope our results contribute to a new
paradigm in aging and medical research taking into
account individual and tissue-specific aging levels. For
this however, as a next step, a systems biology approach
is required to decipher causal age-related mechanisms.
Correlating pathophysiological aging endpoints to gene
expression and other cellular signatures will become a
focus in current aging research to explore loss of
homeostasis and general health decline on individual or
organ-specific level. We hope that our first step in this
direction will inspire other researchers to contribute to
resolve these complex processes using an integral multi-
disciplinary system biology approach.
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Figure 3. Overlap analysis of functional responses in chronological and pathology-related aging. Summarized Metacore
GeneGO pathways and GO responses are color coded. For chronological and each pathological parameter in liver the
functional responses are plotted. Overlapping bars represent overlapping functional responses, e.g. the majority of
mitochondrial/organelle-related responses are related to chronological aging, lipofuscin accumulation and karyomegaly.
Immune responses are correlated to several age-related pathologies in liver.
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