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Abstract: During the past two decades, several interventions have been shown to increase the healthy lifespan of model
organisms as evolutionarily distant from each other as yeast, worms, flies and mammals. These anti-aging maneuvers
include (but are not limited to) cycles of caloric restriction, physical exercise as well as the administration of multiple,
chemically unrelated agents, such as resveratrol, spermidine and various rapamycin-like compounds collectively known as
rapalogs. Most, if not all, lifespan-extending agents promote macroautophagy (hereafter referred to as autophagy), an
evolutionarily old mechanism that contributes to the maintenance of intracellular homeostasis and plays a critical role in
the adaptive response of cells to stress. In line with this notion, the activation of autophagy appears to mediate significant
anti-ageing effects in several organisms, including mice. Here, we focus on rapalogs to discuss the possibility that part of
the beneficial activity of lifespan-extending agents stems from their ability to exert immunostimulatory effects.
Accumulating evidence indicates indeed that the immune system can recognize and eliminate not only cells that are prone
to undergo malignant transformation, but also senescent cells, thus playing a significant role in the control of organismal
aging. In addition, it has recently become clear that rapamycin and other rapalogs, which for a long time have been viewed
(and used in the clinic) as pure immunosuppressants, can mediate robust immunostimulatory functions, at least in some
circumstances.

The hypothesis that organismal aging might be slowed mechanisms underlying this phenomenon have only
down, and hence the appearance of aging-associated recently begun to emerge [7-10]. The latter encompass
disorders delayed, has been the subject of intense the administration of an increasingly wide panel of
investigation throughout the past two decades [1, 2]. In chemically unrelated molecules, including (but not
this context, several interventions have been limited to) resveratrol (a polyphenol found in grapes
demonstrated to significantly extend the healthy and red wine), spermidine (a polyamine that is abundant
lifespan of model organisms as distant from each other in grapefruits and soybeans), rapamycin (a macrolide
on the evolution scale as yeast, worms, flies and originally isolated from the Easter Island micro-
mammals [3-6]. For illustrative purposes, such organism Streptomyces hygroscopicus) and multiple
interventions can be classified into two large groups: (1) rapamycin-like compounds that are collectively known
lifestyle modifications and (2) pharmacological/genetic as rapalogs [11-15]. Most, if not all, these interventions
maneuvers. The former include cycles of caloric share the ability to promote macroautophagy (hereafter
restriction as well as a regular physical activity. These referred to as autophagy), a mechanism for the
are actually known to extend the healthy lifespan of lysosomal degradation of super-fluous, damaged or
humans since a long time, although the molecular ectopic intracellular constituents [16, 17]. Moreover, the
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beneficial effects of both lifestyle modifications and
pharmacological/genetic maneuvers have been shown to
depend on an intact autophagic machinery, at least in
some models [18-21]. In line with this notion, the
moderate overexpression of one essential mediator of
autophagy (i.e., ATGS) at the whole body level has
recently been shown to extend the median lifespan of
mice by approximately 17% [22]. Conversely, the
genetic inhibition of autophagy-relevant proteins such
as Beclin 1 (ATG6) , ATG7 and ATGI12 reportedly
mediates a negative effect on the healthy lifespan of
model organisms including Caenorhabditis elegans
[23]. As a matter of fact, baseline levels of autophagy
play a major role in the maintenance of intracellular
(and hence organismal) homeostasis, hence mediating a
robust oncosuppressive activity [24-26]. In addition,
autophagy orchestrates the adaptive response of cells to
multiple adverse conditions, including nutritional,
physical and chemical cues [27]. It is therefore not
surprising that autophagy might increase the organismal
fitness and hence delay aging [28].

Nonetheless, the precise mechanisms whereby specific
changes in lifestyle as well as selected chemicals or
genetic manipulations delay aging (at least in model
organisms) have not yet been fully elucidated. Thus, the
efficacy of some anti-aging interventions may rely on
mechanisms other than the wupregulation of the
autophagic flux. The immune system stands out as a
good candidate for a part in this process, based on at
least two lines of evidence: (1) autophagy plays a major
role not only in the activation of innate responses
against intracellular pathogens at the cell-autonomous
level [29, 30], but also in the elicitation of adaptive
immune responses based on the interaction between
antigen-presenting cells and antigen-specific CD4 " and
CD8" T lymphocytes [31-33]; and (2) the immune
system has been shown to recognize and eliminate not
only cells that are prone to undergoing malignant
transformation, but also senescent cells, thus
contributing to the control of organismal aging [34, 35].
Interestingly, however, rapamycin and other rapalogs
have long been known (and currently employed in the
clinic) for their capacity to mediate robust
immunosuppressive effects [36-38]. Indeed, rapamycin
(which is also known as sirolimus) has first been
approved by the US Food and Drug Administration
(FDA) in 1999 for use in combination with ciclosporin
and corticosteroids to prevent acute organ rejection in
patients receiving kidney transplants [39, 40]. As it
stands, however, the immunosuppressive potential of
rapamycin and multiple rapalogs in humans has never
been properly tested, as the clinical trials performed to
date invariably employed as a control condition the
gold-standard immunosuppressive regimens available

[41]. In addition, accumulating preclinical and clinical
evidence indicates that, at odds with immuno-
suppressants that operate by inhibiting calcineurin, such
as tacrolimus, rapamycin and other rapalogs might exert
a significant immunostimulatory activity, at least under
some circumstances.

This hypothesis first originated from the observation
that the recipients of solid organs maintained on
rapamycin-based regimens manifested a reduced
incidence of various tumors, notably lymphoma, as
compared to patients subjected to organ transplantation
and treated with conventional immunosuppressants such
as corticosteroids, ciclosporin, azathioprine or
tacrolimus [42-48]. Transplant recipients are indeed
known to exhibit an increased incidence of multiple
malignancies, encompassing lymphoma as well as
hepatocellular carcinoma, Kaposi’s sarcoma, and other
cutaneous cancers, presumably owing to the state of
systemic immunosuppression that is required to avoid
rejection [49]. In transplanted patients, rapamycin was
associated not only with robust oncosuppressive
effects, but also with a bona fide anticancer activity
against pre-existent tumors, in particular Kaposi’s
sarcomas [50-54]. Moreover, local or systemic
inflammatory responses have been detected in a
fraction of transplanted patients on rapamycin-based
maintenance regimens [55, 56]. Often, such responses
and the consequent toxicity (be it systemic or
selectively affecting the transplant) could be promptly
reversed by the reintroduction of calcineurin inhibitors
[55, 56].

Recently, cancer-preventive and antineoplastic effects
have also been attributed to everolimus (also known as
RADOO01), a rapalog approved by the US FDA for use
in patients affected by various malignancies, including
renal cell carcinoma (upon the failure of sunitinib- or
sorafenib-based chemotherapeutic regimen) [57],
subependymal giant cell astrocytoma [58], progressive
neuroendocrine tumors of pancreatic origin [59], and
advanced estrogen receptor (ER)’, v-erb-b2 avian
erythroblastic leukemia viral oncogene homolog 2
(ERBB2)" breast carcinoma (in combination with the
aromatase inhibitor exemestane [60]. Although such a
beneficial (and completely unsuspected) activity of
rapalogs was initially ascribed to their capacity to
robustly inhibit the mammalian target of rapamycin
(mTOR) complex 1 (mTORCI1) in cancer cells,
accumulating preclinical evidence indicates that the
therapeutic and oncopreventive effects of rapamycin-
like compounds originates, at least in part, from cancer
cell-extrinsic mechanisms that involve the immune
system [61]. In further support of this notion, transplant
recipients treated with rapamycin- or everolimus-based
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maintenance regimens appear to be significantly less counterparts  receiving  conventional = immuno-
predisposed to cytomegalovirus infections than their suppressants [62, 63].
Table 1. Preclinical evidence in support of the immunostimulatory activity of rapalogs
Rapalog Model Stimulus Observation(s) Ref.
reast cancer-bearing mice -15-coding plasmi mproved inhibition of tumor growt
B bearing mi IL-15-coding plasmid ~ Improved inhibition of growth 95
Everolimus Ha{i];Zt}(_ilergf/?dei%fiH:e?ﬁ d IKK inhibitor Decreased the secretion of IL-10 [77]
(RADOO1) P
Remnant kidney Worsened disease progression correlating
Sprague-Dawley rats model with several markers of inflammation [103]
Sirolimus LPS from Increased NF-«B activation and pro-
(Rapamycin) Human PBMCs and DCs Escherichia coli inflammatory cytokine secretion; decreased [78]
pamy STAT3 activation and IL-10 release
Murine DCs LPS frqm . . Increased secretion of IL-12 [79]
Escherichia coli
Monocytes, macrophages LPS from Increased NF-«B activation and pro-
and primary DCs Escherichia coli inflammatory cytokine secretion; decreased [80]
STATS3 activation and IL-10 release
Murine DCs and C57B1/10,  LPS from Increased cytokine secretion and 82]
C3H/Hel, Il4ra” mice Escherichia coli improved T-cell co-stimulation
Human whole blood LPST LTA or Inhibition of IL-10 secretion [81]
peptidoglycan
HEK?293 cells stably Mycobacterium Increased IL-23 secretion at both [69]
expressing TLR2 of TLR4 tuberculosis the mRNA and protein level
Murine macrophages, DCs Mycobacterium Enhanced Ty1 responses in mice (73]
and C57BI1/6 mice tuberculosis vaccinated with sirolimus-treated DCs
THP1 cells, primary human  Staphylococcus Increased IL-12 secretion at both [68]
PBMCs and DCs aureus the mRNA and protein level
Wild-type and transgenic L Improved antigen-specific T-cell
C57BI1/6 mice Listeria monocytogenes responses in the course of infection [70]
. . . +
Traf6”" mice Attenuated Listeria . Improved long-lived CD8 [71]
monocytogenes strain memory T-cell responses
DCs from wild-type and . . . Improved IL-12 secretion by DCs,
PI3K-deficient mice Leishmania major robust Tyl responses in vivo [72]
Wild-type and transgenic . Increased anticancer activity of
Ragl”" mice Myxoma virus adoptively transferred T lymphocytes [73]
Old C57B/6 mice Influenza virus Improve production of B lymphocytes 76]
and optimal responses to vaccination
Wild-type gnd transgenic LCMV. anq engineered Increased amounts of antigen-specific T cells [74]
C57Bl/6 mice vaccinia virus
HUVECs Thrombin Increased NF-kB activation [106]
. . Anti-CD3/anti-CD3 Generated OT-I cells that were
Tumor-bearing transgenic antibodies . -
. ) . more effective than IL-12-conditioned [85]
C57BI/6 mice Antigen-derived .
: effector OT-I cells after adoptive transfer
peptides plus CD80
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Human PBMCs and IL-2 and isopentenyl Increased the yield and effector [90]
TU167 cells pyrophosphate function of human yd T cells in vitro
Temsirolimus RCC and melanoma-bearing  HSP-based Improved CD8" T-cell memory [96]

(CCI-779) mice anticancer vaccine responses and effector functions

Abbreviations: ATLL, adult T-cell leukemia-lymphoma; CAR, chimeric antigen receptor; DC, dendritic cell; HSP, heat-shock protein; HTLV-1,
human T-cell lymphotropic virus type 1; HUVEC, human umbilical vein endothelial cell; IKK, IkB kinase; NF-kB, nuclear factor k-light-chain-
enhancer of activated B cells; IL, interleukin; LCMV, lymphocytic choriomeningitis virus; LPS, lipopolysaccharide; LTA, peptidoglycan; PBMC,
peripheral blood mononuclear cell; PI3K, phosphoinositide-3-kinase; STAT3, signal transducer and activator of transcription 3; TLR, Toll-like
receptor.

Table 2. Clinical evidence in support of the immunostimulatory activity of rapalogs

Rapalog Setting Observation(s) Ref.
Everolimus Cardiac Decreased incidence of CMV infection [62]
(RADO001) transplantation among everolimus-treated patients
Liver Limited rate of HCV progression and [107]
transplantation associated hepatic fibrosis
Renal Anemia correlating with biochemical [56]
transplantation evidence of a chronic inflammatory state
Development of glomerulonephritis upon
Renal . . N
. conversion from a calcineurin inhibitor- [55]
transplantation . . .
Sirolimus based immunosuppression to rapamycin
(Rapamycin) Solid organ Decreased incidence of CMV infection 63]
transplantation among sirolimus-treated patients
Solid organ Decreased incidence of multiple tumors
. . . [42-48]
transplantation among sirolimus-treated patients
Solid orean Consistent antitumor responses in
gan patients with post-transplantation [50-54]
transplantation Y
neoplasms treated with sirolimus
Temsirolimus ~ Advanced No signs of immunosuppression [108]
(CCI-779) cancer among everolimus-treated patients

Abbreviations: CMV, cytomegalovirus; HCV, hepatitis C virus.

Rapamycin and other rapalogs have been shown to exert
robust antineoplastic and oncopreventive effects in both
transplantable and oncogene-driven tumor models. In
immunocompromised mice xenografted with human
tumors, this activity obviously reflects cancer cell-
intrinsic (or stromal) mechanisms. As a matter of fact,
mTORCI1 is hyperactivated (hence delivering critical
pro-survival signals) in a large number of malignancies,
most often due to genetic or epigenetic alterations that
result in constitutive signaling via upstream tyrosine
kinase receptors (e.g., the epidermal growth factor

receptor, EGFR) [64-67]. Conversely, the anticancer
effects of rapalogs in immunocompetent settings appear
to rely, at least in part, on the elicitation of tumor-
targeting immune responses. Rapamycin appears to
enhance multiple facets of immune and inflammatory
responses elicited in mice by stimuli encompassing
replication-competent bacteria [68-73] and viruses [74-
77], as well as purified components thereof [74, 78-82]
and synthetic immunomodulatory agents [83, 84].
Ovalbumin-specific aff T lymphocytes exposed to
microspheres coated with an ovalbumin-derived peptide
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plus co-stimulatory CD80 molecules (or with anti-
CD3/anti-CD28 antibodies) in the presence of
rapamycin exhibited improved memory and antitumor
functions in vivo than T cells of the same type activated
in the presence of interleukin (IL)-12 [85-87]. Along
similar lines, rapamycin has been shown to enhance
tumor-targeting CD8" T-cell memory responses elicited
by a poxviral anticancer vaccine in mice [88, 89]. Such
an immunostimulatory activity was observed only when
rapamycin was administered in a high-dose short
therapeutic course, as opposed to both a single, low-
dose course as well as prolonged treatment schedules
[88, 89]. Of note, rapamycin has also been shown to
increase the yield and effector functions of human y6 T
cells activated in vitro with isopentenyl pyrophosphate
plus recombinant IL-2 [90]. In particular, Y& T cells
subjected to antigen stimulation in the presence of
rapamycin expressed increased levels of the activation
marker CD69, the anti-apoptotic protein BCL-2 and IL-
2 receptor a (IL2RA, best known as CD25) [90, 91].
These findings suggest that rapamycin may potentiate
purely adaptive immune responses, such as those
mediated by aff T lymphocytes, as well as immune
responses with mixed adaptive/innate features, such as
those orchestrated by yd T cells [92, 93]. Other
rapalogs, including everolimus and temsirolimus (CCI-
779, which has originally been approved by the US
FDA for the treatment of advanced renal cell carcinoma
in 2007) [94], have been demonstrated to exert
immunostimulatory effects, in vitro and in vivo [77, 95,
96]. As a standalone example, temsirolimus was shown
significantly improve the therapeutic potential of a
peptide-based anticancer vaccine against established
renal cell carcinomas and melanomas in mice [96, 97].
Thus, the potential immunostimulatory activity of
rapalogs appears to stem from an on-target effect, i.e.,
the inhibition of mTORCI1 [61, 98, 99].

Taken together, these observations suggest that
rapamycin and other rapalogs are capable of
stimulating, rather than inhibiting, immune responses, at
least under selected circumstances. Whether such an
immunostimulatory function truly underlies the anti-
aging effects of rapamycin remains to be formally
demonstrated. Nonetheless, accumulating preclinical
data (Table 1) as well as a large amount of
circumstantial clinical evidence (Table 2) suggests that
these lifespan-extending chemicals can be harnessed to
promote therapeutically relevant antitumor immune
responses. Properly designed trials that evaluate the
actual immunotherapeutic potential of rapamycin-like
compounds are urgently awaited. Alternatively, it will
be interesting to see whether circulating or intratumoral
biomarkers of pre-existing or therapy-elicited immune
responses are capable of identifying a subset of cancer

patients that obtain full-blown clinical benefits from the
administration of rapalogs. The standardized immuno-
monitoring procedures that are required in this context
have just begun to be defined and implemented into
clinical trials [100, 101]. Altogether, these studies will
cast new light on whether rapamycin and other rapalogs
should still be considered as immuno-suppressants or
whether their immunomodulatory activity, similar that
of other drugs like cyclophosphamide [102, 103], rather
depends on a large panel of factors, including dose and
administration schedule. In this latter scenario, rapalogs
may turn out to constitute good candidates for the
development of novel immunochemotherapeutic
regimens [104].
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