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Abstract: Short telomere length, a marker of biological aging, has been associated with age-related metabolic disorders.
Telomere attrition induces profound metabolic dysfunction in animal models, but no study has examined the metabolome
of telomeric aging in human. Here we studied 423 apparently healthy American Indians participating in the Strong Family
Heart Study. Leukocyte telomere length (LTL) was measured by gPCR. Metabolites in fasting plasma were detected by
untargeted LC/MS. Associations of LTL with each metabolite and their combined effects were examined using generalized
estimating equation adjusting for chronological age and other aging-related factors. Multiple testing was corrected using
the g-value method (gq<0.05). Of the 1,364 distinct m/z features detected, nineteen metabolites in the classes of
glycerophosphoethanolamines, glycerophosphocholines, glycerolipids, bile acids, isoprenoids, fatty amides, or L-carnitine
ester were significantly associated with LTL, independent of chronological age and other aging-related factors. Participants
with longer (top tertile) and shorter (bottom tertile) LTL were clearly separated into distinct groups using a multi-marker
score comprising of all these metabolites, suggesting that these newly detected metabolites could be novel metabolic
markers of biological aging. This is the first study to interrogate the human metabolome of telomeric aging. Our results
provide initial evidence for a metabolic control of LTL and may reveal previously undescribed new roles of various lipids in
the aging process.

INTRODUCTION

ways known to be involved in aging are also
implicated in metabolism. Therefore, profound

Aging and age-related metabolic disorders, such as
obesity, diabetes, and cardiovascular disease (CVD),
pose great social and economic burdens worldwide. The
aging process is characterized by progressive metabolic
decline over time, such as metabolic rate decline [1],
reduced insulin secretion and B-cell dysfunction [2, 3],
as well as glutathione metabolism [4]. Biological path-

metabolic abnormality represents a hallmark of aging
[5]. With the current increase in life expectancy and
the heavy burden of age-related disorders, there is an
urgent need to elucidate metabolic pathways
associated with aging and to develop novel metabolic
markers and therapeutic targets for early aging and
age-related disorders.
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Telomeres are repetitive DNA sequences and
associated proteins at the end of each chromosome.
They are critical in maintaining chromosomal stability
and normal aging [6]. Telomere length shortens
progressively during each round of cell cycle and
declines significantly with age, thus has been
emerging as a valuable marker for biological aging and
age-related  disorders. Progressive ~ metabolic
deterioration and telomere-induced biological aging
have been shown to be two intimately linked
biological processes [7]. On one hand, telomere
dysfunction impairs metabolic function [8], and
telomerase reactivation reverses tissue degeneration in
aged telomerase-deficient mice [9]. On the other hand,
metabolic signatures associated with natural aging
accurately predicts biological aging provoked by
accelerated telomere shortening, and a derived
metabolomic score reliably predicts the age of wild-
type mice [10]. Moreover, treatment with telomerase
reverse transcriptase (TERT) reverses some of the
metabolic changes associated with aging [11], further
substantiating the association between telomeric aging
and metabolic dysfunction. Shortened telomere length
has been associated with a variety of metabolic
disorders, such as obesity [12], diabetes [13], insulin
resistance [14], impaired glucose tolerance [15],
atherosclerosis [13, 16], dyslipidemia [17], and
hypertension [18]. In a recent study, we reported that
leukocyte telomere length at baseline significantly and
independently predicts incident diabetes in American
Indians [19], lending further support for a strong
relationship between biological aging driven by
telomere shortening and metabolic dysregulation.

Metabolomics is an emerging high-throughput
analytical technology that can measure numerous
endogenous and exogenous metabolites in biofluids
(e.g., plasma, serum, urine). Because small metabolites
are intermediates and end products of all regulatory
pathways, metabolic alterations represent the most
proximal reporters of alterations in our body in
response to intrinsic and extrinsic perturbations, and
thus may capture the complex physiological or
pathological changes that accompany the aging
process [20]. In previous metabolomics studies,
changes in serum or plasma metabolites have been
associated with chronological age or aging in animal
and human studies. For example, several groups
reported decreased serum carnitines, acylcarnitines and
amino acids with chronological age and increased free
fatty acid levels in aging rodents [21]. In human
studies, serum carnitine [22], glycerophosphocholines
and sphingomyelins increased with chronological age
[23]. These investigations demonstrated that metabolic
profiles are age-dependent, and metabolomic

approaches can be used to capture the metabolic
signatures of aging process. However, existing studies
focused on metabolic changes related to chronological
age, which could be very different from that of
biological aging driven by telomere shortening. The
goal of this study is to identify metabolic profiles of
telomeric aging independent of chronological age and
other aging-related factors in American Indians, a
minority group suffering from disproportionately
higher rates of age-related metabolic disorders,
especially type 2 diabetes.

RESULTS

Table 1 presents the characteristics of study participants
according to LTL tertiles. Compared to participants
with longer LTL, those with shorter LTL were
significantly older, and had significantly higher levels
of BMI, waist circumference, LDL-c and total
cholesterol as well as eGFR. No significant difference
was observed for other listed variables across LTL
tertiles.

A total of 1,364 distinct m/z features matching known
metabolites in the current metabolomics databases was
included in the present analysis. Of these, altered levels
of 19 matching metabolites were significantly
associated with LTL after accounting for potential
confounders (including chronological age) and multiple
testing (at the g-value <0.05 level). Specially, higher
levels of 13 metabolites in the species of glycerol-
phosphoethanolamines (PEs), glycerophospho-choline
(PC), bile acids, fatty amides, L-carnitine ester, peptide,
and toluene were significantly associated with longer
LTL, whereas higher levels of glycerolipids,
glycerophosphoglycerol, isoprenoids, and steroids were
significantly associated with shorter LTL. We also
estimated the joint effects of risk or protective
metabolites on LTL wvariation using multi-marker
metabolites scores comprising of all risk or protective
metabolites, respectively. On average, per 10% increase
in the multi-marker score comprising of all six risk
metabolites was associated with 0.94% shorter in LTL
(T/S ratio). By contrast, per 10% increase in the multi-
marker score of all thirteen protective metabolites was
associated with 0.79% longer in LTL (T/S ratio).
Multivariate associations of each individual metabolite
and their combined effects with LTL are shown in
Table 2. For ease of visual inspection, Figure 1 shows a
Manbhattan plot (-log;o p vs metabolic feature) of all
metabolites using raw p values obtained from
multivariate regression analysis. Metabolites
significantly associated with LTL are shown at the level
of g-value 0.05.
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Using a multi-marker score comprising of all 19
significant metabolites, we performed sPLS-DA to
examine whether these newly identified compounds can
discriminate participants with different profiles of
biological aging. Figure 2 clearly shows that participants
with longer (top tertile) and shorter (bottom tertile) LTL
were classified into two distinct groups, suggesting that

these newly detected metabolites can be used as
biomarkers for risk stratification. Sensitivity analyses
showed that additional adjustments for lifestyle
(smoking, alcohol drinking), and dietary intake of fat,
protein as well as caloric intake did not change our
results. Additional adjustment for batch effect in telomere
assay also did not attenuate the observed associations.

Table 1. Characteristics of the SHFS study participants according to LTL tertiles (n=423)

T/S ratio Tertile 1 (n=139) Tertile 2 (n=144) Tertile 3 (n=140) P trend*

Mean 0.7549+0.1281 0.9960+0.0511 1.2584+0.1783

Median 0.7865 0.9988 1.2121

Interquartile range 0.6684-0.8565 0.9521-1.0411 1.1339-1.3171
Age (years) 39.50+14.33 33.87+12.24 28.37+11.16 <0.0001
Female (%) 65.47 68.06 61.43 0.4787
BMI (kg/mz) 34.08+7.72 32.56+8.36 32.01£9.08 0.0488
WC (cm) 107.46+17.83 103.58+19.12 101.44+20.08 0.0081
Current smoker (%) 30.93 40.97 35.71 0.1891
Current drinker (%) 68.35 65.97 67.14 0.5926
SBP (mmHg) 119.65+13.67 120.18+13.93 118.46+13.92 0.4777
DBP (mmHg) 76.06+9.40 76.47£11.15 75.75+€12.19 0.8109
HDL (mg/dL) 51.19+£14.32 50.74+15.36 50.46+14.57 0.6785
LDL (mg/dL) 101.41+30.90 98.12+28.13 93.37+27.48 0.0210
Total triglyceride (mg/dL) 143.67+74.09 149.11+92.95 136.51+68.94 0.4131
Total cholesterol (mg/dL) 180.69+35.55 178.18+33.31 170.77+32.14 0.0146
Fasting glucose (mg/dL) 91.6247.15 90.69+7.56 90.7246.93 0.2702
Fasting insulin (uU/mL) 15.82+9.95 15.93+12.43 16.89+14.47 0.4734
HOMA-IR 3.64+2.46 3.63+2.93 3.78+3.18 0.6999
eGFR 101.44+25.17 103.72+22.94 110.39+22.31 0.0037
Dietary protein (g/d) 93.01+80.35 93.54+78.54 98.44+85.36 0.5130
Dietary fat (g/d) 123.71497.54 120.09+92.38 127.28+103.00 0.7297
Caloric intake (Kcal/d) 2778.99+2046.01 2729.79+2052.15 2942.66+2154.84 0.4704

*P values were estimated by GEE to account for family relatedness
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Table 2. Association of the detected metabolites (g-value <0.05) with leukocyte telomere length by multivariate GEE*

Matching metabolites Class m/z Retention time  Effect size (95% CI)'  P-value
Protective matching metabolites

PE (0-18:0/13:0) Glycerophosphoethanolamine  686.501 439.45 0.48 (0.25,0.71) 9.26x107
PE (P-16:0/12:0) Glycerophosphoethanolamine ~ 642.452 435.46 0.51(0.25,0.77) 4.92x10™
PC (0-8:0/0-8:0) Glycerophosphocholine 504.340 19.88 0.63 (0.39, 0.88) 2.17x10™
Norchenodeoxycholic acid Bile acids and derivatives 401.263 297.93 0.41 (0.18,0.63) 2.71x10™
5B-Chol-2-en-24-oic Acid Bile acids and derivatives 359.295 404.96 0.83(0.49, 1.16) 1.87x10*
30,6B,70, 12B-Tetrahydroxy-3B- g3y ids and derivatives 425.288 28.14 0.58 ( 0.30, 0.85) 3.10x10*
cholan-24-oic Acid

5B-Cholestane-3a,7a,24-triol Bile acids and derivatives 421.365 508.16 0.65 (0.35,0.94) 3.23x10™
p-Cresol sulfate (PCS) Toluenes 173.029 20.11 0.56 (0.30, 0.82) 1.45x10™
Dimethylallyl pyrophosphate Isoprenoid 247.011 42.92 0.61 (0.31,0.92) 2.48x10™
Leu-Ala-Val-Ala (LAVA) Tetrapeptide 373.243 320.09 0.28 (0.08, 0.48) 3.19x10™
N-arachidonoyl histidine Fatty amides 442.309 345.69 0.68 (0.37, 0.98) 1.57x10™
N-palmitoyl phenylalanine Fatty amides 404.318 518.86 0.72 (0.40, 1.05) 2.32x10™
Hexadecanedioic acid mono-L- g A cid Esters 430.314 575.80 0.64 (0.34, 0.95) 3.47x10"
carnitine ester

Combined protective effect 0.79 (0.45,1.13) 6.54x107
Risk matching metabolites

MG(20:3) Glycerolipid 403.279 472.83 -0.49 (-0.79,-0.19) 2.87x10™
DG(18:2/14:1) Glycerolipid 585.443 556.01 -0.33 (-0.54,-0.11) 1.63x10™
PG(20:4) Glycerophosphoglycerol 533.289 401.75 -0.62 (-0.90,-0.35) 3.58x10™
(11Z)-8,18-ethanoretinal Isoprenoid 333.221 275.34 -0.71 (-1.03,-0.39) 1.54x10™
ilﬁyc(ﬁinIZSal;};dBOzer {21_1- 19a  lsoprenoid 405.243 21.45 -0.80(-1.15,-0.45)  3.32x10*
Corticosterone Steroid 347.220 77.58 -0.54 (-0.76,-0.31) 1.83x10™
Combined risk effect -0.94 (-1.33,-0.54)  9.57x10°

* Adjusted for age, sex, study center, waist circumference, LDL-c, total cholesterol and eGFR; TPercent change in LTL (T/S ratio) per
10% change in relative abundance of metabolites
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Figure 1. Manhattan plot (-log;o p vs metabolic feature) showing metabolites using raw p values
obtained from multivariate GEE regression. Metabolites significantly associated with LTL are
highlighted in red dots at the g-value level of 0.05.
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Figure 2. sPLS-DA plot. Participants whose LTL in the top tertile of LTL distribution and those in
the bottom tertile are classified into two distinct groups using the multi-marker score
comprising of all 19 metabolites significantly associated with LTL in the multivariate GEE model.
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DISCUSSION

Using an untargeted high resolution metabolomic
approach, here we report significant association of
altered metabolic profiles in fasting plasma with
telomeric aging among apparently healthy American
Indians in the Strong Heart Study. The observed
associations were independent of chronological age and
many other potential risk factors of aging, and
withstood additionally adjustments for lifestyle and
dietary factors, suggesting that these newly detected
chemicals could be novel indicators of biological aging.
As far as we are aware, this is the first study to
interrogate the comprehensive metabolome of telomeric
aging not only in American Indians but other ethnic
groups as well. Findings of this study provide novel
insights into telomere biology, and may also facilitate
efforts to uncover potential therapeutic targets for anti-
aging and aging-related metabolic disorders.

Glycerophosphatidylethanolamines (PEs) are ether-
linked phospholipids required for normal
developmental, physiological, and cognitive functions
[37]. They are proposed to act as antioxidants and may
also influence intracellular signaling and membrane
dynamics. In the present study, we found that plasma
levels of two metabolites matching PE (O-18:0/13:0)
and PE (P-16:0/12:0), are positively associated with
LTL, suggesting that they may protect against aging.
This is in agreement with previous studies
demonstrating that PE deficiency was associated with
age-related disorders such as Alzheimer’s disease [38].
The protective effect of these PEs on aging may be
attributable to their antioxidant effects [39].
Glycerophosphocholine (GPC) has been shown to be
beneficial on cognitive decline in aging, and choline
alphoscerate (a cholinergic precursor) has been widely
used in the treatment of neurodegenerative disorders
such as Alzheimer’s disease [40]. Consistently, we
found that a metabolite matching PC (0-8:0/0-8:0),
belonging to the class of GPC, was significantly
protective on telomeric aging in our study population.

Bile acids, the oxidized derivatives of cholesterol
produced in the liver, play an important role in
regulating glucose, lipids, and energy metabolism. They
are also steroid hormones activating specific nuclear
receptors, and have been recognized as signaling
molecules of metabolic homeostasis [41]. Previous
studies demonstrated that bile acids extended lifespan in
model organisms [42, 43], and that bile acid synthesis
decreased with aging in human population [44].
Consistent with these observations, we found that
higher plasma levels of four metabolites in the class of
bile acids and derivatives (norchenodeoxycholic acid,
5B-chol-2-en-24-oic acid, 5B-cholestane-3a,7a,24-triol,

and 3a,6B,70a,12p-tetrahydroxy-5p-cholan-24-oic acid)
were significantly associated with longer LTL, lending
further support for a potential beneficial effect of bile
acids on aging. While the precise mechanisms through
which bile acids influence aging are unknown, it is
possible that they could act as endocrine regulators of
aging via nuclear receptor signaling [43] or through
influencing oxidative stress and genomic stability [42],
all of which may be implicated in telomere maintenance
and telomeric aging [45].

In this study, two compounds matching N-palmitoyl
phenylalanine and N-arachidonoyl histidine are
protective on telomeric aging. These two chemicals
belong to fatty amides, which are increasingly
recognized as an important new class of lipid signaling
molecules. These endogenous signaling molecules have
been reported to act as physiological regulators of pain
and inflammation [46]. The observed protective effect
of these two fatty amides on biological aging in our
study could be attributed to their potential anti-
inflammatory activities [47].

The p-Cresol sulfate (PCS) is organic solute produced
by bacterial metabolism of the amino acids tyrosine in
colon. The health effects of free p-Cresol and its
conjugates have been inconsistent in previous studies
[48, 49]. Here we found that increased level of plasma
PCS was associated with longer LTL, suggesting a
protective effect on biological aging. Because PCS is
metabolized by bacteria in colon, the observed
association of PCS with LTL may imply a possible role
of gut microbiota in telomeric aging.

Monoacylglycerol (MG) and diacylglycerol (DG) are
lipid intermediates believed to be the true lipotoxic
culprits underlying the known detrimental effect of
triacylglycerol (TG) on insulin resistance [50] and many
age-related metabolic disorders, e.g., atherosclerosis
and diabetes. In support of this, elevated levels of MG
(20:3) and DG (18:2/14:1) were significantly associated
with shorter LTL in our analysis. It is possible that
these glycerolipids may function as second messengers
that impair insulin [51] and/or transmembrane
signaling, both of which are known to be involved in
the process of aging [52].

The isoprenoid pathway is an important metabolic
pathway for the production of dimethylallyl pyro-
phosphate (DMAPP) and isopentenyl pyrophosphate,
which serve as the basis for the biosynthesis of
molecules that are essential for a variety of processes
such as cell membrane maintenance, hormones
metabolism, protein anchoring, and steroid synthesis.
The observed associations of telomeric aging with
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several matching isoprenoids (e.g., DMAPP, (1172)-
8,18-cthanoretinal, and  5,6-epoxy-3-hydroxy-5,6-
dihydro-12'-apo-B-caroten-12'-al) in our study are
consistent with a priori knowledge on the related
isoprenoid pathways, though the precise mechanisms
underlying  these  associations  await  further
investigation.

In addition to the altered profiles of lipids, bile acids,
and isoprenoids discussed above, altered levels of
several metabolites matching corticosterone, mono-L-
carnitine ester and tetrapeptide were also associated
with LTL. While the molecular mechanisms linking
these chemicals to telomere variability remain to be
determined, the negative effect of corticosterone on
telomere aging observed in our analysis appears to be
consistent with previous evidence demonstrating that
elevated cortisol levels were associated with cognitive
aging in human [53]. In addition, previous studies
reported that tissue L-carnitine levels decline with age
[54], and feeding aged rats with acetyl-L-carnitine
reversed the age-related declines of L-carnitine levels in
tissue and also reversed a number of age-related
changes in liver mitochondrial function [55]. These
results support the beneficial effect of hexadecanedioic
acid mono-L-carnitine ester on biological aging
observed in our study. The protective effect of
tetrapetide (LAVA) on telomere aging in our study
appears to be also in line with the anti-inflammatory
and antioxidant properties of bioactive peptides
observed in previous research [56].

Our study has several limitations. First, although our
high-resolution LC-MS detected many distinct features,
it should be noted that only 18% of the ions detected
had a match in the current metabolomics database.
These compounds were unable to be pursed due to the
large number of possible isomers and a lack of available

standards, however, these currently unannotated
metabolites may represent genuine metabolites
associated with disease process and with the

advancement of metabolomic research, we expect that
majority of these unknowns will ultimately be annotated
and their associations with disease will be identified.
Second, although we were able to control many known
risk factors related to aging, the possibility of potential
confounding by other factors, such as diet and gut
microbiota, cannot be entirely excluded. Third, study
participants included in the current analysis are
American Indians; it is unclear whether our findings
could be generalized to other populations with different
genetic and/or lifestyle background. Finally, our results
need to be replicated in large-scale metabolomic
analysis of American Indians and other ethnic
populations as well.

In summary, this is the first study to interrogate the
human metabolome of biological aging. Altered plasma
levels of nineteen metabolites are significantly
associated with interindividual variability in LTL,
independent of chronological age and many other
aging-related factors. These newly detected metabolites
are consistent with known pathophysiological
mechanisms of aging and are in agreement with
previous studies, suggesting biological plausibility of
our findings. Our results provide a better understanding
and potential novel markers of telomeric aging.
Targeting biological pathways that involve these newly
detected metabolites may help to develop preventive
and therapeutic strategies towards healthy aging and
age-related disorders.

METHODS

Study population. The Strong Heart Family Study
(SHEFS) is a family-based prospective cohort study to
identify genetic factors for CVD, diabetes and
associated risk factors in American Indians. The study
was initiated in 2001-2003 by recruiting 3,665
individuals (14-93 years older) from 94 multi-
generational families residing in Arizona (AZ), North
and South Dakota (DK) and Oklahoma (OK). Study
design and methods of the SHFS have been described
previously [24]. The SHFS protocol was approved by
the Institutional Review Boards from the Indian Health
Service and the participating centers. All subjects gave
informed consent.

The current analysis included 423 SHFS participants
with complete telomere and metabolomics data.
Participants with overt CVD or T2D and those on
hypoglycemic (both oral and insulin) medications were
excluded from this analysis. The focus on an apparently
healthy population will facilitate the identification of
early metabolic biomarkers and therapeutic targets for
anti-aging and age-related disorders.

Assessments of risk factors. Fasting plasma glucose,
insulin, lipids, lipoproteins and inflammatory
biomarkers were measured by standard laboratory
methods [24]. Body mass index (BMI) was calculated
as weight in kilograms divided by the square of the
height in meters (kg/m®). Diabetes was defined as
fasting plasma glucose >7.0 mmol/L and/or treatment
for diabetes [25]. Hypertension was defined as blood
pressure levels > 140/90 mm Hg or use of
antihypertensive medications. Cigarette smoking was
classified as current smokers, former smokers and
nonsmokers. Alcohol consumption was determined by
self-reported history of alcohol intake, the type of
alcoholic beverages consumed, frequency of alcohol
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consumption, and average quantity consumed per day
and per week. Participants are classified as current
drinkers, former drinkers and never drinkers. Dietary
intake was assessed using the block food frequency
questionnaire (FFQ) [26]. Level of physical activity was
estimated by the mean number of steps per day on
pedometer calculated by averaging the total number of
steps recorded each day during the 7-day period.

Measurement of leukocyte telomere length (LTL).
Details for the measurement of LTL have been
described elsewhere [19]. Briefly, relative mean
telomere length was measured using a high-throughput
telomere length assay system designed by Dr. Elizabeth
Blackburn’s laboratory at the University of California,
San Francisco. This assay determines the ratio of
telomeric product/single copy gene (T/S) obtained using
quantitative PCR (qPCR) according to protocols
described previously [27, 28]. The rationale of this
method is that the longer the telomeres are in each
sample, the more PCR product will be generated in PCR
reactions using primers specific for the telomeric DNA.
This can be quantified by qPCR using a serially diluted
standard DNA and the standard curve method. To
normalize the quantity of the input DNA, a single copy
gene was amplified in parallel as well. The ratio of the
telomeric product versus the single copy gene reflects
the average length of the telomeres. Each DNA sample
was assayed three times (each time with duplicates),
and the three T/S ratios were normalized to the mean of
all samples and used in the analysis. For quality
control, seven control DNA samples from various
cancer cell lines were included in each assay plate.
These control samples allowed us to create standard
curves, which were then integrated into a composite
standard curve used for T and S concentration
calculations. In addition, 4.1% of the total sample was
assayed in duplicate. Telomere length of the
replicate samples were highly correlated (r = 0.95,
p<0.0001). The intra-assay and inter-assay (assay-to-
assay) percentage of coefficient variation were 4.6%
and 6.9%, respectively. Lab technicians were blinded to
sample duplication and any knowledge of clinical data.

Metabolic  profiling by high resolution liquid
chromatography-mass spectrometry (LC-MS). Relative

abundance of fasting plasma metabolites was
determined using non-targeted metabolomic approach
via high-resolution LC-MS. Detailed lab protocols have
been described elsewhere [29, 30]. Briefly, 65 pL
plasma sample aliquots were treated with acetonitrile,
spiked with internal standard mix, and centrifuged at
13,000 x g for 10 minutes at 4°C to remove proteins.
130 pL supernatant was removed and loaded into
autosampler vials. Mass spectral data were collected

with a 10 minute gradient on a Thermo LTQ-Velos
Orbitrap mass spectrometer (Thermo Fisher, San Diego,
CA) to collect data from mass/charge ratio (m/z) 85 to
2000 in a positive ionization mode. Three technical
replicates were run for each sample using dual column
chromatography procedure with C18 and an anion
exchange column. Peak extraction, data alignment and
feature quantification were performed using the
adaptive processing software (apLCMS) [31], a
computer package designed for high-resolution
metabolomics data analysis. Potential metabolite
identities were determined by performing online search
(10 ppm mass accuracy) against the Metlin database
[32], the Human Metabolomics Database (HMDB)[33],
and the LIPID MAPS structure database (LMSD) [34].
Data filtering, normalization, diagnostics and
summarization were performed using the computer
package MSPrep [35]. Missing data were imputed using
the half of the minimum observed value within each
metabolite across all samples. Metabolites with high
analytical variance (e.g., coefficient variation > 50%) in
our samples were excluded from further analyses.
Batch-effect was corrected using the algorithm ComBat
implemented in MSPrep[35]. Lab technicians were
blinded to clinical data of study participants.

Statistical analysis. Prior to statistical analysis,
metabolites data were log-transformed and standardized
to unit variance and zero mean (z-scores). Continuous
variables such as age, BMI, waist circumference (WC),
low-density lipoprotein cholesterol (LDL-c), total
cholesterol (TC), eGFR, and fasting glucose were also
converted to standard normal distributions with
corresponding mean and standard deviation. Tests for
linear trends across LTL tertiles were conducted by
using the median value in each LTL tertile as a
continuous variable in the GEE regression models.

To estimate the effect of each metabolite on telomere
variation, we conducted multivariate regression analysis
using generalized estimating equation (GEE), which
accounts for relatedness among family members. In the
GEE model, the level of each matching metabolite
(continuous variable) was the independent variable, and
telomere length (continuous variable) was the
dependent variable, adjusting for chronological age and
other clinical factors that differ significantly across LTL
tertiles, including WC, LDL-c, TC, and eGFR (see
Table 1). Sex and study site were also included in the
model. The combined effects of metabolites on telomere
length variability were estimated by constructing a
multi-marker score based on metabolites that are
significantly associated with LTL by fitting a model

according to the formula: Z B, X, where X; denotes the
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z-score of the i-th metabolite and B; represents the
regression coefficient from the GEE regression model
containing the indicated metabolites. Given the
potential high correlations among many metabolites, we
used the g-value method to adjust for multiple
comparisons [36], and a g-value < 0.05 was considered
statistically significant.

To identify metabolic profiles associated with telomere
length, we conducted sparse partial least-squares
discriminant analysis (SPLS-DA) using the computer
package ‘mixOmics’ implemented in the R package.
The sPLS-DA is a supervised, multivariate technique
to determine metabolic groups associated with disease
risk. Unlike principal component analysis (PCA)
which focuses on variance maximization of the
predictors alone, the sPLS-DA models covariance
maximization between predictors (metabolites) and
disease phenotype (telomere length) when estimating
the parameters of a linear regression model, thus
represents a regression extension of PCA. The sPLS-
DA analysis included only metabolites showing
significant associations with LTL and adjusted for age,
sex, study center and BMI. For ease of visualization,
we presented a Manhattan plot (-log;o p vs metabolic
feature) showing the significance of individual
metabolites associated with LTL using raw p values
obtained from multivariate regression analysis (FDR at
g=0.05 with a horizontal line). To examine the
robustness of our results, we conducted additional
analyses by further adjusting for lifestyle factors
(smoking, alcohol consumption and physical activity
level), diet (dietary fat, protein and caloric intake) and
social economic variables.
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