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Abstract: A singular genome used for inference into population-based studies is a standard method in genomics. Recent
studies show that spontaneous genomic variants can propagate into new generations and these changes can contribute to
individual cell aging with environmental and evolutionary elements contributing to cumulative genomic variation.
However, the contribution of aging to genomic changes in tissue samples remains uncharacterized. Here, we report the
impact of aging on individual human exomes and their implications. We found the human genome to be dynamic,
acquiring a varying number of mutations with age (5,000 to 50,000 in 9 to 16 years). This equates to a variation rate of
9.6x107 to 8.4x10° bp™ year for nonsynonymous single nucleotide variants and 2.0x10™ to 1.0x10° locus™ year” for
microsatellite loci in these individuals. These mutations span across 3,000 to 13,000 genes, which commonly showed
association with Wnt signaling and Gonadotropin releasing hormone receptor pathways, and indicated for individuals a
specific and significant enrichment for increased risk for diabetes, kidney failure, cancer, Rheumatoid arthritis, and
Alzheimer’s disease— conditions usually associated with aging. The results suggest that “age” is an important variable while
analyzing an individual human genome to extract individual-specific clinically significant information necessary for
personalized genomics.

INTRODUCTION not age rapidly; in fact, overt phenotypes are not
observed for several generations [8]. A recent report
describes changes in the exome of a normal single cell
and those changes are inherited as the cell propagates
[9]. With age, such additive changes in coding regions
may promote aging and age related diseases, and result
in significant mosaicism. In population-scale studies,
however, bulk measurement of an individual genome
and the assumption that it completely describes the
individual is the preferred approach over sequencing
individual cells [10-12]. These studies characterize a
variety of important diseases, especially cancer, and
ethnic differences found within the population.

Aging is a process by which an individual’s body
changes in its own unique way. Aging proceeds through
complex processes involving inherited genetics, the
environment to which one has been exposed, and
individual status/traits, such as epigenetics [1, 2]. An
individual and their discrete tissues may encounter a
variety of environmental stressors (chemicals,
mutagens, ultraviolet and other radiation exposures)
during the course of their life which may enhance
biological damage (including oxidative stress), which in
turn may cause mutagenesis [1, 3, 4], and contribute to
age-associated diseases [5]. Studies of cellular aging

have largely focused on telomere shortening. While Recently, three studies reporting exome sequencing for
telomere shortening is a dynamic genomic change, the autism spectrum disorder (ASD) compared three very
impact of shortening is apparently minor, perhaps large cohorts of children to the reference genome,
because the genome has built protective and which was determined from adult sequences [13-15].
compensatory mechanisms to shield ‘important’ genes These studies, although characterizing a single disease
from chromosome end erosion [6, 7]. Additionally, gene lacked consensus, perhaps in-part as a consequence of
targeting studies show that telomerase-deficient mice do an inappropriate (not age-matched) reference [16].
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The inability of genomic variants to fully explain
known or suspected inherited and spontaneous
components of a wide variety of diseases may indicate
that there may be additional undiscovered factors that
complicate analysis. These factors include the number
and rapidity with which one accumulates genomic
variants, which if known could be compensated for, like
ethnicity and sex. Genetic characterization of aging,
therefore, may hold a key to questions regarding the
importance of acquired somatic variants, variation in
aging within a population, and their role in human
diseases. Adding time and the accompanying mosaic
changes as variables may enhance the accuracy and
utility of population-scale analysis of human traits and
disease. In an attempt to begin to address this gap, we
hypothesized that the inherited genome is not static but
rather dynamic with time with individual experiences
punctuating genomes differently. To test this hypothesis
we used exome sequencing of normal epithelial samples
from three healthy individuals serially collected at
different ages in their life.

RESULTS AND DISCUSSION
Single nucleotide variant analysis

We targeted 201,071 exons (62.2 Mb target sequence)
in epithelial samples serially collected from three indivi-
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duals and sequenced them at high coverage (152x,
average). Overall, exome enrichment efficiency was
99% (200,264 average target exons sequenced). This
enabled 61.6 Mb of target sequence to be analyzed for
aging induced exomic changes (SNVs, indels and
microsatellites).

These individuals had between 11,100 to 11,500
nsSNVs (nonsynonymous single nucleotide variants) at
any age time-point studied when compared to the
human genome reference (Table S1). The 1000 Genome
Project (1kGP) estimated that an individual typically
differs from the reference human genome sequence at
10,000-11,000 non-synonymous sites [17]. In other
independent studies, Dr. Venter and Dr. Watson’s
exome were reported to show 10,389 and 10,569
nsSNVs, respectively [18, 19]. These data indicate that
the individual’s genomic changes in our study are in
close agreement with the range of previously reported
nsSNVs across individuals (Figure 1), and that this is
not a small effect. Using the human genome reference
(hg19), we found an overall increase of 725 and 156
SNVs and indels at different ages for two individuals (1
and 2), respectively, and a decrease of 301 and 255
variants in individual-3 upon nine and fifteen years of
aging (Table S1), respectively. List of all the variations
called is presented in Table S2.

Dr. Watson's
Exome

This study
(n=7)

Figure 1. Comparison of number of non-synonymous SNVs. Number of non-synonymous
SNVs found in samples in our study were comparable with the 1kGP average 10500 + 500
(n=882), Dr.Venter, and Dr. Watson’s exomes. This indicates that the amount of variation
identified in the individuals for our study is comparable to previously reported population scale
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Table 1. Exome variations that differ upon aging in three individuals.

Individual- 1 Individual- 2 Individual- 3
(13 years apart) (16 years apart) (9 years apart) (15 years apart)
Total SNVs and indel variations 6,005 45,505 5,003 4,948
Microsatellite variations 173 801 151 164
Synonymous SNV 604 8455 455 478
Nonsynonymous SNVs 1,239 8,398 904 901
Novel nsSNVs* 849 776 594 576
Stop-gain SNVs** 37 90 15 22
Stop-loss SNVs*** 1 8 2 2
Splicing 3 6 2 0
Frameshift indels 21 128 13 18
Nonframeshift indels 19 165 32 27
Functionally damaging] 295 1263 207 175
COSMIC variants 107 1609 100 104

*Novel nsSNVs are those not previously reported in the dbSNP 137. **Stop-gain: A variant that leads to the creation
of stop codon at the variant site compared to the reference. ***Stop-loss: A variant that leads to the elimination of
stop codon at the variant site compared to the reference. tSplicing: A variant within 2-bp of a splicing junction.
$Functionally damaging variants are those predicted by Polyphen v2.

Overall, we found that ~94%, ~ 62%, and ~93% of the
variations with respect to the reference genome were
present before and after various aging time intervals in
individuals 1, 2 and 3, respectively. These suggest the
persistent presence of these sites in an individual’s
specific genome sequence. Thus, although different
from the reference genome, as somatic variants, they
may not be informative. This sets this study apart from
current approaches, which typically would have based
the interpretation including all of these variations.

Important to this study is therefore not the number of
variants with respect to a (arbitrary) reference genome,
rather the differences observed between samples
collected from the same individual at different times. To
detect the overall frequency of age-specific genomic
changes, we examined unique variants in each
individual. To avoid false negative results due to
inconsistencies in sequenced loci between samples, we
report only on those loci completely covered by at least
five reads in both samples under comparison. There
were 6,005 variants (SNVs and indels) in individual-1
(after 13 years of aging), 45,505 in individual-2 (after
16 years of aging), 5,003 in individual-3 (after 9 years
of aging) and 4,948 in individual-3 upon 15 years of
aging (Table 1, Table S1).

Exomes of these individuals exhibited a variation rate of
9.6x107 to 8.4x10° bp ' year" for nsSNVs (considering
the 62.2Mb of target sequence), which have aged
experiencing different stress and environmental
exposures and because the genomic region was
exclusively exomes may represent a selection pressure
that is different from the whole genome (Figure 2).
Compared to the reference human genome, individual-2
does not appear very different from other individuals in
terms of the total number of genomic variations with
respect to the reference (Table S1). However, he
exhibits a very high nsSNVs variation rate (8.4x10™ bp’
" year'") when referenced to his own previous genomic
state. This finding is of particular significance because
it highlights the importance of genomic status relative to
personal genomics, rather than observations made from
a standard reference genome that are missing valuable
details especially, individual specific genomic variation
trends and behavior.

Variable indel and microsatellite analysis

Indels that cause frameshifts are usually under negative
selection pressure [18]. Indels are the second most
abundant type of genetic variation, following single
nucleotide substitutions and account for almost a quarter
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of the genetic variation implicated in disease [20]. As negative selection of frameshift indels in these indivi-
shown in Table S3, we identified a reduction in frame- duals at later age. This is consistent with previous
shift indels and the ratio (frameshift/nonframeshift indels) observations [18], and suggests the presence of sustained
in older individuals (individual-2 and 3) indicating the selection pressure throughout the lifespan of an individual.
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Age 30 vs Age 17 Age 45 vs Age 29 Age 51 vs Age 42 Age 57 vs Age 42
(13yr) (18yr) (9yr) (15yr)

nsSNVs variation rate (bp-1 year-1)

Figure 2. Comparison of nsSNVs variation rate at different ages in three individuals. The
variation rate varies dramatically between three individuals in our study. This indicates the individual
specific genome dynamic of samples in our study.

Table 2. Microsatellite variants that differ between samples at different ages and their distributions.

Individual- 1 Individual- 2 Individual- 3
(13 years apart) (16 years apart) (9 years apart) (15 years apart)
Total microsatellites called 53,161 49,988 51,902 52,301
Total microsatellites difference 173 801 151 164
% Global microsatellite index 0.3% 1.6% 0.3% 0.3%
Location of variable microsatellites
Exonic 4 26 1 2
Intronic 95 351 80 96
3'UTRs exon 27 224 36 28
5'UTRs exon 2 17 2 4
3' UTRs intron 2 12 4 2
5'UTRs intron 6 37 3 7
Downstream 6 36 4 4
Upstream 8 15 4 5
Intergenic 23 83 17 16

www.impactaging.com 514 AGING, June 2014, Vol. 6 No.6



Since regions with repetitive sequences exhibit a
higher-than-background frequency of indel variation
[21], we inspected repeat regions (microsatellites)
independently. Repeat containing loci are considered to
be highly vulnerable to genomic variation, and they
represent as much as 3% of the genome; twice the size
of the coding region [22, 23]. We identified 173
variable microsatellites within the 53,161 total
microsatellite loci called in both samples from
individual-1 (Table 2, S4). This translates to a variation
rate of 2.5x10™ locus™ year' for microsatellite loci,
significantly higher than what we measured for
nsSNVs. Four of the microsatellite variants were found
in exons of known genes (DIAPHI1: AGG, RPL14:
CTG, BCL6B: CAG and FLJ32682: CCTT), 5> UTR
(2) and 3’ UTR (27). Three of the four coding variable
repeats were nonframeshift.

Individual-3 has a comparable number of microsatellite
variations to individual-1. Both sets indicate 0.3% of the
callable microsatellites vary upon aging. Individual-3
with 9 years of aging shows one acquired variation in an
exon (BTN2A1: CCT). This mutation appears to have
been acquired between age 42 to 51 with age 57 having
the same genotype as age 51. Individual-3 acquired an
additional variation in an exon (MEF2A, CAQG). It is not
clear if this mutation is present at 9 years of aging in
this individual as we were not able to genotype this
microsatellite locus in the 51 year old sample. The
exonic variations found in both of these genes are in
frame (Table S4).

Individual-2 has 801 microsatellite  variations
representing 1.6% of the callable microsatellites upon
aging. This is a five times higher microsatellite
variation rate compared to the other two individuals
(0.3%) in this study, which cannot be attributed to
experimental variations for the total number of
microsatellite loci called were similar across all
samples. The samples for this individual do span the
largest amount of time, in total 16 years, though this is
not much more than samples from individual-3 that
span 15 years. In total there are 26 exonic microsatellite
loci found to vary in individual-2 upon 16 years of
aging. One of these microsatellites is the same as that
found to vary in the samples from individual-3
(MEF2A, CAG). Additionally, one of the exonic
microsatellites, which vary in the samples from
individual-1, is also indicated to vary in individual-2
(BCL6B, CAQG). All the 26 microsatellite loci found to
vary in this sample set are in frame. Together, in all
three individuals, we identified 33 exomic microsatellite
variations of which 32 were nonframeshift. This
supports the previous observation that tandem insertions
or deletions of repeated motifs is a conservative event

(minimizing the number of changed amino acids and the
introduction/ elimination of stop codons) [24].
Together, this is the first observation demonstrating
persistent effects of selection pressure on indels and
repeats among cells in the life span of an individual.

A Individual - 1 Individual - 2 Individual - 3

Gene

(13 years apart) (16 years apart) (9 years apart) (15 years apart)

AHNAK2 9 17
ANKRD20A4 5 5
ANKRD20ASP 10 13
DSPP 14 17
FAM1828 13 16
FcGBP 8 8 8
GGT8P 7 9 7
HLA-DRB1 16 21 14
IGFN1 10 16 15
KCNJ12 13 10 7
LCLATI 8
LOC388692 14
MUC12 6
Muca
MUCSB 7
MUC6 15
NBPF1 6
POM121L8P 10 2 13 13
TPSB2 7 29 6 6
INF717 26 B 1

Figure 3. Common genes that acquired genetic variation
upon aging and were among the top 100 most frequent
variants. (A) Table shows the number of mutations in each of
the genes most frequently impacted in three individuals. (B)
Protein-protein interaction analysis reveals that for the highly
related MUC genes are significant targets for genetic variation in
aged samples

Biological implications

Three unrelated and ‘healthy’, individuals demonstrate
acquired genetic variants as a consequence of aging and
the accumulation of variants occurs at different rates.
Mutations were observed in up to 13,000 genes in these
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individuals including some common genes with
consistently high numbers of mutations. To identify the
most frequently mutated genes upon aging, we
compared the lists of the mutated genes from each
individual. This resulted in the identification of 20
genes that are consistently and highly mutated upon
aging (Figure 3A). We identified MUC4 as the most
frequently mutated gene in all three individuals
acquiring >75 mutations. In-fact, four MUC genes
(MUC4, MUC5B, MUC6, and MUC12) were among
the top mutated genes in all three individuals (Figure
3A). These top 20 genes did not have known protein-
protein interactions except for the MUC family genes
(Figure 3B). This indicates a previously unknown
association among these genes and aging. Previous
studies have associated differential MUC4 expression
with a number of cancers, including pancreatic, lung,
breast, gall bladder, salivary gland, prostate and ovarian
cancer, indicating that MUC4 may be a good candidate
as a diagnostic and prognostic marker [25]. In one
breast cancer study, silencing MUC4 led to reduced
expression of HER2, although the molecular
mechanism of this interaction is unknown [26]. Over-
expression of HER2 occurs in 30% of breast cancers
and has been used effectively as an adjuvant therapy
drug target in these patients [27]. It is interesting to note
here that MUC genes were not previously reported as

the most frequently mutated genes in any disease or
condition. In addition, the functional significance of the
MUC, especially the MUC4 mutations upon aging is
unclear at this time and warrants further investigation.

To explore the biological significance of genomic
variants in these individuals, we performed pathway
enrichment analysis of the affected genes (all genes that
showed variations upon aging (Individual-1= 3,138,
Individual-2= 13,014, and Individual-3= 2,782 and
2,768 genes, at 9 and 15 years of aging respectively).
The PANTHER classification system identified Wnt
signaling (involving 5.5% of the total genes on average)
and  Gonadotropin-releasing ~ hormone  receptor
(GnRHR) (involving 5% of the total genes on average)
pathways with the highest gene associations.
Interestingly, it was recently reported that the Wnt
signaling pathway enhances the protection of telomeres,
and is downregulated in aged skin [28, 29]. The
GnRHR pathway is proposed to control central nervous
physiology and pathophysiology modulating cognitive
changes associated with aging and age-related
neurodegenerative disorders [30]. These changes, if
found within neurological cells, may indicate the
possibility of gradual loss of cognitive function with
aging may be due to age-associated genomic
modifications.

Table 3. Disease ontology analysis of genes with functionally damaging variants indicates increased risk of

developing age-related diseases.

Individual- 1
(13 years apart)

Individual- 2
(16 years apart)

Individual- 3

(9 years apart) (15 years apart)

Diabetes mellitus (11) Diabetes mellitus (31)

Leukemia (10) Breast cancer (32)
Kidney failure (5) Prostate cancer (28)
Colon cancer (8) Neoplasm metastasis (17)
Cancer (13) Cancer (40)
Alzheimer's disease (6) Rheumatoid arthritis (21)
Melanoma (14)
HIV infection (12)
Colon cancer (19)
Leukemia (20)

Chronic simple glaucoma (5)

Atherosclerosis (15)
Cirrhosis (6)

Long QT syndrome (2) Adenovirus infection (3)

Mental retardation (3)

A sub-set of genes, which contained predicted damaging variants (by Polyphen v2) were analyzed using Functional Disease
Ontology Annotations (FunDO). The significance of each disease association is evaluated by Fisher's exact test, and diseases
that showed Bonferroni corrected p-value <0.05 are considered as significant. Numbers in parenthesis indicates the number

of genes associated with disease.
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We subsequently investigated a sub-set of genes that
contained damaging (high impact) variants as predicted
by Polyphen, and performed disease ontology analysis
to find patterns of disease relationship enrichment
(Individual-1= 296, Individual-2= 1,267, and
Individual-3= 208 and 175 genes, at 9 and 15 years of
aging respectively). FunDO (Functional Disease
Ontology Annotations) identified genes with a
statistically significant (Bonferroni corrected p-value
<0.05) disease association for disease ontology terms in
these three individuals. Individual-2 showed the highest
number of genes enriched for disease associations
including genes for diabetes mellitus, cancer, HIV
infection, and Rheumatoid arthritis, Individual-1
showed enrichment for diabetes mellitus, leukemia, and
cancer (Table 3). Whereas, individual-3 showed the
least disease enrichment, except, notably gene variants
implicated in mental retardation (Table 3). This analysis
revealed the individual specific patterns of disease
susceptibility as a direct result of the age associated
variants. No metadata are available for these individuals
for any correlation with disease history, except that
Individual-2 has a history of bone fractures.
Osteoporosis is a feature of rheumatoid arthritis and can
cause bone loss early in disease [31]. Therefore,
because individual-2 is at risk for rheumatoid arthritis,
we would have predicted/ expected this individual to be
the susceptible to bone fracture. This is one example of
possible impactful clinical significance that can emerge
from this type of analysis.

There are additional examples of associations with
disease via genes in which there were frequent variants.
Recently, a melanoma sequencing study revealed
frequent mutations in PREX2 (phosphatidylinositol-
3,4,5-trisphosphate-dependent Rac exchange factor 2)
as a consequence of ultraviolet exposure [11]. We found
that, with age, individual-1 acquired a PREX2 mutation
(Chr8:69143713, delT) in the 3> UTR and Individual-2
acquired five mutations (four are synonymous and one
deletion). Individual-3 acquired a PREX2 mutation
identical to Individual-1 upon nine years of aging,
however that variation was not seen in the sample taken
at 15 years. This suggests the possibility that the
PREX2 mutation, while it may be acquired with
ultraviolet exposure, is negatively selected in this
individual probably to protect from the pathogenesis of
skin cancer. Environmental exposure selects for
genomic changes for better adaptation and to increase
fitness, a process that usually spans several generations
[32]. With the relatively longer and growing life spans
of humans and the spectrum of stressors to which
humans are exposed, it is very likely that individual
cells and tissues may exhibit genomic changes shaped

by local selective forces within the life span of an
individual. This finding further suggests the influence of
environmental exposures on the genome with aging and
importance of serial measurements to monitor genome
dynamics. Therefore, it will be of interest to establish
measures to quantify individual genome dynamics with
age and with tissue specificity, which may help detect
the rate of functional decline, the vulnerability of an
individual to age-related diseases, and potentially
predict longevity.

Previous hypotheses on molecular damage and aging
suggested that, 1) molecular damage limits life span not
because of cellular decline but because of decline in
cellular robustness, 2) although, the accumulation of
molecular damage is observed, it is not the driving force
for aging, and 3) mutations are not random, they are
selected to activate/ inactivate particular pathways [33].
In this study, we observed that the genome dynamic,
influenced by aging itself or environmental factors,
could influence pathogenesis, and might initiate organ
or system level damage that are frequently observed
upon aging and in age related diseases in humans.
Environmental exposures are known to influence the
genome in a way that may increase the fitness or induce
deleterious mutations [32, 34]. Therefore, age, genome
dynamic and environmental exposures are interlinked
and together could result in sustained selection and/or
accumulation of variations and/or non-mutational
hyper-activation of signaling pathways involved in
aging. This could reduce overall robustness at a cellular
level and cause degeneration of cells, tissues, and organ
systems. Although, it is arguable to define aging as a
consequence of molecular damage or vice versa at this
time, both are positively correlated.

Taken together, the exome sequencing of individual’s
genome upon aging indicates that implementation of
personalized genomics health strategies will require
more thorough and potentially continuous analysis of
individual’s genomes to optimize outcomes. These data
demonstrate that the exome of an individual is dynamic
and constantly experiences environmental and
evolutionary pressures and over time enriches for
deleterious variants. This finding indicates that the
accumulation of somatic variants and possibly the rate
of accumulation will contribute to how an individual
ages, and prompting age-related diseases. It challenges
our existing approach in population-scale sequencing
studies and establishes “age” as an important variable
that must be accounted for in the analysis and
interpretation of any given human genome. These
observations are supportive of new paradigm, “Multiple
genomes per individual”.
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METHODS

Sample details. DNA from primary skin fibroblasts was
obtained from the Aging Cell Repository, NIA at the
Coriell Institute (Camden, NJ). These samples were
serially collected from three Caucasian male individuals
at different time point in their life: Individual-1 (age 17-
AG06234 and age 30-AG13153), Individual-2 (age 29-
AGO05415 and age 45-AG13353) and Individual-3 (age
42-AG05416, age 51-AG11364 and age 57-AG13145)
(Total numbers of samples were seven).

Library construction and Exome enrichment. DNA-seq
libraries were constructed using Illumina’s TruSeq
DNA Sample Preparation Kit-Set A/B (P/N FC-121-
2001/2002). Briefly, 1.5 pg DNA was fragmented using
Covaris M220 to 400bp. A gel-free method
recommended in the protocol was used to prepare the
library. The ends were repaired and a ‘A’ base added to
the 3°, which prepares the DNA fragments for ligation
to the adapters that have a single ‘T’ base overhang at
their 3’ end. The adapters enable PCR amplification and
hybridization to the flow cell. The library generated was
validated wusing Agilent 2100 Bioanalyzer and
quantitated using Quant-iT dsDNA HS Kit (Invitrogen;
Carlsbad, CA). Exome enrichment was performed using
TruSeq Exome Enrichment Kit (FC-121-1024;
[llumina). Samples were pooled at concentrations of
500 ng each and enriched following the manufacturer’s
standard protocol. Enriched samples were quantitated
based on Quant-iT dsDNA HS Kit (Invitrogen) and
qPCR.

Cluster Generation and HiSeq Sequencing using
RapidRun Mode. Libraries were clustered onto a flow
cell using TruSeq” Rapid PE Cluster Kit — HS (PE-402-
4001), and sequenced 2X forl150 cycles using TruSe%®
Rapid SBS Kits — HS (FC-402-4001) on HiSeq 2500".
Reads that passed the Illumina chastity filter were kept.
Reads passed the chastity filter if they had, within the
first 25 cycles, no more than one cycle of a chastity
below 0.6 (Chastity = Highest intensity/(Highest
intensity + Next highest intensity)). An average of 112.2
million high quality 150bp reads (passed Chastity filter)
were generated from exome-enriched samples
equivalent to 16.8 billion DNA bases per exome. We
opted for longer (400bp) DNA fragments for library
preparation and longer read length (150bp) for
sequencing to enhance the quality and results, especially
within repeat regions.

Variant discovery and quality control. The exome
enrichment kit targeted 201,071 exons equivalent to
62.2 Mb target sequence in these epithelial samples
serially collected. The read sequences were aligned to

hg19 with BWA [35] resulting 110.6 million average
reads mapped to hgl9 per sample. Exome enrichment
efficiency was 99%, as measured by the number of
target exons sequenced (average 200,264) out of the
total target exons (201,071) per sample. 62.8 million
reads mapped on target providing 152x average depth
of coverage. Reads were locally realigned around
Indels, and raw variants (Single nucleotide variants
and Indels) were called using GATK Unified
Genotyper [36, 37].

We filtered variants with minimum read depth of >5x
and mapping quality >30 for high confidence true
positive variant calls. In addition, next-generation
sequencing has overall very high true positive rate for
identified SNVs [38]. In our test using Sanger
sequencing, we validated 5 out of 6 loci for true
positives. To minimize false negatives, we used a
custom Perl script. The script verified loci of age
specific variants for the presence of supporting
sequence reads (=5) in both comparison samples.
Further, this study complies with the proposed
standardization criteria for NGS studies as all samples
were uniformly sequenced with identical protocols,
sequencing instruments, and the data analysis criteria
[16]. Together, these criteria ensure that variant
identification is of very high confidence minimizing,
false positive and false negative variants as well other
technical variability.

Microsatellite variation and quality control. After
aligning the reads to hgl19 with BWA version 5.10, we
applied our microsatellite genotyping software,
requiring a minimum of 15 reads completely covering a
loci in order to call a genotype for each sample at these
challenging loci that require more stringency [39, 40].
This software was recently updated to accept hgl9
alignments by converting the prior microsatellite
coordinate using the UCSC Genome Lift-Over tool
[41]. The software was also updated to speed up the
sub-functions allowing us to run an exome-sequenced
sample in under 3 hours on a single core of an Intel
Xeon 5500/5600 processor. We performed tests
between our original hgl8 software and the new, faster
hgl9 wversion to determine if there are any
microsatellites calls that differed. We identified 530
microsatellites for which different genotypes were
obtained. These microsatellites were removed from our
analysis set leaving at most 856,104 callable
microsatellite loci per sample. We were able to call on
average 51,769 microsatellite loci from the exome-
enriched samples with annotations. We used the
locations of Refseq genes obtained from the UCSC
Table Browser to determine the relative position of the
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called microsatellites with respect to genes [42]. We
have previously validated that our microsatellite-based
genotyping method has 96.5% accuracy [40].

Gene annotation, disease enrichment, and functional
impact analysis. All identified variants (SNVs and
indels) were annotated using ANNOVAR package
using Reference Gene [43]. Splice site variants were
identified as occurring within two base pairs of any
intron/exon boundary. Variants that created a stop
codon at the variant site were considered as stop-gain
variants. Variants that eliminated stop codon at the
variant site were considered as stop-loss variants. All
identified variants were annotated for a variety of
characteristics and analyzed. Single Nucleotide
Polymorphism database (dbSNP 137) was used to check
novel variants. Polyphen 2.0 was used to predict the
functional impact of non-synonymous variants [44].
The Catalogue of Somatic Mutations in Cancer
(COSMIC) database v64 was used to identify somatic
cancer variants. Ingenuity Pathway Analysis (IPA) was
used for canonical pathway enrichment analysis. The
Functional Disease Ontology (FunDO) used for disease
enrichment analysis [45].
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SUPPORTING INFORMATION

Please browse the full text version of this manuscript to
see the Supporting Tables S2 and S4.

Table S1. Statistics on all genetic variants called with respect to the human genome reference (hg19) and their characteristics

and biological predictions.

Individual - 1 Individual - 2 Individual - 3
Age 17 Age 30 Age 29 Age 45 Aged42 | AgeSl Age 57
Read coverage on target 139x 168x 137x 143x 164x 159x 153x
Total SNV and indels vs hg19 61,892 62,617 61,411 61,567 61,892 61,591 61,637
Variable microsatellites vs hg18 1,425 1,612 1,300 1,282 1,374 1,351 1,335
Exonic function (Reference Gene)
nonsynonymous SNVs 11,353 11,498 11,100 11,331 11,427 11,383 11,382
synonymous SNVs 11,658 11,797 11,709 11,736 11,718 11,685 11,670
frameshift indels 139 139 121 154 116 120 116
nonframeshift indels 202 207 221 217 231 234 234
stopgain 100 110 93 86 80 73 78
stoploss 12 13 14 10 15 13 15
Reference Gene function
Upstream 29 28 36 34 27 30 31
Downstream 42 45 36 39 33 37 37
Exonic 24,001 24,287 23,779 24,055 24,096 24,022 23,997
Intergenic 250 251 263 269 296 300 294
Intronic 228 233 238 236 258 241 255
Splicing 40 43 49 49 47 50 47
3'UTRs 27,430 27,703 26,631 26,234 26,487 26,325 26,358
5'UTRs 3,722 3,828 4,415 4,417 4,502 4,506 4,499
Databases match
COSMIC somatic cancer mutation database 2,057 2,068 2,071 2,035 2,129 2,124 2,120
nsSNVs not reported in dbSNP137 934 1,053 690 671 820 750 740
Functional effects prediction
Polyphen: Probably damaging (D) 1,150 1,224 1,156 1,182 1,227 1,190 1,181
Mutation tester: Disease causing automatic (A) 29 35 25 23 30 23 27

Table S3. Disease ontology analysis of genes with functionally damaging variants indicates
increased risk of developing age-related diseases.

Individual - 1 Individual - 2 Individual - 3
(13 years apart) (16 years apart) (9 years apart) (15 years apart)

Nonframeshift indels 19 165 32 27
Frameshift indels 21 128 13 18
Ratio 1.11 0.78 0.41 0.67
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