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Abstract: The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT)
may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age.
Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT
dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence
lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and
accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid
redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at
20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell
accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and
WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular
senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth
factor-1, insulin or glucose levels are responsible.

INTRODUCTION humans with excessive GH production have increased

mortality rates compared to age-matched controls [1, 2],
Growth hormone (GH) plays a central role in regulating presumably due to higher incidence of metabolic
mammalian growth, metabolic homeostasis, and dysfunction and cancer. Conversely, decreased GH
adiposity. GH, either independently or through insulin- activity is associated with dramatic lifespan extension in
like growth factor-1 (IGF-1), has profound effects on mice and similar effects in rats [3-7]. The effect of
age-related disease onset and longevity. Both mice and diminished GH activity on human lifespan is yet to be
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definitively elucidated, although these populations do
appear to be protected from age-related metabolic
dysfunction and cancer [8]. Furthermore, low levels of
circulating IGF-1 predicts exceptional longevity in
humans [9]. Several different GH-related gene
mutations elicit lifespan extension in mice, regardless of
genetic background or diet administered [10].

Ames and Snell dwarf mice were the first GH-deficient
genetic mutants to display an extension of lifespan [5,
6]. Ames dwarf mice are homozygous for a recessive
mutation in the prophet of pituitary transcription factor-
1 (prop-1) gene [11]. Prop-1 induces the expression of
pituitary transcription factor-1 (Pit-1), which is needed
for pituitary cells to acquire capacity to produce GH,
prolactin (PRL), and thyroid-stimulating hormone
(TSH) [12]. Hence, Ames dwarf mice are deficient in
all three hormones. Ames dwarfs live approximately
50% longer than non-mutant siblings and are protected
from age-related metabolic perturbations and cancer
[10, 13]. Snell dwarf mice are homozygous for a
recessive mutation in the Pit-1 gene (poulf1) [12]. As
seen in Ames dwarfs, Snell dwarf mice are deficient in
GH, PRL, and TSH, have increased longevity, and
delayed onset of metabolic disorders and cancer as they
age. The Snell dwarfs live approximately 40% longer
than non-mutant littermates. [6, 10, 13]. Confirming
these findings in Ames and Snell dwarfs without
confounding deficiencies in PRL and TSH, GH-
resistant mutant mice display similar phenotypic
characteristics [7]. Mice with homozygous deletion of
the GH receptor (GHR-/-) are dwarfs and have elevated
levels of circulating GH, likely due to severely
decreased circulating IGF-1 and inhibition of the long
hypothalamic negative feedback loop. As in Ames and
Snell mutants, GHR-/- mice are long-lived and
protected from age-related metabolic dysfunction and
tumor burden [10, 13]. GHR-/- mice live approximately
30% longer than wild-type littermates independent of
genetic background [7, 14].

In contrast to the GH-deficient and -resistant mutants,
mice with increased GH activity display characteristics
resembling premature aging. Transgenic bovine GH-
overexpressing (bGH) mice are large, have high levels
of circulating IGF-1, develop metabolic abnormalities
early in life, have increased cancer incidence, and
lifespans that are approximately 30% shorter than wild-
type mice [1, 15]. Interestingly, the degree of GH
activity is inversely associated with age-related insulin
sensitivity and systemic inflammation in all the
aforementioned mutants [10, 13]. Collectively, these
findings suggest links between aging processes and
inflammatory and metabolic pathways in GH-
responsive organ systems.

Mammalian aging is associated with profound changes
in lipid deposition and low-grade tissue inflammation.
These phenotypes correspond to declines in
subcutaneous white adipose tissue (WAT) function and
increased ectopic lipid accumulation [16-18]. Among
the mechanisms that contribute to age-related decreases
in WAT lipid storage are decreased preadipocyte
replication [19-22] and adipogenic potential [21, 23,
24]. Inflammation is likely involved, with inflammatory
mediators contributing to inhibited preadipocyte
differentiation [23-25]. The source of inflammation is
still unclear, although preadipocytes have been shown
to increase pro-inflammatory cytokine, chemokine, and
extracellular matrix protease expression with aging [26,
27]. Additionally, the accumulation of senescent cells
has emerged as a feature of aging WAT [28]. Senescent
cells typically have a pro-inflammatory secretory
profile, termed the senescence-associated secretory
phenotype (SASP) [29-32], which can adversely affect
the local microenvironment through tissue remodeling
and apoptosis [32]. Removal of senescent cells partly
restores WAT mass and improves healthspan in mice
with progeroid syndrome [33]. Collectively, these
findings suggest senescent cells may play a role in
WAT dysfunction with chronological aging. Based on
the connections among GH activity, metabolic
homeostasis, systemic inflammation, and longevity, we
tested the hypothesis that GH action can predict age-
related WAT dysfunction and accumulation of
senescent cells.

RESULTS

Age-related lipid redistribution is blunted with
diminished GH activity

Lipid redistribution frequently occurs in aging
mammals [28], so delayed aging phenotypes could be
associated with reduced lipid redistribution. Indeed, we
found that GH-deficient and -resistant mutants have
preservation of extra-peritoneal WAT at 18 months of
age. Ames dwarf mice had more than 3-fold higher
extra-/intra-peritoneal WAT ratios compared to age-
matched non-mutant littermates (P=0.002; Figure 1A),
which supports a previous report in which Ames dwarfs
had  reduced epididymal WAT triglyceride
accumulation [34]. Snell dwarf mice were similar: they
had a nearly 2-fold higher extra-/intra-peritoneal WAT
ratio compared to age-matched non-mutant littermates
(P=0.019; Figure 1B). The GHR-/- mice also had
increased extra-/intra-peritoneal WAT ratios (2.3-fold,
P<0.001) vs. wild-type littermates, consistent with
reports by Berryman et al. in which GHR-/- mice had
more subcutaneous WAT than controls throughout the
life cycle [35, 36]. Additional evidence for reduced lipid
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redistribution is our finding that GHR-/- mice
accumulated 30% less hepatic triglycerides than wild-
type littermates (P=0.028), although a previous study
did not demonstrate statistically significant differences
in hepatic triglyceride content between GHR-/- and
wild-type littermates [36].

Age-related declines in preadipocyte differentiation
are blunted in GH-resistant mice

Preadipocyte differentiation capacity is reduced with
increasing age in rodents and humans [28]. We surmised
that preservation of extra-peritoneal WAT in mice with
blunted GH activity may be related to increased
differentiation. We found that primary preadipocytes
isolated from inguinal (ING) WAT in GHR-/- mice (20
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months old) accumulated more lipid than wild-type
siblings after exposure to differentiation media for 48
hours (Figure 2A-B). Expression of key adipogenic
transcriptional markers was higher in preadipocytes
cultured from GHR-/- than wild-type mice. Peroxisome
proliferator-activated  receptor =~ gamma  (PPARYy)
expression was nearly 2-fold higher in differentiating
preadipocytes isolated from GHR-/- mice than wild-type
littermates (P=0.044; Figure 2C). CCAAT/enhancer-
binding protein alpha (C/EBPa) expression was also 3-
fold higher in cells from GHR-/- mice than littermate
controls (P=0.036; Figure 2D). Adipocyte protein 2 (aP2,
or FABP4) expression, a differentiation-dependent gene
target of C/EBPa and PPARY, was increased over 2-fold
in differentiating preadipocytes from GHR-/- vs. wild-
type mice (P=0.038; Figure 2E).
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Figure 1. Age-related lipid redistribution is decreased in long-lived mice with diminished GH activity.
(A) Ratios of extra-/intra-peritoneal (visceral) WAT in 18-month old female Ames dwarf and age-
matched non-mutant (NM) littermates. (B) Ratios of extra-/intra-peritoneal WAT in 18-month old
female Snell dwarf and age-matched non-mutant (NM) littermates. (C) Ratios of extra-/intra-
peritoneal WAT in 18-month old female GHR-/- and age-matched wild-type (WT) littermates. (D)
Hepatic triglyceride content in 18-month old female GHR-/- and age-matched wild-type (WT)
littermates. Data were analyzed by Student’s t-test and are expressed as mean + SEM of 6 mice per
group for A-B, 5 mice per group for C, and 8 mice per group for D. "P<0.05; *p<0.005.
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Figure 2. Preadipocyte differentiation is preserved in long-lived GHR-/- mice. (A) Representative image of ING
preadipocyte differentiation from 20-month old female wild-type mice following exposure to differentiation media
for 48 hours. (B) Representative image of ING preadipocyte differentiation from 20-month old female GHR-/- mice
following exposure to differentiation media for 48 hours. (C) PPARy mRNA expression in differentiating ING
preadipocytes from female GHR-/- and age-matched wild-type (WT) littermates. (D) C/EBPa mRNA expression in
differentiating ING preadipocytes from female GHR-/- and age-matched wild-type (WT) littermates. E. aP2 mRNA
expression in differentiating ING preadipocytes from female GHR-/- and age-matched wild-type (WT) littermates.
Data were analyzed by Student’s t-test and are expressed as mean + SEM of 4 mice per group. Scale Bar: A-
B=100um; Arrows indicate differentiating cells, which contain doubly bi-refractile lipid droplets.*P<0.05.

Age-related senescent cell burden in WAT is

associated with GH activity

Senescent cells accumulate in rodent and human WAT
with advancing age [28]. Inflammatory mediators
produced by senescent cells may contribute to age-
related declines in WAT lipid storage. We tested if GH-
related alterations in WAT lipid storage and
differentiation capacity are associated with senescent
cell burden. Snell dwarfs demonstrated a downward
trend SP=0.088; Figure 3A) in ING WAT expression of
p16Ink * a regulator of cellular senescence onset and
maintenance [37, 38]. GHR-/- mice had significantly
reduced ING WAT p16™** expression (P=0.012; Figure
3B). Since senescence only occurs in a small subset of
normally replicating cells in any given tissue, changes
in senescence-associated mRNA levels may be difficult
to detect despite a substantial increase in senescent cell

burden. Therefore, we counted senescent cells by
assaying senescence-associated B-galactosidase
positivity (SA-Bgal’) as a function of total cell number.
Senescent cell burden by this measure was lower in 18
month old Snell dwarf and GHR-/- mice than age-
matched controls. Snell dwarf mice displayed a
moderate genotype effect (P=0.058; Figure 4A) with
significant reductions in ING, perirenal (PERI), and
mesenteric (MES) depots. GHR-/- mice demonstrated a
robust genotype difference in WAT senescent cell
burden vs. controls (P<0.001; Figure 4B), with
significant differences in all individual depots analyzed
except MES WAT.

Analyses of bGH and chronically GH-injected mice
support a link between cellular senescence and GH
activity. Mice with increased GH levels by either
method had significantly more senescent cell
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accumulation compared to their respective controls
(P=0.002 and P=0.021, respectively; Figure 4C-D).
bGH animals displayed significant differences in all
depots with the exception of periovarian (POV) WAT.
GH-injected animals had significant differences in
subscapular (SCAP) and MES WAT. Increased GH was
also associated with increased ING WAT p16™* and
interleukin-6 (IL6) expression in bGH mice (P=0.010
and P=0.017, respectively; Figure 3C). No differences

were found in these parameters in chronically GH-
injected animals in ING WAT (Figure 3D), perhaps due
to the low frequency of senescent cells as a function of
total cell number in adipose tissue. The magnitude of
transcriptional changes and senescent cell accumulation
observed in bGH and GH-injected mice were similar to
that of 24-month old mice (Figures 3E & 4E), despite
the animals being much younger (14- and 5-months,
respectively).
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Figure 3. Lifelong GH activity predicts senescence-associated gene expression in WAT. (A) Expression of
p16, p21, and IL6 in WAT from 18-month old female Snell dwarf and age-matched non-mutant (NM)
littermates. (B) Expression of p16, p21, and IL6 in WAT from 18-month old female GHR-/- and age-matched
wild-type (WT) littermates. C. Expression of p16, p21, and IL6 in WAT from 10-month old female bGH and
age-matched wild-type (WT) controls. D. Expression of p16, p21, and IL6 in WAT from 19-month old female
GH-injected (GH-inj.) and age-matched saline-injected (Saline-inj.) controls. E. Expression of p16, p21, and
IL6 in WAT from female 24 month and 3 month old mice. Data were analyzed by Student’s t-test and are
expressed as mean + SEM of 4 mice per group for A & E and 6 mice per group for B-D. *P<0.05; *P<0.005.
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Figure 4. Lifelong GH activity predicts senescent cell accumulation in WAT. (A) SA-Bgal’ cells in 18-month
old female Snell dwarf and age-matched non-mutant (NM) littermates. (B) SA-Bgal” cells in 18-month old
female GHR-/- and age-matched wild-type (WT) littermates. (C) SA-Bgal” cells in 10-month old female bGH
and age-matched wild-type (WT) controls. (D) SA-Bgal” cells in 19-month old female GH-injected (GH-inj.)
and age-matched saline-injected (Saline-inj.) controls. E. SA-Bgal” cells in female 24 month and 3 month
old mice. SA-Bgal” data were analyzed by a mixed effects model. All data are expressed as mean + SEM of

6 mice per group for A-C and 8 mice per group for D-E. *P<0.05; #p<0.01; *P<0.005.
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Figure 5. Speculative model of mechanisms contributing to GH-
related WAT dysfunction with aging. Potential links between GH,
IGF1, glucose, insulin and cellular senescence are indicated.
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DISCUSSION

Aging is a leading risk for the development of chronic
diseases [39]. Redistribution of lipid from extra- to intra-
peritoneal WAT depots occurs during aging with ectopic
lipid accumulation [40]. These phenomena are associated
with numerous age-related metabolic disorders, including
low-grade inflammation, insulin resistance, nonalcoholic
fatty liver disease, and type 2 diabetes mellitus [41]. Age-
related metabolic dysfunction may be a consequence of
declines in subcutaneous preadipocyte functional
capacity, potentially due to increased inflammation and
senescent cell accumulation [28, 42]. We previously
found that eliminating senescent cells from progeroid
mice extends healthspan, partially reverses age-related
lipodystrophy, and delays aging-associated disorders
[33]. Our current work suggests that GH activity could
have a role in mediating the complicated interplay
between the aforementioned age-related processes.
Furthermore, mice with tempered GH action have
enhanced health and lifespan as well as decreased age-
related lipodystrophy. Thus, GH action, age-related WAT
dysfunction, and senescent cell accumulation appear to
be connected.

Subcutaneous WAT 1is specialized to store lipid as a
long-term energy reserve. Sequestration of lipid in
extra-peritoneal WAT depots may confer metabolic
protection by preventing lipotoxicity and associated
metabolic complications [42]. To investigate the
connection between lipid deposition and aging, we
analyzed WAT distribution in long-lived mice with
diminished GH activity. We found that Ames dwarf,
Snell dwarf, and GHR-/- mice all had higher extra-
/intra-peritoneal WAT ratios than age-matched controls
at 18 months of age. Consistent with this, others have
shown a preferential expansion of subcutaneous WAT
in GHR-/- mice [35, 36] and reduced epididymal WAT
triglyceride accumulation in Ames dwarfs [34]. We also
found that GHR-/- mice are protected from age-related
accumulation of hepatic triglycerides. Others were not
able to detect statistically significant increases in
hepatic triglycerides in these mice [36], perhaps because
of sample size, animal ages, or assay methods.
Nevertheless, decreased age-related redistribution of
lipid in mice with diminished GH activity supports the
assertion that site-specific lipid deposition is linked with
healthspan and longevity. It also suggests that endocrine
actions of GH, and potentially IGF-1, may adversely
affect preadipocyte function in mid- to late-life. Direct
action of GH on primary rat preadipocytes is known to
promote proliferation and inhibit differentiation in
culture [43-45], whereas IGF-1 stimulates the inverse
effects [46, 47]. We hypothesized that chronic exposure
to GH and/or IGF-1 in vivo could blunt adipogenesis

with advancing age. If true, ablation of GH-activity
should curtail age-related declines in preadipocyte
differentiation and provide a potential explanation for
the preservation of extra-peritoneal WAT in the
aforementioned models.

Preadipocyte differentiation is partially regulated
through the adipogenic transcription factors, PPARy
and C/EBPo [48]. Both expression and activity of
PPARy and C/EBPa. are reduced in an age-dependent
manner [22, 23, 49]. To test the hypothesis that GH
exposure inhibits preadipocyte differentiation in mid- to
late-life, we assessed differentiation capacity of primary
subcutaneous preadipocytes from GHR-/- and control
mice at 20 months of age. We discovered that cells from
GHR-/- mice had protection from age-related declines
in adipogenesis. Moreover, PPARy and C/EBPa
expression was higher in cells from GHR-/- mice than
age-matched controls. Differentiation capacity of
primary subcutaneous preadipocytes is similar in 4
month old GHR-/- and wild-type controls [50]. This
suggests that long-term reductions in GH action prevent
age-related declines in adipogenesis, as opposed to
continuously enhancing adipogenesis throughout the
lifespan independently of aging.

We speculate that reduced inflammation that is
consistently observed in mice with decreased GH
activity contributes to preserved adipogenesis [51].
Senescent cell accumulation may play a role due to the
pro-inflammatory secretory profile of these cells.
Senescent cells accumulate in WAT with advancing age
[28]. Therefore, we hypothesized that preservation of
adipogenesis in mice with reduced GH signaling may be
associated with a reduction in senescent cell burden.
Our suspicion was confirmed when Snell dwarf and
GHR-/- mice were found to have fewer senescent cells
in WAT than age-matched controls. We also found that
Ames dwarf mice had reduced SA-Bgal” in ING WAT
when compared to age-matched non-mutant littermates
(data not shown). Conversely, bGH and chronically
GH-injected animals were found to have more WAT
senescent cell accumulation than their respective
controls. Accumulation of SA-Bgal” cells was roughly
mirrored by changes in p161“k4a transcription, which is
usually increased in senescent cells [38]. Interestingly,
the magnitude of senescent cell accumulation in
younger bGH and chronically GH-injected mice was
similar to that of 24 month old wild-type mice,
reinforcing the contention that the premature aging
phenotype observed in these models of GH excess could
be related to senescent cell accumulation. This
contention is supported by our previous work, in which
the removal of senescent cells delays age-related
lipoatrophy and enhances healthspan [33].

www.impactaging.com

581

AGING, July 2014, Vol. 6 No.7



Our results demonstrate an association between GH
activity, age-related WAT dysfunction, and WAT
senescent cell accumulation in mice. However, it is
currently unclear whether our findings are directly
attributable to GH action in WAT. It is plausible that
GH induces WAT cellular senescence through
accelerating quiescent preadipocytes into a state of
senescence (Figure 5); a process known as
geroconversion [52, 53]. However, alterations in GH
action also have profound effects on circulating levels
of IGF-1, insulin, and glucose in every model we
examined [10, 13]. Each of these variables is known to
modulate mammalian target of rapamycin (mTOR)
activity, which is essential for geroconversion and
cellular senescence onset [54-60]. Indeed, previous
work in culture has revealed that hyperglycemia and
IGF-1 can induce cellular senescence in fibroblasts [61-
63]. Hyperinsulinemia has also been reported to
increase cellular senescence in cultured endothelial cells
[64]. The role of IGF-1, insulin, and glucose in
preadipocyte geroconversion remains to be investigated,
although they all may contribute (Figure 5). Another
unresolved possibility is that GH action in early-life
may predispose various organ systems to dysfunction in
mid- to late-life, thereby contributing to WAT
dysfunction and senescent cell accumulation with aging.
Interestingly, recent reports indicate that early-life GH
replacement partially abrogates longevity in Ames
dwarf mice [65, 66]. It is currently unknown if a critical
window of GH action is responsible for effects on
longevity.

In summary, long-lived GH-deficient and -resistant
mice have reduced age-related lipid redistribution
associated  with  reduced hepatic triglyceride
accumulation, at least in GHR-/- mice. One mechanism
potentially  contributing to delayed age-related
lipoatrophy, lipotoxicity, and dysfunction in GH-related
mutants could be preservation of preadipocyte
differentiation with advancing age. GH activity predicts
senescent cell accumulation in WAT. Targeting links
between GH action on the one hand and impaired
adipogenesis, adipose tissue cellular senescence, and
inflammation on the other may prove to be a path
towards delaying age-related adipose and metabolic
dysfunction and potentially enhancing healthspan.

MATERIALS AND METHODS

Animals and tissue collection. Eighteen-month old
female Ames dwarf and non-mutant littermates were
obtained from a breeding colony maintained by the
Bartke laboratory at Southern Illinois University (SIU).
Ames mice are on a heterogeneous genetic background.
Eighteen-month old female Snell dwarf and non-mutant

littermates were obtained from a breeding colony
maintained by the Miller laboratory at University of
Michigan. Snell mice are on a heterogeneous genetic
background. Eighteen-month old female GHR-/- and
wild-type littermates were obtained from a breeding
colony maintained by the Kopchick laboratory at Ohio
University (OU). An additional group of 20-month old
GHR-/- and wild-type littermates were later obtained
from the Kopchick laboratory for primary culture
studies. Ten-month old female bGH [35] and wild-type
controls were obtained from a breeding colony
maintained by the Kopchick laboratory at OU. Both
GHR-/- and bGH mice and their controls are on a
C57BL/6 genetic background. Mice for porcine GH and
saline treatment were obtained from the NIA colony
(C57BL/6; Charles River Laboratories, Wilmington,
MA) at approximately 14-months of age. Subcutaneous
injections began at 15-months of age and were
performed twice daily at a dose of 3 ug/g of bodyweight
for four months. All injections were performed by
members of the Bartke laboratory at SIU. Three-month
and 24-month old female mice (C57BL/6) were
purchased from the NIA colony and were analyzed at
Mayo Clinic. All mice were housed 4-5 animals/cage at
22 + 0.5°C on a 12:12-hour light-dark cycle at their
respective institutions. Throughout the studies, mice were
provided with ad [libitum access to standard laboratory
chow and water. All mice were euthanized by CO, and
tissues were immediately excised. WAT depots including
ING, SCAP, POV, PERI, and MES were immediately
excised and weighed prior to being prepared for SA-
Bgal” cell counting and transcriptional analyses. Liver
and other remaining tissues were flash-frozen in liquid
nitrogen and stored at -80°C for future analyses. Extra-
/intra-peritoneal WAT ratios were calculated by dividing
the sum of the weights of ING, SCAP, and PERI by the
sum of the weights of POV and MES. All procedures
were approved by the Institutional Animal Care and Use
Committees of each respective institution.

Hepatic triglycerides. Triglyceride content within
mouse liver was analyzed as previously described [67].
In brief, liver was homogenized in NETN lysis buffer
supplemented with 5 mM NaF (Sigma-Aldrich, St.
Louis, MO), 50 mM 2-glycerophosphate (Sigma-
Aldrich), and protease inhibitor cocktail (Roche,
Nutley, NJ). Lipid content was determined using
Infinity  Triglycerides Reagent (Thermo Fisher
Scientific, Waltham, MA) according to the
manufacturer’s protocol.

Cell culture. Primary ING preadipocytes were isolated
from 20-month old female GHR-/- and wild-type
littermates as previously described [68]. In brief, ING
WAT was minced, digested with collagenase type-2
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(Worthington Biochemical Corp., Lakewood, NJ, 1
mg/ml HBBS, Gibco, Grand Island, NY), filtered
through a 100 pm nylon mesh, and centrifuged at 1000
x g for 10 minutes. The pellets were resuspended in
oMEM containing 10% NBCS (Gibco) and 1%
penicillin-streptomycin (Gibco). Cells were then plated
and maintained in a humidified incubator for 16 hours
with 3% O, and 5% CO, before being washed,
trypsinized, and replated at a density of 5x10" cells/cm’.
This procedure results in over 90% pure preadipocyte
populations as determined by morphology and assay of
markers by RT-PCR [21, 69]. Differentiation of
preadipocyte cultures was induced by exposure to
differentiation medium containing DMEM/F-12 (Gibco),
10% FBS (Gibco), 1 pg/ml bovine insulin (Sigma-
Aldrich), 250 nM dexamethasone (Sigma-Aldrich), 0.5
mM IBMX (Sigma-Aldrich), and 2.5 uM rosiglitazone
(GlaxoSmithKline, Philadelphia, PA). Cells were
differentiated for 48 hours in a humidified incubator with
20% O, and 5% CO,. Cultures were then visually
analyzed for lipid droplet formation prior to being lysed
for transcriptional analysis of adipogenesis markers.

Senescence-associated [-galactosidase. Cellular SA-
Bgal” was assessed as previously described [33]. In
brief, immediately following excision approximately 75
mg of each WAT depot were rinsed in PBS and
subsequently fixed for 10 minutes in PBS containing
2%  formaldehyde (Sigma-Aldrich) and 0.25%
glutaraldehyde (Sigma-Aldrich). Following fixation,
tissues were washed three times for 5 minutes in PBS
prior to being incubated for 18 hours at 37°C in SA-
Bgal activity solution (pH 6.0). The enzymatic reaction
was then stopped with ice-cold PBS and tissues were
again washed three times for 5 minutes in PBS. Tissues
were then incubated for 10 minutes in Hoescht 33342
solution (2.5 pg/ml, Life Technologies, Grand Island,
NY) to stain nuclei. Tissues were then placed between
two mounting slides and 8-10 images were taken from
random fields using phase contrast and fluorescence
settings (Nikon Eclipse Ti, Melville, NY). SA-Bgal”
cells in each field were then counted and normalized to
the total number of nuclei in the same field by blinded
reviewers. As a means to standardize across several
experiments, SA-Bgal” cells within each mouse and
depot were normalized as a percentage of the total
number of senescent cells observed in their respective
SA-Bgal experiment.

Real-time PCR. Total RNA was extracted from
preadipocyte cultures and WAT using TRIzol (Life
Technologies) according to the manufacturer’s protocol.
cDNA was generated using the SuperScript III First-
Strand Synthesis System (Life Technologies). Real-time
PCR was performed in a 7500 Fast Real Time PCR

System using TagMan Fast Universal PCR Master Mix
and predesigned primers and probes from Applied
Biosystems (Foster City, CA). Target gene expression
was expressed as 2“T by the comparative CT method
[70] and normalized to the expression of TATA-binding
protein (TBP).

Statistical analyses. Unless otherwise noted, differences
were analyzed by Student’s t-tests. For SA-Pgal” data,
mixed effects models were used to perform two-way
ANOVA with interaction while accounting for the
correlation between multiple observations per mouse.
Akaike information criterion (AIC) was used to choose
between two covariance structures: i) compound
symmetry which assumes equal correlation between all
depots and therefore minimizes the number of
parameters to estimate, and ii) unstructured which
allows for a different correlation between each pair of
depots, resulting in a larger number of parameters to
estimate. Compound symmetry was chosen for all
experiments. For the Snell dwarf, GHR-/- and bGH
experiments, a common covariance structure was
assumed. For the Injected and Young vs. Old
experiments, covariance matrices were estimated within
genotype to allow for different variances. All data are
presented as mean = SEM with P<0.05 considered
significantly different. GraphPad Prism 5 (La Jolla, CA)
or SAS v9.0 (Cary, NC) were used for all statistical
analyses.
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