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Abstract: TAp73, a member of the p53 family, has been traditionally considered a tumor suppressor gene, but a recent
report has claimed that it can promote cellular proliferation. This assumption is based on biochemical evidence of activation
of anabolic metabolism, with enhanced pentose phosphate shunt (PPP) and nucleotide biosynthesis. Here, while we confirm
that TAp73 expression enhances anabolism, we also substantiate its role in inhibiting proliferation and promoting cell death.
Hence, we would like to propose an alternative interpretation of the accumulating data linking p73 to cellular metabolism:
we suggest that TAp73 promotes anabolism to counteract cellular senescence rather than to support proliferation.

INTRODUCTION cence [31]. At least in part, this anti-senescence effect is

mediated by a direct transcriptional effect of TAp73 on
Metabolic adaptation has emerged as a hallmark of mitochondrial ~gene Cox4il, hence regulating
cancer and a promising therapeutic target [1-9]. Rapidly mitochondrial metabolism [31]. We also reported that
proliferating cancer cells adapt their metabolism by TAp73 induces serine biosynthesis and glutaminolysis
increasing nutrient uptake and reorganizing metabolic in lung cancer cells, via a direct transactivation of
fluxes to sustain biosynthesis of macromolecules GLS2[32]. Interestingly, increased serine biosynthesis
necessary to achieve cell division and maintained redox sustains cancer growth and has been recently reported to
and energy equilibrium [10-18]. It is increasingly be nourished in breast cancer and melanoma by
evident that oncogenes and tumor suppressor genes amplification of phosphoglycerate dehydrogenase gene
regulate the metabolic rearrangement in cancer cells [33, 34]. Recently, Du and colleagues [35, 36] reported
[19-23]. that TAp73 triggers the expression of glucose-6-

phosphate dehydrogenase (G6PD), the rate-limiting
TAp73 acts as a tumor suppressor [24-27], at least enzyme of the pentose phosphate pathway (PPP), thus
partially through induction of cell cycle arrest and increasing flux through the PPP. By doing so, TAp73
apoptosis [28] and through regulation of genomic diverts glucose to the production of NADPH and ribose,
stability [29, 30]. In addition, premature senescence is promoting synthesis of nucleotides and contributing to
observed in TAp73 null mice suggesting that the scavenging of reactive oxygen species [37]. The authors
presence of TAp73 is necessary to counteract senes- also describes that depletion of TAp73 leads to defective
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cellular proliferation, promptly rescued by G6PD
expression or, alternatively, by addiction of nucleosides
and ROS scavengers. Therefore, the authors conclude
that TAp73 regulate metabolism with the ultimate result
of promoting cell growth and proliferation, in striking
contrast to its established role as tumor suppressor.

Prompted by these findings, we attempted to elucidate
the regulation of cellular metabolism and proliferation
by TAp73 using high throughput metabolomics study
upon ectopic expression of TAp73f isoform in human
p53-null osteosarcoma cell lines (SaOs-2). Moreover,
we validated in-vitro findings, in brain tissue from
TAp73 null mice. Here, we report that TAp73 promotes
anabolic metabolism and nucleotide biosynthesis.
Moreover, our data suggest that TAp73 promotes
glycolysis and enhances the Warburg effect.
Nonetheless, these changes are unlikely to lead to cell
proliferation, as accompanied by robust upregulation of
the cell cycle inhibitor p21 and marked apoptosis.
Therefore, based on these and other findings we
propose that TAp73-mediated control of cellular
metabolism should be interpreted on the light of its
multifaceted physiological activities, especially in the
context of regulation of animal aging, fertility and
neurodegerative diseases[31, 38-41]. We suggest that
TAp73 promotes a metabolic reprogramming that act to
protect from accelerated senescence and aging, as
previously demonstrated[31, 42]. This interpretation
will reconcile the findings of Du and colleagues with
the abundant literature attributing a tumour suppressive
function to TAp73.

RESULTS
TAp73 activates anabolic pathways

To investigate the effects of TAp73 expression on
cellular metabolism, we used human p53/p73 null
SaOs-2  osteosarcoma cell line, engineered to
overexpress HA-tagged TAp73p isoform when cultured
in the presence of the tetracycline analog doxycycline
(Dox)[43] and used GC-MS and LC-MS-MS platforms
to perform high throughput metabolomics [44]. With
this approach, we unveiled an unexpected role for
TAp73 in promoting the Warburg effect (manuscript in
preparation). TAp73-expressing cells show an increased
rate of glycolysis, higher amino acid uptake and
increased levels and biosynthesis of acetyl-CoA
(manuscript in preparation). Moreover, TAp73
expression increases the activity of several anabolic
pathways including polyamine and membrane
phospholipid synthesis (manuscript in preparation). In
addition, nucleotide biosynthesis was significantly
upregulated by TAp73. The biochemical analysis of

intracellular nucleotides content is shown in Figures 1
and illustrates a sustained and significant upregulation
of both purines and pyrimidines. Thus, our data indicate
that TAp73 regulates multiple metabolic pathways that
impinge on numerous cellular functions, but which,
overall, converge to sustain “biochemical” cell growth
and proliferation, in full agreement with the indicated
report [35, 45].

p73 induces cell cycle arrest and cell death

Although the described findings might be interpreted as
suggestive of pro-proliferative function for TAp73, a
careful analysis of the cell cycle profile indicates the
complete absence of TAp73-induced proliferation.
Indeed, Figure 2 shows the cell cycle and the cell death
analysis at different time points. Expression of TAp73 3
C-terminal isoforms reached plateau after 16h of Dox
treatment, without any discernible effect on cell cycle
distribution (Figure 2C), except for a mild increased in
the G1 phase at 72h post-induction. Notwithstanding,
expression of TAp73p was accompanied by a robust
upregulation of the cell cycle inhibitor p21, evident
already 8h after Dox administration (Figure 2D),
strongly arguing against a proliferative role for TAp73.
As expected, at later time points, the cells underwent
programmed cell death, as previously described for
TAp73 [43, 46]. Of note, the timing of the
metabolomic analysis (blue arrows) was deliberately
chosen before the onset of cell death, to avoid any
confusion arising from metabolic changes associated
with apoptosis. Overall, these data suggest that,
although TAp73 expression stimulates anabolic
pathways, it is unlikely to promote cellular
proliferation, due to upregulation of the cell cycle
inhibitor p21 and induction of apoptosis.

TAp73 depletion affects nucleotide metabolism in
vivo

Since TAp73 exerts a relevant role in the physiology of
the nervous system [38, 47-49], we analyzed cerebral
cortex and hippocampus isolated from TAp73 wild-type
(WT) and knockout (KO) animals [50] to question
whether TAp73 regulates nucleotides metabolism in-
vivo. Notably, in agreement with the in-vitro
experiment, we found that purine metabolism was
altered in TAp73KO brains. In particular, inosine and
adenosine were significantly higher in the cortex of
TAp73KO compared to WT controls. Moreover,
allantoin, the final product in purine catabolism, was
higher in both TAp73KO cortex and hippocampus,
reaching statistical significance in the latter. On the
other hand, inosine 5’- monophosphate and adenosine
5’- monophosphate were significantly reduced in the
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cortex and hippocampus

of TAp73 KO mice,

respectively. Hence, these data suggest that TAp73

Figure 1. TAp73 overexpression
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overxpression in Sa0s-2 Tet-On cell lines results in a highly significant enrichment in all nucleotide
monophosphates, consistent with an increased metabolic demand to sustain cell growth. (a)
adenosine 5’-monophosphate (AMP), (b) guanosine 5’-monophosphate (5’-GMP), (c) cytidine 5’-
monophosphate (5’-CMP), (d) thymidine 5’-monophosphate, (e) uridine monophosphate (5’ or 3’-
UMP). Analysis was performed on thirty million cells per samples, 10 samples were analyzed for
each time point (n=10). All the samples were extracted using standard metabolic solvent
extraction methods and analyzed through GC/MS and LS/MS as previously described [44]. Box
indicates upper/lower quartile, bars max/min of distribution. ** p<0.05; * 0.05<p<0.10.
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Figure 2. Cell cycle progression and cell death by TAp73f expression. TAp73
overexpression in Sa0s-2 Tet-On cell lines does not induce proliferation. (a) PARP1-cleavage (arrow)
induced by TAp73[-expression confirms induction of cell death at 24h after doxycycline (2 ug/ml)
addiction. (b) Cell death assessed by sub-G1 population after Pl staining. Induction of cell death is
evident only after 24h of TAp73 induction. Data indicate average of triplicates and standard
deviation. Blue arrows indicate the time points used for metabolomics analysis (same cultures as
shown here). (c) Cell cycle profile after induction of TAp73f determined by PI staining and
cytofluorimetric analysis. Controls were left untreated (Oh) or treated with vehicle for 72h to
account for changes induced by confluence. Data indicate average of triplicates and standard
deviation. Blue arrows indicate the time points used for metabolomics analysis (same cultures as
shown here). (d) TAp73P and p21 expression were assessed by western blotting after treatment
with doxycycline (2pg/ml) for the indicated times. TAp73 expression was detected using HA
antibody to the N-terminal HA tag. Tubulin was used as loading control. Controls are as in Figure 1.

DISCUSSION regulation [19, 55, 56]. This network assumes a striking
relevance in the case of p53, as impairing p53 family
The identification of extensive metabolic re- ability to trigger apoptosis [57-64], senescence [65-73]

arrangements that sustain cancer growth has spurred
interest towards a deeper understanding of the
underpinning regulatory mechanisms [10, 19, 37, 51-
54]. It is widely implied that oncogenes reprogram
metabolism to sustain cell growth, whereas tumor
suppressors halt malignancy also by mean of metabolic

and cell-cycle arrest does not abolish its tumor
suppressor efficacy [74-78], which apparently is
maintained through regulation of metabolic genes[50,
79-83]. This suggests that metabolism might have
greater relevance than previously thought in repressing
cellular transformation.
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Figure 3. Metabolic Analysis of TAp73 KO mouse Cortex and Hippocampus. Nucleotide metabolism
in TAp73 knockout (TA73KO) versus wild-type (WT) mouse cerebral cortex (C) and hippocampus (H) (n=8
biological littermate replicates; age 1 day). These are the two areas of the central nervous system that show
developmental defects in the knockout mice. (a) adenosine 5-monophosphate (AMP), (b) guanosine 5’-
monophosphate (5’-GMP). Box indicates upper/lower quartile, bars max/min of distribution. * p<0.05.
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TAp73 has been known as a tumor suppressor gene able
to induce cell cycle arrest and apoptosis [30, 84]
similarly to its sibling p53 [40, 85-91]. This view has
been recently challenged by the finding that TAp73
promotes cellular proliferation through the expression
of the PPP enzyme GO6PD and, therefore, diverts
glucose metabolism towards PPP and production of
NADPH for ROS detoxification and ribose for
nucleotide biosynthesis and proliferation [35]. In the
attempt to unravel the link between TAp73 and
regulation of cellular metabolism, and to understand its
association with the established tumor suppressor role
of TAp73, we have performed metabolic analysis in-
vitro, in cells overexpressing TAp73p and in-vivo in
mice depleted of TAp73. We did not observe evident
differences in PPP, but we did record increase
glycolytic rate in TAp73 expressing Saos-2 cells,
together with augmented uptake of amino acids and
increased biosynthesis of acetyl-CoA (manuscript in
preparation). Moreover we observed a robust increased
in intracellular content of nucleotides. Altered
metabolism of nucleotides was also identified in in the
cortex and hippocampus of TAp73 depleted mice,
underlining the physiological relevance of TAp73-
mediated control of metabolism. These data are partially
in agreement with the findings of Du and colleagues
[35]. But the interpretation that TAp73 promotes
proliferation [35] would represent a paradigm shift for
the p53 family [40, 85, 92] and would hardly reconcile
with the ability of TAp73 to regulate expression of the
cell cycle inhibitor p21 and to induce apoptosis. Indeed,
our data and work from other groups have consistently
demonstrated that TAp73 does halt cell cycle and
induce cell death in a variety of cells and in response to
diverse stimuli, acting as a proper tumor suppressor [24,
29, 43, 85, 92]. Therefore, we question whether the
experimental data are sufficiently robust to support this
change of dogma.

On the other hand, we have recently demonstrated that
TAp73 knockout mice are affected by an aging
phenotype accompanied by decreased mitochondrial
function, augmented intracellular ROS levels and
sensitivity to oxidative stress [31]. These metabolic
alterations ultimately converge in promoting accelerated
senescence in vitro and aging in-vivo. Therefore, the
regulation of cellular metabolism by TAp73 could be
interpreted on the light of its anti-senescence and anti-
ageing function. This interpretation is reinforced by the
finding that cellular senescence suppresses nucleotide
metabolism [93, 94]. We could therefore envisage a
scenario where TAp73 expression leads to cell cycle
arrest or cell death, but promotes a metabolic rewiring
that prevents normal cell from undergoing senescence,
with possible important implication for neuronal

development and neurodegenerative disease, on the light
of TAp73 involvement in brain physiology [38, 95].

In summary, our interpretation of the apparent
inconsistency, whereby TAp73 promotes “biochemical
proliferation” and “cellular cell death”, inhibiting tumor
progression, is that TAp73 counteracts cellular
senescence by activating an anti-senescence metabolic
response.

MATERIALS AND METHODS

Cells culture. SaOs-2 Tet-On inducible for TAp73 were
cultured at 37 °C in 5% CO; in RPMI 1640 medium
(Gibco), supplemented with 10% FCS, 250 mM L-
glutamine, penicillin/streptomycin (1 U/ml), and 1 mM
pyruvate (all from Life Technologies). TAp73
expression was induced by addition of doxycycline
(Sigma) 2pg/ml (stock 2mg/ml in PBS) for the
indicated time.

Western Blots. Proteins were extracted from cell pellets
using RIPA buffer (25mM Tris/HCI pH 7.6, 150mM
NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS)
supplemented with phosphatase and protease inhibitor
cocktails (ROCHE). Quantification of protein extracts
was performed using BCA protein assay from PIERCE.
40ug of protein were boiled for 6 minutes at 90°C and
then separated using SDS-PAGE, transferred to
nitrocellulose membranes using standard transfer
techniques and blocked with 5% milk for 2h at room
temperature. Primary antibodies were incubated O/N at
4°C in blocking with gentle agitation. We used rabbit
HA (Santa Cruz, Y11), rabbit -tubulin (Santa Cruz, H-
135), rabbit p21 (H-164) and Alexis anti-PARP.
Horseradish peroxidase (HRP)-conjugated secondary
antibodies (BioRad) and ECL chemoluminescence
substrate (PIERCE) were used for final detection.

Metabolic analysis. TAp73 SaOs-2 Tet-On cell lines
were cultured in growing medium and treated for 8h
and 16h with doxycycline 2 pg/ml to induce TAp73p
expression. Control cells were treated with vehicle
(PBS) for 16h. Thirty million cells were spun down and
pellets were washed once with cold PBS before being
frozen in dry ice. All the samples were extracted using
standard metabolic solvent extraction methods and
analyzed through GC/MS and LS/MS as previously
described [44]. After log transformation and imputation
with minimum observed values for each group, the
comparison of the metabolic compounds of the
indicated samples was visualized.

Cell cycle and survival. For cell cycle analysis 500,000
cells were treated for the indicated time with
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doxycycline 2ug/ml, collected and fixed with ice cold
70% ethanol. After O/N fixing at -20°C, cells were
washed in PBS, resuspended in 50ul of 10pug/ml RNase
solution (SIGMA) and incubated for 10 minutes at
37°C. 500ul of staining solution (50pg/ml propidium
iodide in PBS) was added to the cells, followed by
additional incubation 30 minutes at 37°C. Stained cells
were analyzed by flow cytometry and at least 10,000
cells per sample were collected. Data were analyzed
using CELLQuest acquisition/analysis software.

Mice. TAp73 null mice in C57BL6 background were
genotyped as previously described [24]. For metabolic
analysis cortex and hippocampus were removed from 1

day old mice of both genotype and immediately frozen
and stored at -80° C.

The animal experiments were performed under project
licenses PPL 40/3442, granted to MA by the UK
Home Office. Animal husbandry and experimental
design met the standards required by the UKCCCR
guidelines.
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