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Abstract: Aging is associated with severe thermogenic impairment, which contributes to obesity and diabetes in aging.
We previously reported that ablation of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), attenuates
age-associated obesity and insulin resistance. Ghrelin and obestatin are derived from the same preproghrelin gene. Here
we showed that in brown adipocytes, ghrelin decreases the expression of thermogenic regulator but obestatin increases it,
thus showing the opposite effects. We also found that during aging, plasma ghrelin and GHS-R expression in brown
adipose tissue (BAT) are increased, but plasma obestatin is unchanged. Increased plasma ghrelin and unchanged obestatin
during aging may lead to an imbalance of thermogenic regulation, which may in turn exacerbate thermogenic impairment
in aging. Moreover, we found that GHS-R ablation activates thermogenic signaling, enhances insulin activation, increases
mitochondrial biogenesis, and improves mitochondrial dynamics of BAT. In addition, we detected increased
norepinephrine in the circulation, and observed that GHS-R knockdown in brown adipocytes directly stimulates
thermogenic activity, suggesting that GHS-R regulates thermogenesis via both central and peripheral mechanisms.
Collectively, our studies demonstrate that ghrelin signaling is an important thermogenic regulator in aging. Antagonists of
GHS-R may serve as unique anti-obesity agents, combating obesity by activating thermogenesis.

INTRODUCTION a specialized lipid storage organ for storing excess

calories; in contrast, brown adipose tissue (BAT)
Obesity and diabetes have reached epidemic proportions contains large amounts of mitochondria and uses lipids
in all age groups, but are most pronounced among the to generate heat [3, 4]. Upon cold-stimulus, the
elderly [1, 2]. Obesity is characterized by increased fat sympathetic nervous system (SNS) is stimulated, which
mass and dysfunction of adipose tissues. There are 2 releases norepinephrine (NE) into BAT to activate 33-
types of adipose tissues: white adipose tissue (WAT) is adrenergic receptor (B3-AR). Subsequently, uncoupling
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protein 1 (UCP1) is recruited into mitochondria, which
promotes lipolysis and heat production [3, 4]. Non-
shivering thermogenesis in BAT was recently
recognized to play a crucial role in energy balance in
rodents and human neonates [3, 5-7]. Thermogenic
activity of BAT is positively correlated with energy
expenditure, and dysregulation of thermogenesis in
BAT is linked to obesity in humans [6]. Most recently,
studies have shown that enhanced thermogenesis also
improves glucose homeostasis and insulin sensitivity in
animals [8] and humans [9]. These results suggest that
interventions to increase BAT mass and/or activity may
be very attractive strategies for prevention/treatment of
obesity and diabetes.

Aging is associated with severe thermogenic
impairment; BAT declines 95% in mass and 75% in
activity in old men, as compared to young men [10, 11].
Thermogenic impairment likely contributes to age-
associated obesity [12], However, the factors underlying
the dysfunction of BAT in aging are currently unknown.
During aging, cumulative molecular damage leads to
impairment and functional decline [13, 14]. Age-
associated mitochondrial dysfunction is involved in
pathogenesis of metabolic disorders and neuro-
degenerative diseases [15-18]. Mitochondria are
dynamic organelles responsible for cellular energy
production in response to cell signals [19].
Mitochondrial dynamics are determined by fusion and
fission processes; the balance between fusion and
fission is essential for the maintenance of normal
mitochondrial function. Fusion is a ‘joining event’
between two different mitochondria, mediated by
mitofusins (Mfns) and optic atrophy gene 1 (OPAl);
fission is a process dividing one mitochondrion into two
mitochondria, mediated by dynamin-related protein 1
(Drpl) and fission 1 (Fis!) protein [20]. It was recently
reported that expression of Mfm2 and Drpl genes is
reduced in the skeletal muscle of elderly humans [21],
and smaller and fragmented mitochondria are more
abundant in the muscle of obese and type 2 diabetic
subjects [22]. Furthermore, reduced expression of
fission-related protein Drpl/ has been linked to
decreased mitochondrial complex IV activity in HeLa
cells [23]. Drpl deletion has been shown to decrease
mtDNA content [24], and cause brain developmental
defects and severe neuro-degeneration [25].

Ghrelin is the only known orexigenic hormone to
increase appetite and promote obesity [26-28]. We and
others have reported that ghrelin’s effects on GH release
and appetite are mediated through its receptor, the
Growth Hormone Secretagogue Receptor (GHS-R) [29-
31]. Ghrelin is ubiquitously expressed, but the highest
level of expression is detected in the stomach and

intestine [32]. The expression of GHS-R is more
restricted; the highest expression is detected in pituitary
and brain, but lower levels of expression are detectable
in some peripheral tissues, including WAT and BAT
[31, 33, 34]. It has been reported that ghrelin stimulates
lipid accumulation in WAT [35, 36], but suppresses
norepinephrine (NE) release of BAT [37, 38]. Aging is
associated with insulin resistance, and ghrelin is known
to increase insulin resistance [39]. We have found that
deletion of Ghsr gene enhances BAT thermogenesis in
aged mice, resulting in a lean and insulin-sensitive
phenotype [34].

Ghrelin (aka “active ghrelin”), and its related peptides
des-acyl ghrelin (DAG) and obestatin, are all derived
from the same preproghrelin gene [40, 41]. However,
only ghrelin activates GHS-R; the effects of DAG and
obestatin are mediated through other receptors [40]. We
have shown that DAG has ghrelin-like effects on
feeding, but it cannot activate GHS-R [42]. It has also
been shown that DAG stimulates lipid accumulation in
visceral fat [35], has adipogenic effects in bone marrow
[43], and prevents diet-induced adipose inflammation
and development of diabetes [44]. In contrast, obestatin
is an anorexic hormone; its effect on appetite is opposite
from ghrelin [41]. We previously reported that ghrelin-
null nice (Ghrelin’/'), absent of ghrelin, DAG and
obestatin, show no thermogenic phenotype [45]. On the
other hand, Ghsr knockout mice (Ghsr”, where
ghrelin’s effect is blocked but the effects of DAG and
obestatin remain intact) show enhanced thermogenesis
[34]. The differential thermogenic phenotypes of
Ghrelin” and Ghsr’” mice raise the question of whether
DAG and/or obestatin have opposing effects on
thermogenesis as compared to ghrelin.

To better understand the role of ghrelin signaling in the
regulation of age-associated decline of thermogenesis,
we analyzed ghrelin and its related peptides in young,
middle-aged and old mice, and characterized
thermogenic signaling cascades, insulin activation, and
mitochondrial biogenesis and dynamics in BAT of old
Ghsr’”™ mice. We also investigated whether GHS-R
mediated thermogenesis is likely regulated centrally
and/or peripherally.

RESULTS

Obestatin increases UCPI expression in HIB1B cells,
but DAG has no effect

Our previous study showed that ghrelin inhibits
adipogenesis and suppresses UCP1 expression in brown
adipocyte HIB1B cells [34]. DAG and obestatin have
been reported to have different physiological effects
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from ghrelin in several cell types and tissues [40, 41,
46, 47]. To assess the effects of DAG and obestatin on
thermogenesis, we treated differentiated HIB1B cells
with different concentrations of DAG or obestatin.
Consistent with our previous report [34], 1 nM ghrelin

UCPI expression even at high concentration (Fig. 1B),
but obestatin increased UCPI gene expression in a
dose-dependent manner (Fig. 1C). Ghrelin and
obestatin showed opposite effects on UCPI expression
in brown adipocytes (Fig. 1D), suggesting that ghrelin

inhibits UCPI expression in differentiated HIB1B and obestatin may have opposing effects on
cells (Fig. 1A). In contrast, DAG had no effect on thermogenesis.
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Figure 1. Ghrelin and obestatin exhibit differential effects on UCP1 expression in differentiated brown
adipocyte HIB1B cells. UCP1 expression in HIB1B cells treated with saline or different concentrations of ghrelin (A),
des-acyl ghrelin, DAG (B), and obestatin (C). Summary of UCP1 expression in HIB1B cells treated with saline, 1 nM ghrelin,
10 nM DAG, or 10 nM obestatin (D). N =9, and each assay was measured in triplicate. *p<0.05, Treatments vs. Controls.
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Figure 2. Plasma concentrations of active ghrelin, des-acylated ghrelin, and obestatin during aging. Active
ghrelin (A), des-acyl ghrelin, DAG (B), obestatin (C), and insulin (D) of young, middle-aged and old WT mice under fed or
fasting conditions. Young (4-months), middle-aged (10-months) and old (22-months) mice were used. The mice were
fasted overnight. N = 10-12. *p<0.05, fed vs. fasting. #p<0.05, ## P<0.001, young vs. middle-aged or old.

www.impactaging.com

1021

AGING, December 2014, Vol. 6 No.12



Circulating ghrelin is increased in aging, but DAG
and obestatin are not changed

To assess whether ghrelin, DAG and obestatin regulate
thermogenesis and insulin resistance during aging, we
measured circulating ghrelin, DAG, obestatin and
insulin concentrations in young, middle-aged and old
wild-type (WT) mice, under either fed or fasting
conditions. Under fed condition, ghrelin concentration
in old mice was significantly higher than young and
middle-aged mice (Fig. 2A). Interestingly, fasting only
increased ghrelin in young and middle-aged mice, but
not old mice (Fig. 2A), suggesting that ghrelin
regulation in old mice is less responsive to fasting. The
concentrations of DAG and obestatin didn’t change
during aging (Fig. 2B and 2C); while fasting did not
affect DAG (Fig. 2B), fasting significantly decreased
obestatin in middle-aged and old mice (Fig. 2C).
Elevated ghrelin in aging increases lipolysis and
exacerbates insulin resistance [39]. Consistently, our

data showed that fed insulin levels were higher in
middle-aged and old mice relative to young mice, and
fasting reduced insulin (Fig. 2D). The data support that
increased ghrelin in old mice promotes age-associated
insulin resistance, which may further impair BAT
function in aging.

GHS-R ablation attenuates age-associated decline of
thermogenesis and activates insulin signaling in BAT

Similar to our previous reports [34, 45], energy
expenditure of WT mice decreased with age in both
light and dark cycles, and GHS-R ablation increased
energy expenditure in middle-aged and old mice (Fig.
3A). GHS-R ablation did not alter food intake or
physical activity in any age group, indicating that GHS-
R exerts its effects primarily by regulating energy
expenditure. We studied GHS-R expression in BAT of
young, middle-aged and old mice, and found that Ghsr
expression in BAT increased during aging (Fig. 3B).
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Figure 3. Ghrelin receptor ablation attenuates age-associated decline of thermogenesis and enhances insulin signaling

,/,
in BAT. (A) Energy expenditure of young, middle-aged and old WT and Ghsr mice normalized by lean body mass. (B) Ghsr
expression in BAT of young, middle-aged and old WT mice. (C) BAT mass and percentage of BAT weight over body weight in young,

middle-aged and old WT and Ghsr mice. (D) UCP1 expression in BAT of young, middle-aged and old WT and Ghsr mice. IR (E) and
,/.

IRS-1 (F) expression in BAT of young, middle-aged and old WT and Ghsr mice. Young (4-months), middle-aged (10-months) and old
./_

(22-months) mice were used. N = 6-14. *p<0.05, **p<0.001, WT vs. Ghsr ; #p<0.05, ##p<0.001, old or middle-aged vs. young.
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Higher circulating ghrelin and increased GHS-R
expression in BAT of aged mice suggest enhanced
ghrelin signaling in BAT during aging, which may
promote age-associated decline of thermogenesis. To
further define the role of GHS-R in thermogenesis of
BAT, we compared BAT mass and UCP/ expression in
BAT of young, middle-aged and old WT and Ghsr”
mice. Although the absolute weight of BAT didn’t
change with age, BAT mass normalized to body weight
decreased during aging in both WT and Ghsr”™ mice
(Fig. 3C). There was no significant difference in the
ratio of BAT/body weight between WT and Ghsr” mice
in middle-aged and old mice, while the ratio of
BAT/body weight in young Ghsr”" mice was higher
than that of young WT mice (Fig. 3C). While UCPI
expression in BAT of WT mice declined during aging,
higher UCPI expression was detected in BAT of GHS-
R ablated aged (middle-aged and old) mice, maintaining
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expression levels similar to that of young mice (Fig.
3D). These results suggest that GHS-R ablation
improves thermogenesis through regulation of BAT
activity, but not BAT mass.

It was reported that BAT regulates glucose homeostasis
and insulin sensitivity [8, 9]. It has been shown that
insulin signaling in BAT is activated by cold stress [48].
Our previous studies showed that aged Ghsr”" mice
have improved insulin sensitivity [34]. Indeed, we
detected lower expression of insulin receptor (/R) and
insulin receptor substrate 1 (/RS-/) in BAT of old WT
mice, but GHS-R ablation increased /R and IRS-1
expression in BAT (Fig. 3E and 3F). Together, these
data suggest that GHS-R expression in BAT is
increased during aging, and ablation of GHS-R
attenuates age-associated decline of thermogenesis and
insulin sensitivity in BAT.
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Figure 4. Ablation of GHS-R activates thermogenic signaling cascade and improves mitochondrial dynamics of
BAT in aged mice. The representative data presented here were from 22 month-old WT and Ghsr’”" mice. (A)
Representative Western blots of key thermogenic regulators in BAT of aged WT and Ghsr”” mice. (B) Ex vivo lipolysis of BAT of
aged WT and Ghsr” mice, treated with or without 10 uM CL316243. (C) Representative Western blots show phosphorylated
AMPK a (p-AMPK-a), total AMPK (t-AMPK-a) and UCP1 protein expression in BAT of old WT and Ghsr” mice after 4 hours of
cold exposure. (D) Expression of mitochondrial fission genes in BAT of aged WT and Ghsr”" mice. (E) Expression of
mitochondrial fusion genes in BAT of aged WT and Ghsr”” mice. (F) Expression of mitochondrial complex biogenesis markers
in BAT of aged WT and Ghsr” mice. N = 6. *p<0.05, **p<0.001, WT vs. Ghsr'/'; #p<0.05, basal vs. CL316243 treatment.
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Ablation of GHS-R activates thermogenic signaling
and improves mitochondrial dynamics of BAT

BAT thermogenic capacity is determined by the
availability of fuel substrate in BAT and UCP1 activity
in mitochondria [3]. Protein kinase A (PKA) activates
hormone-sensitive  lipase (HSL), which is a
predominant lipase for catecholamine-stimulated
lipolysis in brown adipocytes [49]. Our data revealed
that ablation of GHS-R stimulates PKA and HSL
activation in BAT, indicative of stimulated thermogenic
signaling (Fig. 4A). cAMP response element-binding
protein (Creb) is a known downstream target of PKA;
phosphorylation of Creb is known to increase the
expression of mitochondrial respiratory chain proteins
and UCPI expression [50, 51]. As expected, Creb
phosphorylation is increased in BAT of Ghsr”” mice
(Fig. 4A). Consistently, our ex vivo lipolysis study
showed that P-adrenergic agonist CL316243-treated
brown adipocytes of Ghsr”" mice exhibited higher basal
and stimulated glycerol release when compared with
those of WT mice (Fig. 4B). These data together
demonstrate that GHS-R ablation activates thermogenic
signaling cascade and promotes lipolysis in BAT.

The 5' AMP-activated protein kinase (AMPK), a key
nutrient and energy sensor, is the master regulator of
cellular energy metabolism in many tissues, including
BAT [52, 53]. Cold exposure increases AMPK activity
[52], and aging is associated with decreased AMPK
activity [54]. To test whether GHS-R ablation in BAT
activates AMPK, we investigated AMPK activity by
studying protein levels of phosphorylated AMPK and
total AMPK. Enhanced phosphorylated AMPK was
detected in BAT of Ghsr” mice, and was correlated
with increased UCP1 (Fig. 4C). This result suggests that
AMPK activity may facilitate GHS-R mediated
thermogenic regulation.
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Mitochondrial biogenesis and dynamics are critical for
mitochondrial function [20], and mitochondrial
dynamics have been suggested to play a critical role in
the pathogenies of insulin resistance [55-57]. We thus
studied expression of key mitochondrial dynamics
genes in BAT of aged WT and Ghsr”” mice. The
expression of Drpl, Fisl, OPAI, Mfunl, and Mfn2 was
significantly increased in aged Ghsr” mice (Fig. 4D and
4E). Consistently, the expression of subunits of
mitochondrial respiratory chain complexes IV, cox2 and
cox10 was increased in the BAT of Ghsr” mice,
indicative of increased mitochondrial activity (Fig. 4F).
These data suggest that mitochondrial dynamics may
also play a role in GHS-R mediated thermogenic
regulation.

GHS-R regulates BAT thermogenesis through both
central and peripheral mechanisms

We have evidence that GHS-R regulates thermogenic
function, and ablation of GHS-R attenuates the age-
associated decline of thermogenesis [34]. However, since
the data were obtained from global GHS-R knockout
mice, we could not determine with certainty whether the
effect of GHS-R on thermogenesis is mediated through
central SNS and/or peripheral brown adipocytes. SNS
activation increases catecholamine (norepinephrine, NE)
release at SNS endings in BAT, which in turn activates
B3-AR in brown adipocytes. To determine the role of
SNS-induced catecholamine release in GHS-R mediated
thermogenesis, we assessed NE in the circulation and in
BAT of WT and Ghsr”~ mice. Since urinary cate-
cholamines are less likely to be affected by handling
stress [58], we measured NE concentration in urine of
young, middle-aged and old WT and Ghsr™ mice. As
expected, urinary NE decreased with age in WT mice,
while GHS-R ablated mice maintained NE at a level
comparable to that of young mice (Fig. 5A).
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Figure 5. Ablation of GHS-R prevents age-associated decline of norepinephrine (NE) and enhances NE-
responsiveness. NE concentrations in the urine (A) and NE levels in BAT (B) of young, middle-aged and old WT and Ghsr”
mice. Young (4-months), middle-aged (10-months) and old (22-months) mice were used. (C) 83-AR mRNA expression in BAT

of 22 month-old WT and Ghsr mice. N = 6-10. *p<0.05, WT vs. Ghsr- ; #p<0.05, ##p<0.001, old or middle-aged vs. young.
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Figure 6. GHS-R directly regulates thermogenic activation in brown adipocytes. (A) Oxygen
/

consumption of old WT and Ghsr_ - mice after 1.5 mg/Kg subcutaneous injection of NE. N = 10-12. *p<0.05,

WT vs. Ghsr . (B) Expression of Ghsr, UCP1 and PPARy in shGHS-R knockdown HIB1B cells. shScr represents
scramble shRNA; shGHS-R represents shRNA specific for GHS-R. N = 9. **p<0.001, shScr vs. shGHS-R.

Similarly, NE content in BAT of WT mice declined
with age, while GHS-R ablation prevented NE decline
in BAT of middle-age and old mice (Fig. 5B).
Consistently, the expression of f3-4AR in BAT was
higher in old Ghsr”" mice than in old WT mice (Fig.
5C). Increased SNS-induced NE release and f3-AR
expression in BAT of old Ghsr”™ mice suggest that
GHS-R ablation regulates BAT thermogenesis, at least
in part, by activating central SNS-mediated thermogenic
signaling pathway of SNS-NE-f3-AR.

To determine NE sensitivity of BAT, we studied NE-
induced thermogenesis in old WT and Ghsr” mice. O,
consumption after NE injection was significantly higher
in old Ghsr”~ compared with old WT mice (Fig. 6A),
suggesting that BAT of old Ghsr’” mice is more
sensitive to NE stimulation. To assess whether GHS-R
has direct effect in brown adipocytes, we further
knocked down GHS-R in brown adipocytes (HIB1B)
using shGHS-R. Transfection with shGHS-R resulted in
70% knockdown of GHS-R compared with scrambled
(shScr) control (Fig. 6B). The expression of
thermogenic marker UCP! and adipogenic marker
Peroxisome Proliferator-Activated Receptor y (PPARY)
was significantly increased in isoproterenol-stimulated
GHS-R knockdown HIBI1B cells (Fig. 6B). These data
suggest that GHS-R also directly inhibits thermogenic
activity in brown adipocytes.

DISCUSSION

We previously showed that ghrelin decreases UCPI
expression in brown adipocyte HIB1B cells through
GHS-R [34]. Current data suggest that obestatin
increases UCP]I expression in HIB1B cells, while DAG
has no effect. Thus, ghrelin and obestatin exert opposing

effects on thermogenesis. Our data are in agreement
with published reports showing that ghrelin decreases
UCPI] expression in BAT [59], while obestatin
attenuates the hypothermia of Ghrelin”™ mice [60]. We
observed improved thermogenesis in Ghsr”™ mice, but
not in Ghrelin” mice [34, 45]. The absence of a
thermogenic phenotype in Ghrelin” mice may be
explained by the fact that both ghrelin and obestatin are
absent in Ghrelin” mice; the opposing thermogenic
effects of ghrelin and obestatin are eliminated, thus
showing no thermogenic phenotype. On the other hand,
Ghsr’” mice express both ghrelin and obestatin. Since
GHS-R is exclusively activated by ghrelin, only ghrelin
signaling is blocked in Ghsr” mice, while obestatin
signaling is intact. In Ghsr”" mice, the stimulatory effect
of obestatin on thermogenesis is unopposed, which may
explain the increased thermogenesis observed in Ghsr”"
mice. Thus, the differential thermogenic phenotypes of
Ghrelin” and Ghsr” mice are likely due to the opposing
effects of ghrelin and obestatin on thermogenesis.

Fasting is associated with decreased energy
expenditure, and UCP1 expression in brown fat
decreases during fasting [61, 62]. Fasting is associated
with increased ghrelin and decreased obestatin in the
circulation [26, 41]. The changes of ghrelin and
obestatin during fasting may contribute to the decrease
of thermogenesis and energy expenditure. After meals,
postprandial ghrelin and obestatin decrease, the ratio of
ghrelin and obestatin may be involved in the regulation
of diet-induced thermogenesis. Aging is associated with
severely diminished thermogenic function [10, 11].
Here we found that circulating ghrelin is increased
during aging. We previously reported that low levels of
GHS-R expression are detectable in BAT [34]. Current
data reveal GHS-R expression in BAT is increased
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during aging. Higher concentration of ghrelin has been
shown to be associated with lower resting metabolic
rate and postprandial thermogenesis in humans [63].
Ghrelin promotes fat deposition in white fat and
suppresses sympathetic nerve activity in brown fat [64,
65]. Our new data show that thermogenic suppressor
ghrelin increases during aging; conversely, thermogenic
stimulator obestatin remains steady during aging, which
may contribute to the age-associated decline of
thermogenesis. Collectively, our data suggest that
ghrelin signaling contributes to the age-associated
thermogenic dysfunction, which in turn promotes
obesity and insulin resistance in aging.

Our data further demonstrate that GHS-R regulates

thermogenic signaling cascades in BAT. GHS-R
ablation activates thermogenic signaling pathway
PKA-Creb-UCP1, and lipolytic pathway PKA-HSL-
UCPI. It has been reported that insulin resistance in
BAT is associated with thermogenic defect in obese
and diabetic rats [48, 66]. Age-associated mito-
chondrial dysfunction is a well-known cause for
insulin resistance [15-17]. It has been shown that acute
cold exposure improves glucose clearance and insulin
sensitivity of BAT by activating the PKA-HSL-
Lipolysis pathway [48]. We observed decreased
expression of /R and IRS-1 in BAT of old Ghsr” mice,
suggesting that GHS-R ablation improves insulin
sensitivity of BAT, which then further promotes BAT
thermogenic activation.

Brown Adipocyte
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Figure 7. Schematic diagram of GHS-R mediated thermogenic regulation in brown adipocytes. Our data suggest that
ghrelin signaling may regulate thermogenesis in BAT via the following 4 independent and interconnected signaling

pathways:

1) Ablation of GHS-R stimulates SNS-mediated NE release, which in turn induces B3-AR expression,

subsequently activating thermogenic signaling cascades in BAT. This involves activation of thermogenic signaling
pathway PKA-CREB-UCP1 and lipolytic pathway PKA-HSL-UCP1. 2) Ablation of GHS-R enhances insulin signaling in
BAT, which improves insulin sensitivity of BAT and activates key thermogenic regulator PKA. 3) Ablation of GHS-R
enhances AMPK activity in BAT, which increases DNA and protein synthesis of mitochondria, thus increasing
mitochondrial biogenesis. 4) Ablation of GHS-R augments mitochondrial dynamics, enhancing both mitochondrial
fission and fussion; this restores mitochondrial architecture and improves mitochondrial homeostasis. Improved
mitochondrial homeostasis enhances the sensitivity of mitochondria to FFA to further promote mitochondrial
uncoupling. Collectively, GHS-R ablation increases thermogenesis in BAT by activating thermogenic signaling,
sensitizing insulin signaling, increasing mitochondrial biogenesis, and enhancing mitochondrial dynamics.
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AMPK is the master regulator of cellular energy
metabolism in BAT [52, 53]. It is well documented that
activation of AMPK enhances PGCla-dependent
transcription, which senses energy availability and
stimulates mitochondrial DNA and protein synthesis
[53, 67]. Ghrelin has been shown to have differential
effects on AMPK activity: stimulatory in hypothalamus
and heart, but inhibitory in liver and WAT [68, 69]. Our
previous study showed that GHS-R ablation increases
mitochondrial content [34]. Our current data reveal that
higher levels of phosphorylated AMPK in BAT of Ghsr
“ mice are correlated with increased UCPI1. This
suggests that GHS-R ablation may activate AMPK to
increase mitochondrial biosynthesis of BAT, thus
enhancing thermogenesis.

Mitochondrial dynamics play a crucial role in
mitochondrial function [20]. Abnormal mitochondrial
structure has been observed i_n obese and type 2
diabetic patients [22]. GHS-R deletion increased the
expression of both fusion- and fission-related genes in
BAT of aged Ghsr”” mice, indicative of an active state
of mitochondrial dynamics and improved mitochondrial
homeostasis. Improved mitochondrial homeostasis will
enhance the sensitivity of mitochondria to FFA to
further promote mitochondrial uncoupling. The data
suggest that suppressing ghrelin signaling preserves
youthful mitochondrial dynamics in BAT during aging.
It has been shown that obesity induces Mfin2 deficiency
which results in reduced mitochondrial activity, and
Drpl deletion leads to reduction of mtDNA content [24,
70]. We found that the expression of Mfn2 and Drpl
was increased in BAT of aged Ghsr” mice, consistent
with the increased thermogenic activity and mtDNA
content detected in BAT of aged Ghsr”™ mice [34]. In
addition, the subunits of mitochondrial respiratory chain
complexes IV, such as mtDNA-encoded cox2 and
nuclear DNA-encoded cox10, were also increased in
Ghsr”" mice, lending further support to the increased
mitochondrial biogenesis. Taken together, we conclude
that GHS-R ablation activates thermogenic signaling
cascades and promotes lipolysis in BAT; GHS-R
ablation enhances mitochondrial function of BAT by
increasing mitochondrial biogenesis and stimulating
mitochondrial dynamics.

Last, we explore the potential site(s) of action of GHS-
R mediated thermogenesis. The phenotype we observed
in Ghsr”" mice could result from GHS-R mediated
effects in central and/or peripheral sites. Thyroid
hormones are important regulators of thermogenesis
[71]. However, serum T3 and T4 concentrations were
comparable in WT and Ghsr”~ mice [34], indicating that
the elevated thermogenesis observed in old Ghsr”” mice
is not due to changes in circulating thyroid hormones.

Sympathetic activity is known to play a dominant role in
thermogenic regulation [3, 4]. Aging is associated with
decreased stress responsiveness, because of reduced
circulating NE and impaired hypothalamic-pituitary-
adrenal axis [72]. In the current study, we found that
GHS-R ablation prevents age-associated decrease of NE
in the circulation, suggesting that GHS-R mediated
thermogenesis is likely regulated centrally via SNS-
induced NE release. On the other hand, our data also
showed that GHS-R ablation increases NE-induced O,
consumption, indicative that BAT of Ghsr”™ mice has
increased sensitivity to NE stimulation; this suggests that
GHS-R ablation may directly affect the thermogenic
response of BAT. Indeed, we found that knockdown of
GHS-R in HIBIB cells up-regulates the thermogenic
mediator UCP1, suggesting that ghrelin signaling
regulates thermogenesis directly in BAT. Together, our
data suggest that ghrelin signaling regulates BAT ther-
mogenesis via both central and peripheral mechanisms.

In summary, our studies show that ghrelin and GHS-R
are important thermogenic regulators, and increased
ghrelin signaling in BAT during aging contributes to the
age-associated  thermogenic  impairment. = GHS-R
mediated thermogenesis in BAT is attributable to
thermogenic signaling activation, insulin sensitivity,
mitochondrial biogenesis and dynamics of BAT (Fig. 7).
GHS-R likely regulates thermogenesis via both central
mechanisms involving SNS-induced NE release and
direct effect in BAT. Thus, GHS-R antagonists may
serve as a unique class of drugs that can prevent/treat
age-associated obesity and insulin resistance by
enhancing thermogenesis.

METHODS

Animals. Ghsr””~ mice were generated and genotyped as
described previously [29]. All mice used in the
experiments are male mice, which have been backcrossed
13 generations onto C57BL/6J background. Wild-type
(WT) and homozygous knockout mice (Ghsr”") were
housed and bred in a pathogen-free facility at Baylor
College of Medicine. Animals were housed under
controlled temperature and lighting cycle (751 °F; 12h
light-dark cycle) with free access to regular chow and
water. All experiments were approved by the Animal
Care Research Committee of Baylor College of
Medicine. To determine data-relevant age cohorts, we
tested young mice at 3-4 months-of-age, middle-aged
mice at 10-12 months-of-age, and old mice at 18-24
months-of-age. “Aged” is defined as middle-aged or old
mice.

Real-time RT-PCR. Total cellular RNA was isolated
using TRIzol Reagent (Invitrogen, Carlsbad, CA),
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following the manufacturer’s instructions. In order to
remove potential genomic DNA contamination, RNA
was treated with DNAse and run on gels to validate the
purity and quality. cDNA was synthesized from 1 pg
RNA wusing the SuperScript III First-Strand Synthesis
System (Invitrogen, Carlsbad, CA). Real-time RT-PCR
was performed on an ABI 7900 using the SYBR Green
PCR Master Mix, the Tagman gene expression Master
Mix (Applied Biosystems, Carlsbad, CA), or Bio-Rad
using iQ SYBR GREEN supermix (Bio-Rad, Hercules,
CA), according to the protocols provided by the
manufacturers. /8s RNA and f-actin were used as
internal controls. All primer and probe information is
available upon request.

Plasma analyses. For active ghrelin and des-acyl ghrelin
(DAG): about 200 pl blood was collected in EDTA-
coated capillary tubes with or without 18 hours fasting.
After spin down, plasma was transferred to an ice-cold
tube with 5 ul IN HCI. Then, 1 pl fresh PMSF (10 mg/ml
in methanol, Sigma, St. Louis, MO) was added and
gently mixed. 25 pl plasma was measured with either
RIA assay kits (EMD Millipore, Billerica, MA) or
ELISA kits (Mitsubishi Kagaku Iatron, Tokyo, Japan).
For obestatin: about 200 pl blood was collected in
EDTA-coated capillary tubes. The blood sample was
then transferred to tubes and mixed with 20 pl aprotinin
(6 TIU/ml, Phoenix, Milpitas, CA). After spin down,
plasma was transferred to a new ice-chilled tube. 50 pl of
plasma was measured with an EIA kit (Phoenix, Milpitas,
CA). For insulin: about 200 pl blood was collected in
EDTA-coated capillary tubes. The blood sample was
then transferred to tubes. After spin down, plasma was
transferred to a new ice-chilled tube. 50 pl of plasma was
measured with a RIA kit (Linco Research, St. Charles,
MI), following manufacture’s instruction.

Metabolic characterizations. Metabolic parameters were
obtained using an Oxymax open-circuit indirect
calorimetry system (Columbus Instruments, Columbus,
OH), as previously described [34, 73]. Briefly, mice
were individually caged in chambers and given free
access to regular chow and water for one week prior to
tests. The first 24 hours in calorimetry chambers was
considered the acclimation phase, and data were
analyzed only for the following 48 hours. Oxygen
consumption (VO,) and carbon dioxide production
(VCO;) by each animal were measured. Energy
expenditure (EE, or heat generation) was calculated
from VO, and VCO, gas exchange data as follows: EE
= (3.815+1.232xVCO,/VO,;) x  VO,. Energy
expenditure was then normalized to lean body mass.

For norepinephrine-induced thermogenesis, the animals
were anesthetized with pentobarbital (90 mg/kg, i.p.),

and indirect calorimetry was performed for 30 minutes
to obtain basal values as earlier described [74]. The
individual mouse was then briefly removed from the
calorimetry chambers, injected with norepinephrine (1.5
mg norepinephrine/kg, subcutaneously), and then
returned to the metabolic chamber, and oxygen
consumption was then measured for another 60 minutes.

Urinary norepinephrine assay. The mice urinary NE
concentration was determined as described previously
[58, 73]. Briefly, mice were grabbed quickly to induce
urination. About 200 pl urine sample was collected into
a tube with 2 ul 6N HCI, to determine NE level using
ELISA assay (IBL Inc., Minneapolis, MN). Meanwhile,
about 10 ul urine sample was transferred to another tube
for creatinine determination using ELISA assay (Quidel
Corporation, San Diego, CA). Creatinine-normalized
norepinephrine levels are shown.

BAT norepinephrine assay. The BAT NE concentration
of the mice was determined as previously described
[75]. Briefly, BATs were homogenized by sonication in
homogenization buffer (1 N HCI, 0.25M EDTA, 1 mM
Na,S;05). Cell debris was then pelleted by
centrifugation at 13,000 r.p.m. for 15 min at 4 °C. The
cleared homogenates were collected and stored at -
80 °C before quantification. Fifty pl tissue lysate was
used for measurement of NE using ELISA assay (Rocky
Mountain  Diagnostics, Colorado Springs, CO)
following the manufacturer’s protocol. All samples
were normalized to total tissue protein content.

Western blot analyses. Brown adipose tissues were
lysed in RIPA buffer with Complete Protease Inhibitor
Cocktail (Roche Inc., Indianapolis, IN). Protein
concentration was determined with BCA protein assay
kit (Pierce, Rockford, IL). Twenty microgram of protein
of each sample was separated by SDS-PAGE, and
electro-transferred to nitrocellulose membrane for
immunoblot analyses. The following antibodies were
used: anti-p-PKA (Tyr197) (Cell Signaling, Danvers,
MA, 4781S, 1:1000), anti-t-PKA (Cell Signaling,
Danvers, MA, 4782, 1:1000), anti-p-HSL (Ser563) (Cell
Signaling, Danvers, MA, 4139S, 1:1000), anti-t-HSL
(Cell Signaling, Danvers, MA, 4107, 1:1000), anti-p-
Creb (Ser133) (Cell Signaling, Danvers, MA, 91918,
1:1000), anti-t-Creb (Cell Signaling, Danvers, MA,
9197, 1:1000), p-AMPKa (T172) (Cell Signaling,
Danvers, MA, 2535L, 1:1000), anti t-AMPK (Cell
Signaling, Danvers, MA, 2603S, 1:1000), anti-UCPI
(ABCAM, Cambridge, MA Ab10983, 1:10000), anti-f3-
actin (Cell Signaling, Danvers, MA, 4967S, 1:1000),
HRP-conjugated anti-mouse (GE Healthcare UK
Limited, 1:10,000), and anti-rabbit (GE Healthcare UK
Limited, 1:10,000). The SuperSignal West Pico
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Chemiluminescent kit (Pierce, Rockford, IL) was used
as substrates.

Ex vivo lipolysis assay. The lipolysis activity of BAT
was measured, using ex vivo lipolysis assay as described
[76]. Briefly, interscapular BAT was dissected and
separated into two pieces. Each piece was put into
culture medium {DMEM with 0.5% fatty acid free BSA
(Sigma, St. Louis, MO)} and minced into tiny pieces
with scissors. The tissues were incubated at 37°C with
10 uM CL316243 (Sigma, St. Louis, MO) as stimulated
condition, or DMSO as basal condition. 2 hours later,
medium was collected and heated at 85°C for 10
minutes. After spin down, clear supernatant was
transferred to a new tube, and 10 pl was used to
measure free glycerol content using Free Glycerol
Reagent (Sigma, St. Louis, MO). Lipolysis activity was
represented by glycerol concentrations, normalized by
weight of the tissue.

HIB1B cell culture. HIB1B pre-adipocytes were cultured
in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% bovine calf serum. At confluence,
HIB1B cells were induced to differentiate for 3 days in
DMEM with 10% Cosmic Calf Serum (Hyclone, Logan,
UT), supplemented with 5 pg/ml insulin (Sigma, St.
Louis, MO), 0.5 mM isobutylmethylxanthine (Sigma,
St. Louis, MO), 1 uM dexamethasone (Sigma, St.
Louis, MO), and 1 nM triiodothyronine (Sigma, St.
Louis, MO). The cells were then fed every 2 days with
10% Cosmic Calf Serum in DMEM, containing only
insulin and triiodothyronine, at the concentrations
mentioned above. On day 6 of differentiation, cells were
treated with different concentrations of ghrelin, DAG,
obestatin or saline for 24h. Cells were stimulated with 1
uM isoproterenol (Sigma, St. Louis, MO) for 6h prior
to harvest.

Generation of GHS-R knockdown HIBIB cell line. The
predesigned GHS-R  shRNA (TG506242) and
scrambled shRNA (GCACTACCAGAGCTAACTCA
GATAGTACT) in pGFP-V-RS vector were purchased
from Origene (Rockville, MD). The shRNAs were
transfected into HIBIB cells by Lipofectamine®
2000™ (Invitrogen, Carlsbad, CA), according to the
manufacturer's instruction. Briefly, 1 million HIBIB
cells were seeded in a 10 cm dish for 12 hours. 2 hours
before transfection, medium was changed. Five pg
shRNA plasmids were mixed with Lipofectamine®
2000™ reagent and kept at room temperature for 5
minutes. Then, ShARNA mixture was added to the dishes.
12 hours later, sShARNA mixture was removed, and fresh
medium was added. Then 24 hours later, 1 pg/ml
puromycin was added to the medium to select positive

knockdown cells. After 8 days of selection, all positive
cells were pooled together as a stable cell line.

Statistics. Two-factor ANOVA was used to evaluate the
significance of interaction between genotype and age,
and post hoc test was used to follow up the significant
differences between ages and genotypes. Data are
represented as mean + SEM, and statistical significance
is set to a minimum of p<0.05.
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