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Abstract: Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the
accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that
oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and
rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby
fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally
modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-
Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-
dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic
evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven
alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with
evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue
functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via
non-cell-autonomous mechanisms.

INTRODUCTION

in individual clones, leading to a step-wise acquisition
Aging and cancer are widely considered to be rate- of progressively more malignant phenotypes [7-10].
limited by the accumulation of phenotype-altering Each driver mutation is thought to confer a certain
mutations and the incidence of oncogenic driver fitness advantage over the rest of the stem cell pool,
mutations, respectively. The Somatic Mutation Theory leading to expansion of that cell’s progeny. This clonal
of Aging postulates that the accumulation of somatic expansion then increases the chance that the next driver
DNA alterations with age largely accounts for aging mutation will happen in a cell containing the initial
phenotypes [1-4]. The accumulation of somatic oncogenic mutation, thereby promoting progression to a
mutations and epigenetic changes has also been multi-driver malignant cell phenotype.
proposed to be a major cause of age-related stem cell
decline, such as for hematopoietic stem cells (HSC) [5, Current models of cancer operate with the assumption
6]. Similarly, the modern Multi-Stage Model of that the extent of fitness effects is a defined property of
Carcinogenesis argues that cancer incidence is driven oncogenic mutations [11-13]. From this perspective,
by the occurrence of successive cancer driver mutations oncogenic mutations are capable of driving somatic
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evolution upon their occurrence, and their occurrence
thus determines the timing of a multi-stage process of
selection for pre-malignant clones, eventually leading to
cancer. However, this assumption is markedly
discrepant with evolutionary theory, whereby fitness is
a dynamic property of phenotype and is defined and
extensively modified by environment [14, 15]. From the
perspective of modern evolutionary theory, genetic
changes may have a defined effect on phenotype, but
the resulting changes in fitness are not defined and are
environment-dependent.

The current paradigm of cancer rests on early
assumptions that mutation accumulation over lifetime is
linear [16]. However, more recent evidence from
humans and other mammals indicates that roughly half
of all mutations and epigenetic changes (including
potentially oncogenic events) in HSC and other tissues
accumulate early in life before full body maturation [17-
19], consistent with a concomitant rapid slowdown in
stem cell division rates post-development [20, 21].
Indeed, oncogenic driver mutations are frequently
detected in healthy tissues of individuals of different
ages without a diagnosis of cancer, suggesting that there
may be a significant delay between the occurrence of
oncogenic drivers and the actual onset of somatic
evolutionary processes driven by these mutations [22-
24]. This early-life accumulation of a substantial portion
of genetic damage in tissues is also at odds with the
delay in body fitness decline and aging until post-
reproductive periods [25-27].

Thus, both cancer incidence and aging are delayed until
the post-reproductive period of lifespans, being
significantly offset from the timing when a substantial
portion of phenotype-altering genetic damage occurs.
Such a delay is explained by evolutionary models of
aging via the reduced investment in tissue maintenance,
as selection at the population/germline level becomes
progressively relaxed with progression into post-
reproductive ages [28, 29]. The tremendous diversity of
lifespans within physiologically similar groups, such as
mammals, contradicts the mutation-centric views and
instead suggests that aging is an evolved process
regulated above the cell-intrinsic level. Indeed, the role
of DNA damage as a cause of aging has been
challenged based on evidence supporting the idea that
aging is a systemic process [30]. Moreover, the
exponentially increasing incidence of cancers in the
latter half of potential lifespans is nearly universal
across mammalian taxa with different lifespans [31].
Even within the same species, a roughly similar age-
dependent incidence pattern is typical of diverse cancers
originating from cell pools of drastically different sizes
and cell division dynamics. An increased incidence in

late-life is also typical across cancers requiring different
numbers of driver mutations, including those thought to
require only a single oncogenic mutation, such as
chronic myeloid leukemia (CML) in chronic phase [32].
Finally, the higher incidence of some cancers in the first
few years of human life relative to older juvenile and
young adult years is difficult to explain from the simple
perspective of time-dependent mutation accumulation.
Thus, cancer incidence patterns across lifespans cannot
be explained by mutation accumulation alone,
regardless of the type of cancer or organism studied.

Importantly, currently accepted models of age-
dependent carcinogenesis have not taken into account a
number of key age-altered factors that should interact in
a complex manner to shape somatic evolution, such as
the dynamics of mutation accumulation, changing size
of stem cell pools with body growth, alterations in stem
cell division rates, and the role of tissue
microenvironments [12, 13, 16, 33-35]. Indeed, these
previous studies model cancer evolution as a purely cell
intrinsic process. Given that species evolution is largely
driven by environmental change, and clearly influenced
by population size, reproduction rates, and mutational
variation, understanding the somatic evolution of
cancers will require consideration of analogous factors.

An alternative model proposes that cancer development
is rate-limited by the dynamics of age-dependent tissue
fitness decline (and is thus tightly linked to the
evolution of lifespan and aging), whereby cells in aged
tissues of lower general fitness provide more room for
positive selection for oncogenic events that have
accumulated in tissues over a lifetime [23, 24, 34]. This
model thus proposes that the fitness value of oncogenic
events is limited and mostly negative in young highly fit
tissues optimized by evolution at the germline level, but
their fitness effects may increase in aged tissues,
facilitating somatic evolution. Indeed, the fitness effects
of many cancer drivers have been shown experimentally
to vary in a microenvironment-dependent manner [35-
40]. The importance of tissue microenvironment in
regulating somatic evolution in animal tissues 1is
supported by numerous modeling and experimental
studies [22, 41-46]. Maintenance of tissue
microenvironment could therefore be a powerful
mechanism suppressing cellular fitness decline and
somatic evolution through reproductive ages by
impairing the competitive potential of cells with altered
genotypes/phenotypes and thus increasing the
likelihood of their elimination from a cell population
[24, 34].

Here we explore the theoretical limits of the effects of
mutations on cellular fitness decline and somatic
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evolution in HSC pools across human lifespans. The
hematopoietic system is well established as a model for
clonal dynamics [47-49]. We simulated these clonal
dynamics using a Monte Carlo approach whereby the fate
of each cell in the modeled HSC pool evolves
independently based on defined initial parameters and the
probability distributions that describe the change in these
parameters, such as cell division frequency, cell fitness
change, cell fate decisions, and mutation accumulation.
The stochastic approach allowed us to model non-linear
cell dynamics and the complex relationship between cell-
autonomous and non-cell-autonomous processes that
control somatic evolution and fitness dynamics within the
HSC pool. Our results indicate that somatic evolution is
suppressed early in life by stabilizing selection, which
minimizes the positive fitness value of mutations. We
demonstrate that the evolutionary concept of dynamic
fitness values for genetic changes which is extensively
modulated and defined by tissue microenvironment is
necessary to explain the age-related rates of somatic
evolution. Thus, somatic evolution in HSC pools and
consequently hematopoietic malignancies are not rate-
limited by the occurrence of oncogenic mutations and are
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instead driven by altered positive selection in aging
tissues for previously generated genetic and phenotypic
cell diversity.

RESULTS
Conceptual basis of the model

We assume that all possible random somatically
heritable genetic and epigenetic changes, collectively
referred to hereafter as mutations, have a theoretical
distribution of fitness effects (DFE) per cell division.
Neither the shape nor the variance of this DFE is known
for HSCs. At the organismal population level, most
mutations have either no or negligible phenotypic
effects or are lethal (reviewed in [50]). Mutations that
reduce fitness are much more frequent than those that
confer a selective advantage. However, as somatic cells
are subject to selection at both the animal population
and tissue levels, the net DFE of somatic mutations that
affects inter-cellular competition and somatic evolution
at the tissue level could differ from DFEs typically
observed at the animal population level.
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Figure 1. The proposed effect of the mutation DFE on the slope of mutation accumulation in stem
cell pools with age. Lower panels, a wide DFE leads to a large fitness differential among cells in the pool.
Mutations affecting phenotype are known to have mostly negative fitness effects accounting for the large
negative tail in the wide DFE. Cells harboring negative mutations will be eliminated by cell competition effects.
These cells are likely to be cells that have undergone a greater number of divisions and thereby possess more
mutations. Consequently, mutations accumulate more slowly in the population. Upper panels: less frequent non-
neutral mutations (a narrow DFE) generate less fitness differential in the pool, and thus the frequency of survival
of mutated cells is dominated by drift (chance) rather than selection; the average number of mutations per cell
will accumulate faster, at a rate that more closely reflects mutation occurrence and thus cell division frequency.
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To infer the nature of DFE in HSC pools, we applied
the logic that mutation fitness effects will affect
competition and selection processes by creating a
fitness differential in a population of cells. A narrow
DFE with mostly neutral mutations will result in a
largely drift-driven population, where the chance of
survival is random (Fig. 1; upper panels). A wide DFE,
where a larger proportion of mutations have fitness
effects, will engender a broader fitness differential
among cells within a population. This fitness
differential lends itself to natural selection, wherein
cells with disadvantageous phenotypes are less likely to
survive into subsequent generations. As most functional
mutations are likely to decrease fitness (residing in the
negative tail of the DFE), we reasoned that variance of
DFE should have an effect on the slope of mutation
accumulation in HSCs, whereby wide variance (more
functional mutations) should act to purge mutated cells
with decreased fitness from the pool and thus act to
lower the speed of mutation accumulation in the
population (Fig. 1; lower panels).

Mutation accumulation in the Tier 3 genome can be used
as a marker for overall mutation accumulation rates. Tier
3 represents (to best approximations) the non-conserved,
non-coding, and non-repetitive sequences of the genome,
spanning ~1 billion base pairs [51]. The vast majority of
Tier 3 DNA should therefore not be under selection
(particularly in somatic cells), and mutations in Tier 3
should (with rare exceptions) not alter cellular phenotype.
But the accumulation of these passenger mutations will
depend on the intensity of purifying selection acting on
functional mutations (including epigenetic alterations) as
shown in Fig. 1, and can be used to infer the intensity of
selection and thus the parameters of mutation DFE acting
on HSC. Basically, increased accumulation of mutations
with detrimental phenotypic effects will confer a fitness
cost to cell division. We will use our model to determine
the parameters of mutation DFE and rate increase over a
human lifetime that can replicate experimentally
determined mutation accumulation in the Tier 3 genome
of HSC.

Since the most common leukemias appear to initiate in
HSC [52-56], the initial clonal expansions of an
oncogenically-initiated HSC should be rate-limiting for
the occurrence of successive oncogenic events in the
clonal context and eventually for the development of
hematopoietic malignancies. We will thus also ask if the
estimated realistic parameters for mutation DFE are
concomitantly permissive for age-dependent
exponential increases in the extent of clonal expansions
in the HSC pool. The rates of somatic evolution (extent
of mutation-driven clonal expansions) is a major factor
defining the ultimate odds and frequency of leukemia

over time/age, as can be inferred from the following
equation integrating the probability that a set of n
successive oncogenic drivers {d1, ..., dn} will happen
in any single cell in a stem cell pool over a lifetime (Eq.

1):
P

t n
nan (1) = D(t)xj[ pij(z‘)dt (1)
o\ i=1
where Pg;._an(t) is the probability of acquiring n drivers
in one cell by time ¢, D(t) is the total number of cell
divisions that have happened in the pool by time ¢, and
p: 1s the probability of acquiring a driver i € {d, ..., dn}
per cell per division as a linear function of the total
number of mutations per cell per division.

The chances of acquiring a set of »n drivers in any given
cell in the pool over time depend on two factors:
mutation rate and the total number of cell divisions by the
time in question. From Eq.1, it is evident that cell
proliferation driven by acquisition of a fitness advantage
will have a much more dramatic effect on the final
probability of the whole set of drivers occurring within
one genetic context compared to mutation rate. While a
change in mutation rate can lead to a linear increase in
this probability, the expansion of a selectively
advantageous clone will elevate the probability of
occurrence of subsequent driver mutations within a cell
of this clone/genetic context exponentially. As Eq. 1
defines the probability density function of n drivers
happening in any cell in the pool over time, clones
making up a greater share of the pool will harbor
proportionally more dividing cells and have
proportionally higher chances of this set of drivers
happening in a cell within the clone. Based on this logic,
we assume that the shape of the age-dependent incidence
of leukemia will mostly be determined by the age-
dependent magnitude of selection-driven clonal
expansions possible under given parameters for mutation
DFE and rate. Therefore, we asked what mutation
parameters are compatible with both the reported slope of
mutation accumulation in the Tier 3 genome and with
exponential increases in the magnitude of clonal
expansions (increased positive selection) that replicate
the shape of the age-dependent leukemia incidence curve.

Architecture of the model

To fully investigate the many parameters governing
somatic evolution in HSC pools, we designed a
stochastic model to replicate HSC population dynamics,
to simulate the impact of mutations in HSCs over
human lifetimes, and to model the effects of tissue
microenvironment on selection and clonal expansion
within the HSC pool. This model is a stochastic,
discrete time continuous parameter space model
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realized in a Monte Carlo experiment run in the Matlab
programming environment (The MathWorks, Inc.,
Natick, Massachusetts). A chart of cell fate decisions in
the simulated HSC pool during a model’s run is shown
in Fig. 2. The model starts with a matrix of the initial
number of HSC, and each cell’s state is updated on a
“weekly” basis throughout the simulated lifespan of 85
years (4420 weeks). The weekly update included
stochastic cell fate decisions to divide or stay dormant
based on estimated HSCdivision rates throughout life
(modeled based on published data; Fig. 3), and to stay
in the pool or leave for whatever reason (such as death

O
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or differentiation) based on niche space availability,
current number of competing cells at different ages
(modeled based on published data for HSC pool size;
Fig 3), and each cell’s relative fitness. Cell fitness
changed after each division stochastically, initially
based only on mutation DFE. Cells that diverged in
fitness more than a certain threshold from their parental
cells upon division were designated as new clones, thus
replicating functional (clonal) divergence of HSC in the
pool with age (Fig. S1A-B). The code and detailed
parameter description and justification are presented in
Supplemental Methods.
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Figure 2. Stochastic model of HSC cell fate decisions. 1 —
parameters; 6-15 — cell fate decisions during model cycle updated in

initial cells (a total of 300); 2-5 — initial cell
“weekly” increments

throughout the simulated human 85 year lifespan; 16 — cell leaves the pool. Timing of cells division
(8), net fitness change per division (12), and fitness-based competition for niche space (14) are
defined in stochastic trials based on distributions of average division timing, mutation DFE, and
fitness-dependent stochastic competition scheme, respectively.
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Fixed fitness effects of mutations cannot explain age-
related functional decline and somatic evolution in
HSC pools

We found mutation DFE wvariance (in standard
deviations, denoted as o) to influence the slope of
mutation accumulation within the range ¢ = 5x107-
5x10® and mutation rate increase from stable to up to 8-
fold over lifetime (Fig. 4). As described above and
outlined in Fig. 1, higher ¢ will suppress mutation
accumulation, including in the Tier 3 genome, by
essentially imposing a penalty on cell division. An
increasing mutation rate effectively widens DFE
variance per cell division following the rule of
distribution sums [57] (Fig. S1C-D). We used these
ranges for mutation rate increase and DFE variance over
lifetime as the X and Y axes of a plane, with the Z axis
represented by the model output of interest (more
details on generating the surface plots can be found in
Supplemental Methods). In this manner, we built
surfaces of model outputs of interest (such as slope of
mutation accumulation or magnitude of clonal
expansions over lifetime) within the effective range of
mutation DFE variance and mutation rate increase.
Mutation DFE was always centered on zero, with the
majority of mutations being neutral. Within this
principal design of measuring the simulated model’s
output, we also tested a range of mutation DFE shapes
(DFE tail ratios), with 0, 1, 10, 33, and 50% of
mutations in the positive tail. A larger positive tail
means a greater frequency of beneficial mutations. Note
that even when 0% of mutation DFE is in the positive
tail, fitness differential will still build up within the
population (with some cells “less negatively” affected).

We assessed three basic model outputs: 1) the Tier 3
mutation accumulation slope; 2) the maximum extent of
somatic evolution possible at any given age measured as
the percentage of the pool occupied by the most
successful clone; and 3) the dynamics of average cell
fitness in the pool, to see if the model replicates the
general stem cell functional decline over lifetime. The
reference Tier 3 mutation accumulation slope with age
for AML (0.09162; 95% confidence interval, CI:

Figure 3. HSC division rates and pool size change
dramatically throughout life. (A) Dynamics of the pool
size; the dynamics were inferred based on postnatal and
adult HSC pool size estimates in [49, 72] (B) Average cell
division frequencies; modeled based on estimates of HSC
division rates at different ages in [20, 21, 49].
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Figure 4. Mutation DFE affects the mutation accumulation slope. (A)
Mutation accumulation in the Tier 3 genome of AML (see inset for
blowup of AMKL in children). (B) DNA methylation accumulation at
neutral CpG islands of the human genome with age (from Horvath,
2013). (C-D) Simulated mutation accumulation in Tier 3 under
mutation DFE variance ¢ = 0.000005 (C) and o = 0.0005 (D) and
different mutation rate fold increases over lifetime. (E) Simulated
mutation accumulation in Tier 3 under stable mutation rate over
lifetime and different mutation DFE variance. (F) The range (shaded) of
mutation DFE variance (Y axis) and mutation fold rate increase over
lifetime (X axis) that replicate WGS-derived slope of mutation
accumulation in AML genomes and DNA methylation accumulation in
the hematopoietic tissue within 95% confidence interval.
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0.03759-0.1457; Fig. 4A; The Cancer Genome Atlas
Research Network, 2013) was used to delineate the
range of mutation DFE and rate parameters that
reproduced the slope of DNA mutation accumulation in
the Tier 3 genome of HSC. As argued by others [58],
mutation accumulation in AML is thought to reflect
mutation accumulation in individual HSC (see
Supplemental Methods). We will hereafter call this
range the plausible range, depicted as shaded areas in
Fig. 4F and 5A,B, to signify the ranges of mutation
DFE variance and rate parameters that are most likely to
enclose real parameters. Notably, the slope of DNA
methylation accumulation in a set of CpG sites in blood
cells ([19]; 95% CI: 0.061-0.062; Fig. 4B) is well within
the CI for Tier 3 mutations (Fig. S2), indicating that
mutation accumulation rates for genetic and epigenetic
changes may be similar (both being consistent with cell
division kinetics; Fig. 3A). We registered maximum

B Juxtaposed landscapes C
of clonal expansions (color)
and plausible range (shade)

A Plausible range (shade) of
mutation DFE parameters

0%

1%

10%

rates of somatic evolution throughout the lifespan to see
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Results shown in Fig. 5B (see also Table SI1A,
mutation-only  conditions) reveal a substantial
discrepancy between conditions required to replicate re-
alistic mutation accumulation (shaded areas in Fig. 5SA,B)
and those that replicate clonal expansions (rates of
somatic evolution) resembling the age-dependent shape

A Stable adult pool size of 11,000 cells
EXPANSIONS

OVERLAP

Mutations alone

% pool

—— o
. 70 Oﬁ C\J

/i 0 e\

n *fa/'/ \“g

Mutations + microenvironment

Mutations alone

Mutations + microenvironment

of leukemia incidence. We used 0-1 normalization of
leukemia incidence and the simulated clonal expansion
curves to compare their shapes by the mean root square
error (MRSE) method, with shape similarity between 0
(no similarity) and 1 (perfect match) (see color code in
Fig. 5C).

Figure 6. Clonal dynamics in the simulated HSC pools
under different parameters of mutation and micro-
environmental DFEs. OVERLAP (left panels): % area of the
plausible range of mutation parameters that allows age-
dependent exponential clonal expansions under different
stringencies (a minimum of 0.7, 0.8, or 0.9 shape match) of the
expansions’ match to the reference leukemia curve. ENV DFE —
DFE imposed by microenvironment (explained in the text).
EXPANSIONS (right panels): average magnitude of clonal
expansions under different parameters of mutation and
microenvironmental DFEs, measured as the % of pool occupied by
the most successful clone at the end of the simulated life. (A)
Comparison between mutation-alone (upper panels) and
mutations + microenvironment (mutations + ENV) models (lower
panels) under a stable adult HSC pool size of 11,000 cells;
mutation DFE in the positive tail in all mutation + ENV conditions
was set to 0%. (B) Same as A under different adult pool sizes and a
slower cell cycling speed estimates (slow cycle); 11k->25k — the
adult pool size increases over lifetime from 11,000 to 25,000 cells;
mutation DFE in the positive tail in ALL conditions was set to 1%
and ENV DFE in the positive tail was set to 0%. Numeric data is
presented in Table S1.
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A maximum of ~5% overlap was observed between the
plausible range of mutation DFE and rate parameters
replicating the empirically known slope of mutation
accumulation (shaded areas in Fig. 5A,B) and the DFE
range permissive for leukemia incidence-like shape of
clonal expansions (red areas in Fig. 5B) under a liberal
cutoff of >0.7 of shape similarities by MRSE. See Fig. 6
and Table S1A, “Mutations alone” conditions, for
quantitative data. This overlap (the common set of
mutation parameters needed to replicate both reference
phenomena) only occurs in the middle range of
mutation DFE variance (Y axis in plots in Fig. 5B) and
requires a >4-fold mutation rate increase over lifetime
(X axis in plots in Fig. 5B). As shown in Fig. 4D, under
such combinations of mutation parameters, mutation
accumulation is impeded or even reversed at later
portions of life. The increasing mutation rate effectively
increases DFE variance per cell division (see
explanation Fig. S1A-B) and thus intensifies selection
against mutant cells. Such a late-life slowdown in
mutation accumulation or mutation purging has not
been observed experimentally, and therefore we
consider these combinations of mutation rate increase
and DFE variance to be unrealistic.

Surprisingly, both the above-mentioned area of overlap
and the magnitude of clonal expansions are drastically
suppressed by an increased positive tail (more
beneficial mutations) of the mutation DFE (Fig. 5B,
Fig. 6, and Table S1A, “Mutations-alone” conditions).
This suppression likely arises from the phenomenon
known from bacterial populations as clonal interference,
whereby an increasing number of high fitness clones
mutually suppress the expansion of each other and that
of other phenotypes [61, 62]. In our simulations, the
strongest fitness gain (clonal expansions) over time
based on sole action of mutations was possible under a
zero to minute (1%) positive tail of the mutation DFE,
consistent with the idea that stem cells reside at a local
fitness peak (low probability of advantageous
mutations), at least in young healthy individuals [34].
Therefore, the plausible range of mutation parameters is
not permissive for significant exponential age-
dependent increases in the rates of somatic evolution
(clonal expansions).

The average cell fitness drop in the pool throughout
lifespan also did not replicate the experimentally
reported 2-3-fold decline in fitness for HSC in old age
[5, 59, 60] and was restricted to a maximum of a few
percent drop over lifetime throughout the whole range
of conditions (Fig. 5D). Despite the mostly negative
fitness effects of mutations, purifying selection appears
to buffer the general cell fitness decline by purging
mutation-affected cells from the pool. This effect of

selection is particularly evident under wider mutation
DFEs (Fig. 5D). Thus, accumulation of cell-
autonomous damage is insufficient to account for HSC
fitness decline in old age.

Mutation fitness effects modified by
microenvironment explain higher late-life rates of
somatic evolution and fitness decline in HSC pools

Since we were unable to define a common set of
mutation parameters that would recapitulate the
experimentally observed mutation accumulation rates,
somatic evolution/leukemia incidence, and HSC fitness
decline with age, we tested an alternative, evolutionary
model. For this purpose, we developed a model of
bicomponent fitness effects exerted by the tissue
microenvironment, containing a uniform and a
randomly distributed part. The uniform component
derives from the loss of tissue integrity with age, which
should impact all cells in a tissue, as tissue
microenvironment moves from its optimum towards a
more degraded state. Roughly, this component dictates
that cells generally have a lower fitness in a degraded
(aged) microenvironment compared to the optimal
(young) one. However, the degree of this influence
should vary among cells based on the mutation-
generated phenotypic diversity of cells. This variation is
the distributed part of the microenvironmental effect
that adds to selection processes by contributing to the
fitness differential buildup in the cell population. We
propose that this part of the environmental effect is
distributed independently from the mutation DFE, so
that any given phenotype that has a fitness advantage in
an optimal microenvironment will not necessarily have
this advantage in an altered environment (and vice
versa), thus making the composite fitness effect of any
given mutation context-dependent, just as it is in natural
populations of organisms. Such a bicomponent effect of
the tissue microenvironment is based on inference from
the Sprengel-Liebig’s system of limiting factors,
initially known as Liebig’s Law of the Minimum
(summarized in [15]).

The principle for how the Sprengel-Liebig’s system
defines the fitness of a given phenotype is shown in Fig.
7. In aggregate, any given phenotype has a certain
degree of adaptation to each environmental factor so
that the factor has its optimal intensity (e.g. optimal
concentration) and extreme intensities, also called
pessima (Fig. 7A). Fitness decreases as the intensity of
a factor in the environment changes from the optimum
to either of the pessima for a given phenotype, a
phenomenon known as Shelford’s Law of Tolerance
[63]. Selection leads to improved adaptation so that
populations consist of phenotypes for which a given
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environment is optimal. We argue that selection at the
germline level should lead to co-evolution of stem cells
and tissue microenvironment to optimize performance
during pre- and reproductive periods (Fig. 7B). In a
complex, multi-factorial environment a phenotype will
have different degrees of adaptation to each particular
factor, but the phenotype’s net fitness will be limited by
its adaptation to the factor it is least adapted to, called
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range of phenotypic plasticity
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the limiting factor, following Sprengel-Liebig’s Law of
the Minimum (Fig. 7C) ([15, 64]). General adaptation to
a complex environment leads to the evolution of
phenotypes that have optimal net fitness (“evolved
phenotype” in Fig. 7C), and this process reduces the
likelihood that new phenotypes that arise from random
mutations will improve fitness relative to the population
as it becomes better adapted.
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Figure 7. A schemata of a phenotype’s fitness/survival determination in a complex environment. (A) An illustration
of the Shelford’s Law of Tolerance: species survival decreases with a change in an environmental factor from the
optimum towards its extrema within the species’ tolerance range; selection drives adaptation of a species towards
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best survival optima (occupied by phenotype A in panel A). (B) Body fitness decline in humans and mammals is
delayed until the post-reproductive period when selection for high fitness of the body is relaxed; at the animal
population level microenvironment integrity is not supported by selection as age advances into the post-reproductive
period and cells do not evolve to optimally perform in the altered microenvironment. (C) An example of cell fitness
determination within a hypothetical bifactorial tissue microenvironment. The normal cell phenotype evolves for
optimal performance at the animal population level, and thus the probability of somatic mutations that enhance cell
performance is reduced. The evolved (“normal”) and mutant cell phenotypes have different degrees of adaptation to
microenvironmental factors A and B (solid lines connecting to the right “adaptation” axis); following the Sprengel-
Liebig Law of the Minimum, fitness of both phenotypes is limited by the factor each phenotype is least adapted to
(dashed lines connecting to the left “fitness” axis). (D) An altered microenvironment of aging post-reproductive
tissues (factor A and B intensities have changed). Selection at the animal population level is relaxed and neither of the
cell phenotypes have evolved to an aged microenvironment (both are out of optima), but the fitness of the mutant
phenotype may become higher in the altered microenvironment. (E) A phenotypically homogenous population of
cells will decline in fitness in a degraded microenvironment, revealing the microenvironment’s uniform component
that affects fitness. (F) Phenotypic diversity creates fitness differential in the cell pool. In a degraded
microenvironment relative fitness of cells may change and initially disadvantageous mutant phenotypes may gain in
fitness relative to others (red cell in panel F) and vice versa (green cell), revealing the microenvironment’s stochastic

component affecting fitness independently of the initial fitness distribution.

Environmental alterations lead to changes in factor
intensities, which results in perturbation of the relative
fitness of different phenotypes within a population and
leads to selection for minority phenotypes that happen
to have a better net fitness in an altered environment
(Fig. 7D). Alteration of an environment reduces the
average fitness of the population (Fig. 7E,F), revealing
a uniform fitness effect on the population. However, in
a phenotypically diverse population the exact degree of
fitness change for any particular phenotype will depend
on the phenotype’s set of adaptations to particular
environmental factors as shown in Fig. 7C,D, revealing
a stochastic component of environmental effects which
redistributes the relative fitness of particular phenotypes
in a population independently from their initial
distribution in an optimal environment. This general
principle is the mechanism for how phenotypic effects
of mutations are translated by environment into the
phenotype’s fitness.

To model this principle, we first generated a proposed
curve of fitness decline, which describes a general non-
linear ~3-fold fitness drop as a function of age using the
following equation:

max j (2)

F(A)=F,, - -
( ) max (1+5200A60A0031

Where F is average HSC pool fitness, Fyx 1S maximum
initial fitness equal to 1, F.;, is minimum end-life
fitness equal to 0.3, and A is age in weeks. This curve
was not intended to exactly replicate the natural fitness
decline, as its shape is unknown, but reflects the general
principle shown in Fig. 7B [65]. The overall 3-fold
fitness reduction was chosen based on the 2-3 fold
reductions in hematopoietic output per HSC observed
for older humans and mice [5, 59, 60]. We used the first

F

min

order derivative of this function to calculate the average
fitness drop (AF) for any given discrete period. This
amount was subtracted from each simulated cell in the
pool at each weekly model update and represented the
uniform part of the microenvironmental effects of cell
fitness. To reproduce the distributed part of
environmental effects, we then corrected the resulting
fitness of each cell by an amount drawn from a normal
distribution centered on zero and having variance
o(t)=AF(t)/2. As the chemical composition and
physical conditions of tissue microenvironment are
complex, their change with age will impact the existing
mutation-generated functional diversity through an
independent stochastic component, contributing to
diversification of the relative fitness of different cells in
a stochastic manner (Fig. 7F). In this way, mutations
accumulated in a simulated cell lineage at any age are
re-evaluated at each “"weekly” update of the model run;
for example, mutations occurring during ontogeny
could have an impact on HSC fitness later in life that
differs greatly from their impact upon first occurrence
(as the result of microenvironmental perturbations).

We applied this additional bicomponent modification of
mutation fitness effects by microenvironment and tested
the same series of outputs in a composite model,
varying the proportion of the microenvironment-
imposed DFE (ENV DFE) that resides in the positive
tail. The composite model results in an extensive
overlap between the plausible range (shaded areas in
Fig. 8A,B) and conditions allowing for exponential age-
dependent increase in clonal expansions (red areas in
Fig. 8B; see color bar in Fig. 8C). Moreover, the
magnitudes of these clonal expansions are substantially
higher in the composite versus the mutations-only
model (Fig. 6; Table S1). Both the extent of overlap and
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the magnitude of clonal expansions are maximal for a
small (0-1%) positive tail for microenvironment-
imposed DFE. As shown in Fig. 8D, the overwhelming
cumulative effect of the microenvironmental uniform
component results in the expected substantial average
fitness drop, but without promoting excessive purifying

component model of tissue microenvironment effects,
by interacting with the mutation pre-generated cellular
diversity, creates a range of mutation DFE variance and
rate increase that are concurrently permissive for
realistic mutation accumulation, exponential age-
dependent increase in rates of somatic evolution (clonal

selection to buffer fitness decline. In this way, the bi- expansions), and realistic cell fitness decline.
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Figure 8. Landscapes of clonal expansions in the simulated pools under different parameters of
mutation DFE when cell fitness is modified by microenvironment. (A) Shaded regions represent the
plausible range of mutation DFE variance and rate increase over lifetime (for derivation see Fig. 4) under
different proportions of mutations in the positive tail of the ENV DFE (B) Plots of shape match landscapes
within the studied ranges of mutation DFE variance (o; Y-axis) and mutation rate increase (X-axis). Colored
landscapes represent age-dependent rates of somatic evolution as shown in the panel C. The proportion of
ENV DFE variance in the positive tail is indicated in white text. Plausible ranges of mutation parameters
from panel A are compared to mutation parameters that replicate exponentially increasing rates of somatic
evolution that shape-match leukemia incidence curve. (C) Color scale for panel B; colors represent the
goodness of shape match between age-dependent leukemia incidence (green line) and simulated clonal
expansions (blue line depicts the share of the most successful clone at any given time). (D) Age-dependent
average cell fitness decline in the simulated pool for the indicated values of mutation DFE (o).
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Given different estimates of the size of adult human HSC
pool, we also tested if the results shown in Fig. 5 and 8
are sensitive to pool size. Both with a larger HSC pool
kept at a stable size through adult ages and a pool size
increasing over the whole life, the composite mutation/
microenvironment model demonstrates a much greater
overlap between DFE parameters that replicate leukemia
incidence-like clonal expansions in the simulated pool
and the slope of mutation accumulation in the Tier 3
genome (Fig. 6B and S3; Table S1B), suggesting that the
principal discrepancy between the mutations-only (Fig.
5B) and composite (Fig. 8B) models is independent of
pool size. We also tested the same model output under a
lower adult cell cycling speed, as the lowest published
estimates based on telomere attrition dynamics suggest
~0.6 divisions per year for human HSC [21]. The results
in Fig. 6B and Table S1 demonstrate that the discrepancy
in the mutations-only model still persists and is corrected
by the composite model.

DISCUSSION

Our results indicate that parameters of the mutation
process that would concomitantly allow for
exponentially increasing rates of somatic evolution
(incidence of leukemia) and significant functional
decline in HSC, with both being driven and rate-limited
by cell-intrinsic genetic damage accumulation with age,
are unlikely to exist. Our modeling instead indicates
that a common set of mutation DFE and rate parameters
can only be defined under the dynamic, environment-
dependent paradigm of fitness. Thus, these results
argue that the late life increased incidence of
hematopoietic malignancies is not rate-limited by the
occurrence of oncogenic genetic damage events, but
results from microenvironment-imposed increases in
positive  selection for previously accumulated
genetic/phenotypic diversity in aged tissues.

Our model applies the definition of mutation fitness
effects on somatic cells based on Shelford’s and
Sprengel-Liebig’s laws, and operates with a
bicomponent evolutionary pressure on HSCs: a uniform
pressure on cellular fitness that causes substantial HSC
fitness decline with age, as well as a distributed
component that interacts with the phenotypic cell
diversity generated by mutations and creates a context-
dependent fitness differential in the HSC pool. The
Sprengel-Liebig system can also be considered
bicomponent and roughly holds that deviation of
multiple environmental factors from the optimum
lowers general population fitness and promotes
selection for the better fit; the exact degree and mode of
its action on any particular phenotype, however, varies
depending on the phenotype and the degree of deviation

of particular environmental factors. For example, a
mutation conferring resistance to hypoxia could be non-
adaptive or neutral in a normoxic tissue, while clearly
adaptive under hypoxia (with the magnitude of the
effect being dependent on the extent of hypoxia).
Similarly, while oncogenic mutations may have a
defined phenotypic effect on the recipient cell, the
fitness/selective value of the physiological changes they
confer will always depend on microenvironment. Our
model thus proposes a radical revision of the long-held
concept of defined fitness effects of oncogenic
mutations in the modeling of cancer with age. Instead,
fitness is ultimately a property imposed and defined by
microenvironment, and changes in accord with
alterations of the microenvironment.

Our model also indicates that the ability of mutations to
improve cell fitness should be limited in the young
compared to the elderly. Whether young stem cells
reside at a local fitness optimum remains an open
question, however active selection at the population
level over long evolutionary periods should have driven
co-evolution of stem cells and young tissue
microenvironments to optimize performance. In an aged
microenvironment of a post-reproductive animal,
cellular adaptation capacity is limited to somatic
evolutionary processes, as selection at the germline
level is relaxed. In this way, our model is consistent
with modern evolutionary models of aging, which
explain animal lifespan diversity by evolution of
different strategies for age-dependent investment in the
maintenance of tissue architecture and function [28, 29,
65]. The idea that this investment is regulated above the
cell-intrinsic level is supported by ample evidence of
drastically different lifespans within physiologically
close groups of mammals, with examples of even
significant inter-population lifespan divergence within
the same species [66]. This strategy is manifested in the
curve of age-dependent microenvironmental effects on
cell fitness, with the maintenance of tissue fitness
through reproductive years followed by a gradual
decline (Fig. 7B).

Likewise, the model can explain the universal age-
dependent pattern of cancer incidence as rate-limited
primarily by microenvironmental effects that suppress
or promote somatic evolution in an age-dependent
manner, as dictated by differential investment in tissue
maintenance evolved for particular species. This
explanation is also consistent with scaling of cancer
incidence and aging dynamics to the lifespans of
different species. Along with a number of other
proposed mechanisms [31], suppression of somatic
evolution by age-dependent investment in tissue
maintenance could explain why large and long-lived
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mammals with supposedly larger stem cell pools, and
thus seemingly greater chances to acquire cancer driver
mutations over longer periods of life, are not more
prone to develop cancer compared to smaller, short-
lived species [24].

In agreement with evolutionary models of aging, our
results suggest that cancer is not rate-limited by the
occurrence of oncogenic mutations as postulated by the
current model of carcinogenesis, but its incidence instead
is tightly linked to the evolution of lifespan and is
promoted by altered selective value of oncogenic
mutations that accumulate over lifetime in aged tissues.
From this perspective, aging is not only the main
prognostic factor of cancer rates, but is a factor directly
promoting somatic evolution and cancer. Our results,
thus, are concordant with other studies demonstrating the
impact of aged tissue environments on stem cell fitness
[67-70], and the importance of tissue microenvironment
during tumor progression [22, 41-46]. It should be noted,
however, that besides modifying the fitness of a
phenotype, microenvironmental degradation itself is
likely to induce additional somatically heritable changes
in cells (e.g. epigenetic changes). Empirical evidence
indicates that at least to some degree aged phenotypes in
HSC are maintained even when removed from the aged
tissue microenvironment, such as in in vitro culture or
following transfer of cells into young recipient mice [71].

Our model incorporates fundamental properties of the
evolutionary process (such as context-dependent
fitness) with known properties of human HSC pools,
and thereby resolves many of the discrepancies
underlying previous cancer models, which have
hindered our understanding of the relationship between
aging and cancer. The utility of our model lies in its
ability to integrate into a complex and dynamic system
a number of processes and characteristics of stem cells
that change non-linearly with age, such as pool size, cell
division rates or clonal dynamics. This capability of the
stochastic approach has a critical advantage over
traditional analytical models used in modeling cancer
by providing a tool to describe complex multi-factorial
and non-linear processes which may not have analytical
solutions. Importantly, our computational model is
based on infinitely adaptable parameters (such as pool
size, mutation accumulation kinetics, and cell division
rates) which can be updated as new experimental data
are reported, and adapted to replicate the dynamics of
other stem cell systems, thereby allowing for versatile
modeling of a myriad of cancer types.

A full appreciation of the critical role for altered
selection in cancer development could significantly
impact treatment and prevention strategies by shifting

focus toward microenvironmental factors modulating
cancer evolution, both for initial tumor development
and following therapy. Identifying and preventing age-
related processes in tissue microenvironments, such as
by modulating chronic inflammation or the
accumulation of particular byproduct metabolites that
could be key in promoting somatic evolution, might
prove effective in reducing cancer risk. Cancer
therapeutic strategies, such as targeted therapies, might
also benefit by shifting focus from inhibition of
malignant cell phenotypes to suppressing cell fitness,
which requires identification and consideration of
specific factors in the microenvironment that affect the
fitness value of particular cellular phenotypes. In this
regard, analyses of the changes in tissue adaptive
landscapes post-treatment could prove helpful in
eliminating the potential of pre-treatment tumors to
evolve drug-escaping cellular phenotypes within the
genetic background of the specific initial tumors.
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