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Abstract: The most physiological type of cell cycle arrest — namely, contact inhibition in dense culture - is the least
densely studied. Despite cell cycle arrest, confluent cells do not become senescent. We recently described that mTOR
(target of rapamycin) is inactive in contact-inhibited cells. Therefore, conversion from reversible arrest to senescence
(geroconversion) is suppressed. | this Perspective, we further extended the gerosuppression model. While causing
senescence in regular cell density, etoposide failed to cause senescence in contact-inhibited cells. A transient reactivation
of mTOR favored geroconversion in etoposide-treated confluent cells. Like p21, p16 did not cause senescence in high cell
density. We discuss that suppression of geroconversion in confluent and contact-inhibited cultures mimics
gerosuppression in the organism. We confirmed that levels of p-S6 were low in murine tissues in the organism compared

with mouse embryonic fibroblasts in cell culture, whereas p-Akt was reciprocally high in the organism.

Preface
activate MAPK and mTOR pathways and induce p21
When normal cells become confluent, they get arrested: and p16, causing senescence [9, 24-27].
a phenomenon known as contact inhibition [1-7].
Certainly, this is the most physiologically relevant type Numerous studies have been aimed to pinpoint the
of cell cycle arrest. In the organism, cells are difference between quiescence and senescence based on
predominantly contact-inhibited. Yet, contact inhibition either the point of arrest, the nature of stresses or
is the least studied type of cell cycle arrest. Instead, peculiarities of CDKi (p21 versus pl16). Yet, despite all
scientific attention has been attracted to two types of efforts, the distinction remained elusive.
arrest: (a) starvation-induced arrest and (b) Cyclin
Dependent Kinase-inhibitor (CDKi)-induced arrest. In fact, the difference between quiescence and
As a classic example of starvation-induced arrest, serum senescence lies outside the cell cycle [8, 28, 29]. A
withdrawal causes reversible quiescence in normal senescent program consists of two steps: cell cycle
cells. During serum-starvation, mitogen-activated arrest and gerogenic conversion or geroconversion, for
pathways become silent [8]. Cells neither grow in size brevity [29]. It is geroconversion that distinguishes
nor cycle. Re-addition of serum causes cell activation quiescence from senescence. Geroconversion is “futile
and proliferation. cellular growth” driven by mTOR as well as related
mitogen-activated and growth-promoting signaling
As an example of CDKi-induced arrest, DNA damage pathways [29-31]. Rapamycin suppresses gero-
and telomere shortening induce p53, which in turn conversion, maintaining quiescence instead [32-38].
induces p21 and pl6, inhibiting CDKs. In other cases, Furthermore, any condition that directly or indirectly
stresses induce both p21 and p16 [8-23]. When serum inhibits mTOR in turn suppresses geroconversion [39-
growth factors and nutrients stimulate growth, then 49]. Two-step model of senescence is applicable to all
inhibition of CDKs leads to senescence [8]. All stresses forms of senescence: from replicative and stress-
that induce senescence inhibit CDKs in part by inducing induced to physiological cellular aging in the organism
CDKi such as p21, p16, p15. Oncogenic Ras and Raf [29]. Senescent cells are hyper-active, hyper-functional
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(for example, hyper-secretory phenotype or SASP)
compensatory signal-resistant, secondary malfunctional
and eventually atrophic [28, 36-38, 50-55]. Hyper-
function and secondary malfunction lead to age-related
diseases from cancer and atherosclerosis to diabetes and
Alzheimer’s disease [54, 56-73]. MTOR-driven gero-
conversion activates stem cells, eventually leading to
their exhaustion [34, 46, 74-82].

Rapamycin extends life span and prevents age-related
diseases, including cancer in mice and humans [33, 57-
73, 83-110].

The two-step model is applicable to contact inhibition.
Given that contact inhibition is reversible, we predicted
that mTOR is inhibited. In fact, we found that mTORC1
targets - S6K and S6 — are dephosphorylated in CI cells
[41]. Furthermore, activation of mTOR (by depletion of
TSC2) shifts reversible contact inhibition towards
senescence [41]. Thus, it is deactivation of mTOR that
suppresses geroconversion in contact inhibited cells.
Deactivation of mTOR was associated with induction of
p27. In cancer cells, there is no induction of p27 in high
cell density. Accordingly, cancer cells do not get
arrested in confluent cultures. There is a complex
relationship between p27 and mTOR [111-113].

To cause arrest of cancer cells, we induced ectopic p21.
Remarkably, p21-mediated arrest, which leads to
senescence of HT-p21 cells in regular density, did not
cause senescence in confluent cultures [41]. Why? It
turned out that the mTOR pathway was inhibited in
dense cultures of cancer cells. Yet, cancer cells do not
induce p27 and do not undergo contact inhibition.
mTOR is constitutively activated in cancer, [114-118].
And induction of p21 by itself does not inhibit mTOR.
So why mTOR is deactivated not only in contact-
inhibited but also in confluent cancer cells? The answer
is that cancer cells with highly increased metabolism
rapidly exhaust and acidify the medium, thus inhibiting
mTOR by starvation-like mechanism [41]. In fact,
change of the medium restored mTOR activity.
Therefore, in normal cells with low metabolism, mTOR
is deactivated by contact inhibition and the change of
the medium only marginally affects mTOR. In cancer
cells, mTOR is inhibited due to exhaustion of the
medium. And some cell lines are somewhere in
between.

Illustrations

In agreement with previous report, pS6 was barely
detectable in contact inhibited cells (Fig. 1A). Inhibition
of pS6 was associated with induction of p27. Treatment
of contact-inhibited (CI) cells with etoposide did not

affect either pS6 or p27. Change of the medium also did
not affect pS6, as measured on second day after the
change. Yet, the change of the medium transiently
activated pS6 up to 6 hours (Fig. 1 B). This transient
activation was not result in medium exhation, because
CM by itseld did not inhibit pS6 in sparse culture [41].
Transient induction was in part due to hyper-sensitivity
of Cl-cells to slight signals.

We treated Cl-culture and regular (exponentially
growing) culture with etoposide for 3 days (Fig. 1C). In
regular culture, WI-38 cells acquired a large flat
morphology with beta-Gal staining. This senescent
morphology was prevented by rapamycin (Fig. 1C). So
etopiside caused mTOR-dependent senescence in
regular culture conditions.

In Cl-culture, cells were beta-Gal positive to start with.
In fact, beta-Gal-staining is a marker of both contact
inhibition, senescence and serum-starvation [119-130].
In contact-inhibition, beta-Gal staining, a marker of
lysosomal overactivation, is mTOR-independent [41]
and Figure 1 C. We next, employed two non-
morphological tests to evaluate senescence: (a) cellular
hypertrophy, measured as protein per cell and (b) the
reversibility potential (RP) or the potential to restart
proliferation and to regenerate cell culture after splitting
in drug-free media. (Note: the reversibility also means
that regenerated culture consists of cells identical to
initial regular culture).

In regular culture, etoposide induced hypertrophy,
which was prevented by rapamycin (Fig. 1D). In CI-
culture, the cells were small and etoposide failed to
cause any increase in cellular size. A small cell
morphology is due to deactivated mTOR pathway in CI-
culture. As expected, rapamycin did not decrease cell
size further. Thus, etoposide caused mTOR-dependent
hypertrophy only in regular but not in Cl-culture.

The regenerative/reversibility potential can be tested
after washing etoposide out. It is importantly that
etoposide is easily washable [131].

In regular culture, etoposide dramatically eliminated
the reversibility potential (RP), meaning that
etoposide-treated cells did not proliferate after re-
plating in low density in drug-free culture. This effect
was in part mTOR dependent, because co-addition of
rapamycin and etoposide caused a lesser loss of RP
(Fig. 1E).

In Cl-culture, etoposide did not cause loss of RP.
Etoposide-pretreated cells resumed proliferation, similar
to untreated cells. Noteworthy, when treatment with
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rapamycin was combined with a daily-change of the
medium, which caused transient mTOR activation in
Cl-culture, the cells indeed lost some RP (Fig. 1 E, low
panel). This loss was m-TOR-dependent, reversed by
rapamycin (Fig. 1E). Therefore, we confirmed that, due
to deactivation mTOR, etoposide did not cause
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senescence in Cl-cultures. Also, etoposide did not cause
hypertrophy in Cl-cultures of RPE cells, while causing
hypertrophy in regular density RPE cells (Fig. 2A).
Etoposide-pretreated CI- cells retained RP, capable to
proliferate and regenerate culture after splitting in low
cell density (Fig. 2B).
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Figure 1. Contact inhibition suppresses etoposide-induced senescence in WI-38t cells. (A-B) Immunoblot
analysis [41]. (A) WI-38t cells [41] were plated at high density and lysed on the days indicated. When
indicated “Medium change”, the medium was changed to fresh one every day. Et: cells were treated with
0.5 pg/ml etoposide on day 3 and lysed on day 6. p-S6(5240/244). (B) The effect of medium change on
Contact Inhibited cells, measured in hours. (C) Beta-gal staining. WI38t cells were plated at regular or
high density. After 3 days, 0.5 ug/ml etoposide (Et) and +/- 10 nM rapamycin (R) was added, if indicated.
After 3 days, cells were stained for beta-Gal. Bar — 100 um. (D-E) Cells were treated as described in panel
C. Data are mean + SD. (D) Cell size, protein per cell. (E) Reversibility potential or Replicative potential
(RP). On day 6, cells were counted and re-plated at 1000/well in 12-well plates in fresh drug-free medium.
Cells were counted after 9 days of growth. Fold increase in cell numbers were calculated. Mean + SD.
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Importantly, senescence could be induced in Cl-cultures
by wounding in the presence of rapamycin. At the edge
of wounds, mTOR is reactivated [41]. When CI-
monolayer was wounded, cells acquired senescent
morphology in the presence of the same medium,
containing etoposide (Fig. 2C). We emphasize that
failure of etoposide to induce senescence in Cl-cultures
cannot be explained by cell cycle arrest in Cl-cultures.
It was extensively studied and shown that etoposide
caused DNA damage in G1 phase of the cell cycle [132-
134]. Furthermore its toxicity is high in non-cycling
cells [132-134].

B
m - Eto m - Eto
i +Eto @ +Eto
40 = 1.0
— o
v S
= a
£ 20 £ 05
a -
[ °
S
o
(i} £ o
HD RD
C )
3 ~, A 2 = ” 5 { » i %
LEED@ <Dk T +Eto
S \ “\ R \ : _,"‘ : r
i
5 g N
A 4 <

Figure 2. Suppression of etoposide-induced senescence
in RPE cells. (A) Reversibility potential (RP) in RPE cells [41]
treated with 0.5 pg/ml etoposide (+Eto) in high cell density.
After 2 day-treatment with etoposide (total 6 days in culture),
cells were counted and re-plated in fresh medium at 1000/well
in 24-well plates. After 7 days, cells were re-counted. Fold
increase in cell numbers mean + SD. (B) Protein per cell in
regular (RD) versus high cell density (HD). RPE cells were plated
at regular or high density. If indicated, cells were treated with
0.5 pg/ml etoposide (+Eto). After 2 days, cells were counted and
lysed, protein amount was determined and protein (ng)
amounts per cell was calculated. Data are mean * SD. (C)
Wounding. RPE cells were plated at high density. 0.5 pg/ml
etoposide (+Eto) was added, if indicated “+”. Wounds were
made in cell monolayer without changing the medium. After 3
days, cells were stained for beta-Gal.

Previously we showed that geroconversion is
suppressed in p2l-arrested cancer cells in very high
density [41]. This gerosuppression was associated with
deactivated mTOR in exhausted media, [41]. Here we
confirmed this observation and extended it to pl6-
induced arrest (Fig. 3). This indicated that high density
suppresses geroconversion regardless of whether p21 or
p16 caused arrest.
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Figure 3. Effect of high density (HD) on p21- and p16-
induced senescence. HT-p21 and HT-p16 cells (see [37]) were
plated at 20,000 (low density) and 600,000 (high density) cells in
6 well plates and then treated with IPTG to induce p21 and p16.
After 3 days, cells were trypsinized, counted and 1000 cells were
re-plated in IPTG-free medium in 6 well plates. Colonies were
stained and counted after 8 days.

Low basal activation of mTOR in vivo

In the organism, cells are predominantly contact
inhibited. Our in vitro data predict that mTOR activity
should be low in the organism compared with cells in
vitro. We compared levels of p-S6 (a marker of mTOR
activity) in the organs (the heart and the liver) with the
levels in mouse embrionyc fibroblasts (MEF). Use of
the same species (mouse) ensures that there is no
species-dependent differences in detection of p-S6 by
antibody. Due to extra-cell matrix in vivo, we loaded a
lesser amount of MEF protein (5 microg) than tissue-
extracted protein (30 microM). What was important is a
ratio between pS6 and S6 and between p-Akt and Akt
(Fig. 4). In the livers and the hearts, pS6/S6 ratios were
lower (approximately 4-100 fold) compared to MEF.

In contrast, the ratio p-Akt/Akt was much higher in the
tissues than in MEF in culture (Fig. 4).

Physiological and clinical applications

Contact inhibition suppresses geroconversion. In the
organism, most cells are contact inhibited. Even
proliferating cellular pools exist in a relatively high cell
density, albeit they may occupy special niches. Also,
near-anoxia  suppresses mTOR, thus exerting
gerosuppression during cell cycle arrest [40, 130, 135,
136]. Low glucose and amino-acid levels in the
organism (compared with cell culture in vitro culture
conditions [137]) are also gerosuppressive. Therefore,
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normal cells senesce slowly in the organism. In vivo,
physiological geroconversion may take decades,
culminating in age-related diseases.

L 30ug sup i 30H8
- Heart "&'S Liver
pS6 (240/244) . pS6 (240/244) = e
S6 v
S6

Ratio 100 <1 1.5
Ratio 100 15 37

PAKT(473) e
p-AKT (473) = o

AKT s qumamn AKT == o v

Ratio 1 39 81 Ratio 1 >100 >100

Figure 4. Comparison of p-$6(5240/244) and pAKT(S473)
levels in murine heart and liver vs cultured MEFs.
Immunoblot analysis. 5 ug protein MEF lysate and 30 ug protein
mice tissue were separated on the same gel and blotted for
pS6/S6 and pAKT(S473)/AKT. Signal intensities were quantified
using ImageJ program and normalized levels of p-S6 and p-AKT
in mice organs were estimated. Ratio in MEFs is 100 and 1
(indicated as numbers). Methods are described previously and
corresponding tissues samples blots published [103, 138-140].

The gerosuppression model shed light on the treatment
with DNA damaging agents. Despite DNA damage, if
the organism survives, it does not become old. One of
explanations 1is that contact inhibition 1is gero-
suppressive. This further supports the notion that
accumulation of DNA damage is not a cause of aging,
which instead is driven by the mTOR pathway.

Also, the model is applicable to tumors. In tumors,
necrotic regions coincide with exhaustion of the
medium. Thus in large tumors (and any detectable
tumors are already large), geroconversion is suppressed.
This may explain lack of senescence by conventional
drugs, which easily cause senescence in cell culture.
Also, solitary cancer cells, trapped among contact-
inhibited normal cells, such as epithelial cells are
resistant to therapy-induced senescence [41]. This is a
subject of our ongoing investigation.
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