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Abstract: Vascular calcifications are frequent in chronic renal disease and are associated to significant cardiovascular
morbidity and mortality. The long term predictive value of coronary artery calcifications detected by multi-layer spiral
computed tomography for major cardiovascular events was evaluated in non-diabetic Caucasian patients on maintenance
hemodialysis free of clinical cardiovascular disease. Two-hundred and five patients on maintenance hemodialysis were
enrolled into this observational, prospective cohort study. Patients underwent a single cardiac multi-layer spiral computed
tomography. Calcium load was quantified and patients grouped according to the Agatston score: group 1 (Agatston score:
0), group 2 (Agatston score 1-400), group 3 (Agatston score 401-1000) and group 4 (Agatston score >1000). Follow-up was
longer than seven years. Primary endpoint was death from a major cardiovascular event. Actuarial survival was calculated
separately in the four groups with Kaplan-Meier method. Patients who died from causes other than cardiovascular disease
and transplanted patients were censored. The “log rank” test was employed to compare survival curves. One-hundred two
patients (49.7%) died for a major cardiovascular event during the follow-up period. Seven-year actuarial survival was more
than 90% for groups 1 and 2, but failed to about 50% for group 3 and to <10% for group 4. Hence, Agatston score >400
predicts a significantly higher cardiovascular mortality compared with Agatston score <400 (p<0.0001); furthermore, serum
Parathyroid hormone levels > 300 pg/l were associated to a lower survival (p < 0.05). Extended coronary artery calcifications
detected by cardiac multi-layer spiral computed tomography, strongly predicted long term cardiovascular mortality in non-
diabetic Caucasian patients on maintenance hemodialysis. Moreover, it was not related to conventional indices of
atherosclerosis, but to other non-traditional risk factors, as serum Parathyroid hormone levels. A full cost-benefit analysis is
however necessary to justify a widespread use of cardiac multi-layer spiral computed tomography in clinical practice.

INTRODUCTION

Dialysis patients exhibit an increased all-cause and
cardiovascular (CV) mortality when compared to the
general aging population [1]. In particular, with the
increased aging of the population, calcification of vessels

and cardiac valves is highly prevalent in maintenance
hemodialysis (mHD) patients and has been associated
with an increased CV risk as well as with all-cause
mortality [2]. In patients with end stage renal disease
(ESRD), besides traditional risk factors such as
increased age, hypertension (HT), diabetes (DM) and
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dyslipidemia, non-traditional CV risk factors, such as
mineral metabolism abnormalities, extreme PTH serum
levels, excessive administration of calcium salts as
phosphate binders, chronic inflammation, malnutrition
and oxidative stress play an important role in
development of CV diseases [3].

In previous studies, male gender, dialysis vintage,
smoking, calcium-phosphate product, high serum high-
sensitivity C reactive protein, low Kt/V ., Diabetes
Mellitus and ethnicity were independent risk factors for
CV calcifications [4,5]. Type 2 diabetic patients show
an increased risk of CV events that is similar to the risk
of non-diabetic patients with coronary artery disease
[6], regardless of other concomitant CV risk factors [7].
Moreover, both type 1 and type 2 DM are frequently
complicated by renal disease [8] and kidney disease in
diabetic patients dramatically increases the incidence of
CV events [9-12]. Therefore, renal disease must be
considered an independent risk factor for CV disease at
least as strong as DM. Indeed, regardless of DM, gender
and ethnicity, incident HD patients show a CV
morbidity/mortality increased by ten to one hundred
times compared to the age-matched general population:
CV disease-related mortality rate of a 25 to 35 year-old
remic patient may be similar to that of people 85 or
more years old [13].

The primary aim of this study was to evaluate the long
term predictive value for CV events of coronary artery
calcifications (CACs) detected by multi-layer spiral
computed tomography (MSCT) in non-diabetic
Caucasian mHD patients.

Cardiovascular events

The secondary aim of the study was then to evaluate
whether conventional “atherogenic indices” were an
independent risk factor for CACs. The following
“atherogenic  indices” were investigated: total
cholesterol  (TC)/high-density  lipoprotein (HDL)
cholesterol, low-density lipoprotein (LDL) cholesterol/
HDL cholesterol and Triglyceride Logarithm/ HDL
cholesterol.

RESULTS

Demographic, clinical features and laboratory findings
of the study population divided on AS values <400 vs.
>400 are summarized in Table 1. We selected 400 AS
units as cut-off value according to previous literature
[14].

Among the 205 mHD patients enrolled into the study,
72 (35.1%) showed an AS < 400 units and 133
(64.9%) an AS >400 units. Age, HD-vintage, Kt/V yca,
C-reactive protein (CRP), serum haemoglobin (Hb),
glucose, calcium, phosphorus and calcium-phosphorus
product, fibrinogen, total cholesterol, HDL cholesterol
and serum triglycerides did not differ significantly in
patients with AS above or below 400. Statistically
significantly higher values were found in patients with
AS >400 units for BMI (p=0.039) (values less than 25
in both groups), serum intact parathyroid hormone
(iPTH) (p=0.015) and serum LDL cholesterol
(p=0.032) (values less than 100mg/dl in both groups),
whereas serum albumin was statistically lower
(p=0.043) in patients with AS >400 units but still
above 4mg/dl.
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Figure 1. Kaplan-Meier in function of the AS cut-off levels. The time is expressed as days.
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Table 1. Demographic, clinical and laboratory characteristics of study population by agatstone score.

AS <400 AS >400 p (Fisher Test)
Demographics
Patients 72/205 (35,1%)*** 133/205 (64,9%)***
Age (years) 52,50+12,65%* 63,98+10,82* 0,126
Female 34/72 41/133 0,119
Male 38/72 92/133 0,236
Clinical Characteristics
BM 23,98+4,80%* 24,81+3,77* 0,039
Hypertension 22/72 (30,5%)*** 55/133 (41,4%)***
HD vintage (months) 37 (6-276)** 48 (6-252)** 0,579
Kt/Vurea 1,31 (1-1,75)** 1,28 (0,85-1,84)** 0,957
Laboratory data
CPR (mg/l) 1,12+1,09 1,08+1,19 0,885
Hemoglobin (g/dl) 11,47+1,09* 11,61£1,2* 0,472
Calcium (mmol/l) 9,43+0,77* 9,47+1,01* 0,120
Phosphorus (mmol/l) 6,00+1,19* 5,62+1,34* 0,258
CaxP 55,41£12,50% 53,19+£14,52% 0,166
iPTH (pg/l) 383 (61-1498)** 451 (2,43-2500)** 0,015
Total cholesterol (mmol/l) 164,83+45,95* 157,12+38,42* 0,080
HDL cholesterol (mmol/l) 48,2+14,53* 42,90+12,70* 0,188
LDL cholesterol (mmol/l) 79,50 (38-311,4)** 93 (40-254,2)** 0,032
Triglycerides (mmol/l) 143 (50-747)** 171 (53-716)** 0,796
Serum Albumin (g/l) 4,23+0,30* 4,12+0,39* 0,043

Abbreviations: AS, Agatstone Score; HD, hemodialysis; Ca, calcium; P, phosphorus; iPTH, Intact Parathyroid Hormone;
LDL, Low-Density Lipoprotein; HDL, High-Density Lipoprotein.

Note

*Normally distributed data are expressed as mean * standard deviation

** Non normally distributes data are expressed as median with ranges

*** Data are expressed as percentage

Table 2. Drug therapy of patients.

AS <400 (n=72) AS >400 (n=133) p value
1.Phosphate binders:
a-calcium carbonate 19,44% (n=14) 20,30% (n=27) 0,495
b-sevelamer 65,28% (n=47) 67,67% (n=90) 0,225
2.Vitamin D analogues: 80,55% (n=58) 81,95% (n=109) 0,531
3.Statins: 58,33% (n=42) 56,31% (n=75) 0,589
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Drug therapy for dyslipidemia and for the management
of calcium/phosphorus metabolism of study population
did not differ in patients with AS above or below 400
(NS) (Table 2).

The “atherogenic indices” or lipoprotein ratio stratified
by AS wvalues, in male and female patients, are
described in Tables 3 A and B, respectively. In male
patients, no statistically significant differences were
observed for TC/HDL-cholesterol ratio, LDL/HDL
cholesterol ratio and Logarithmic transformation of the
triglyceride/HDL cholesterol molar concentration ratio

in patients with AS above or below 400. Moreover, all
parameters were in the normal range. In female patients,
TC/HDL-cholesterol ratio did not differ in patients with
AS above or below 400. Although a statistical
difference was observed for both LDL/HDL cholesterol
ratio and Logarithmic transformation of the
triglyceride/HDL cholesterol molar concentration ratio
in patients with AS above or below 400, these values
were in the normal range.

No correlation was found between serum iPTH levels
and AS value (r =-0.046, p=0.64).

Table 3A. Atherogenic indices values by Agatstone score in male.

AS<400 AS>400 p value
TC/HDL-C 3,73+1,28° 3,90+1,40° 0,52%*
LDL-C/HDL-C 2,47+1,78% 2,85+1,6° 0,0663
Log Trigl/HDL col 0,07+0,10° 0,07+0,09° 0,9453*
Table 3B. Atherogenic indices values by Agatstone score in female

AS<400 AS>400 p value
TC/HDL-C 3,29+1,09° 3,79+1,33? 0,09
LDL-C/HDL-C 1,83+0,79° 2,52+1,27% 0,0074
Log Trigl/HDL col 0,04+0,01° 0,05+0,16" 0,009*

® Data are expressed as mean * standard deviation.

Cholesterol; Log Trigl, Triglyceride Logarithm.

P<0,05 is considered statistical significant. *We applied Mann/Whitney Test
Abbreviation: HDL-C, High-Density Lipoprotein Cholesterol; LDL-C, Low-Density Lipoprotein Cholesterol; TC, Total
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Figure 2. Kaplan-Meier survival plot in function of the iPTH cut-off levels.

The time is expressed as months.
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Survival analysis

One-hundred two patients (49.7%) had a CV event
during the seven year follow-up period. Kaplan-Meier
survival analysis is shown in Figure 1. Seven-year
actuarial survival exceeded 90% among patients of
groups 1 (AS=0) and 2 (AS<400), but fell to about
50% in patients of group 3 (400<AS<1000) and to less
than 10% in patients of group 4 (AS>1000). Hence,
patients with AS>400 showed a significantly higher
CV morbidity/mortality compared to patients with
AS<400 (p<0.0001).

Seven-year actuarial survival exceeded 90% among
patients of groups 1 (AS=0) and 2 (AS<400), but fell to
about 50% in patients of group 3 (400<AS<1000) and
to less than 10% in patients of group 4 (AS>1000).
Hence, patients with AS>400 showed a significantly
higher CV morbidity/mortality compared to patients
with AS<400 (p<0.0001) (Figure 1).

We found a predictive role, both for an higher AS and
an higher CV mortality, linked to the serum iPTH
levels; in fact, as shown in Table 1, the iPTH values
were significantly higher in pts with an AS > 400 (451
pg/L, [range 2.43 to 2500 pg/L] vs 383 pg/L [range 61
to 1498 pg/L], p < 0.05); furthermore the Kaplan-Meier
analysis showed a significantly decreased seven-year
actuarial survival (p < 0.05) in patients with iPTH levels
> 300 pg/L compared to patients with iPTH levels < 300
pg/L (Figure 2).

Nine out of the 205 patients enrolled into the study were
censored: four died for non-CV causes and 5 underwent
renal transplantation.

DISCUSSION

With the changing medical treatments and with the
changes in the living environment, the age of the
population is increasing in all countries, posing novel
challenges to the medical and social areas [15-27].
While the changes related to increased age implies
significant problems for the society, relevant
modifications needs to be clarified for the physical,
biological and mental health. This has fostered
important research in distinct medical aspects, from the
major role played by the telomers [28,29] to the study in
different animal models, from bacteria, C. elegans to
drosophila or mice where the cell autonomy and the
underlying molecular pathways have been deeply
investigated [30-39]. Recently it has become apparent
that the complex genetic and epigenetic gene regulation
in aging is also affected by a large array of microRNA
[40-48], that contribute to the cellular signalling [49-

58], which in turn regulate several cellular function,
such as for example metabolism [59-64], cell division
[65-66], or DNA damage [67-70]. A significant
expansion of the latter is the involvement of p53 [71-
76] and its family members p63 [77-79] and p73 [80-
83] with their metabolic regulation. All these
biochemical alterations, profoundly affect different
organs, such as for example the neural [84-95] and the
cardiovascular [96,97] systems. Accordingly, in the
present manuscript we investigated a specific aspect of
vascular biology.

Calcification of vessels and cardiac valves is highly
prevalent in maintenance hemodialysis (mHD) patients
and has been associated with an increased CV risk as
well as with all-cause mortality [2].

Vascular calcifications can affect the media or intima.
Medial artery calcifications are frequently found in DM
and uremia [98]. Vascular calcifications are associated
with adverse clinical outcomes [99]. Hemodynamic
disturbances related to vascular calcifications include
loss of arterial elasticity, an increased arterial stiffness
and pulse wave velocity, with subsequent development
of myocardial ischemia and heart failure [100].

Pathogenesis of vascular calcifications is complex. It
does not only consist in a simple precipitation of
calcium and phosphate, but is instead an active process
in which vascular smooth muscle cells (VSMCs),
undergo apoptosis and vesicles formation, are
transformed into osteoblast-like cells, inducing both
matrix formation and attracting local factors involved in
the mineralization process [100].

Jono et al. suggested that elevated intracellular
phosphate may directly stimulate VSMCs to transform
into calcifying cells by activating genes associated with
osteoblastic  function [101]. Hyperfosfatemia is
responsible for the enhanced number and activity of
osteoclasts, being a major contributor to increased bone
resorption in chronic kidney disease [102].

Cardiac calcifications predict CV events and all-cause
mortality in non diabetic and add incremental predictive
value to conventional CV risk factors [103].

In the present prospective, cohort and long-term study
we assessed CACS by using a semi-quantitative
calcification score. In patients with CACS less than 400
AS units seven-year actuarial survival was very high
(more than 90%) compared to patients with AS> 400. A
striking increase in long term CV morbidity/mortality
associated with the increase of baseline CACS was
observed. Seven-year actuarial survival dropped to less
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than 10% in patients with extensive calcifications
(AS>1000).

We found a significant predictive role, both for an higher
AS and for the serum iPTH levels; in fact, the seven year
actuarial survival was lower both in patients with an AS
> 400 and in patients with iPTH levels > 300.

Other studies have addressed this issue using less
invasive methodology to assess CV calcifications in
both diabetic and non-diabetic mHD population [104];
in contrast with the results of previous studies, age,
male gender, dialysis vintage, calcium-phosphate
product, CRP serum levels, serum albumin, Kt/V e,
were not independent risk factors for CACS in our non-
diabetic study population, suggesting that the more
accurate, semi-quantitative = method used for
measurement, the anatomic location and the exclusion
of diabetic patients probably avoided confounding
factors. Interestingly, “atherogenic indices” were not
independent risk factors for CACS and LDL cholesterol
was at target levels regardless to the extent of cardiac
calcifications suggesting other factors to be important
for CACS formation.

Our findings corroborate the well-known poor impact of
traditional cardiovascular risk factor in non diabetic
hemodialysis  patients, and support that usual risk
factors, as well as age, blood pressure and lipid levels
are working with other factors, in particular iPTH
levels, to contribute to the development and progression
of vascular calcifications. It is worthy to note that
higher serum iPTH levels are strongly associated with
the presence of cardiac calcification, because a
deregulated calcium-phosphorus is as important long
term CV risk factor in non diabetic mHD patients and
stress the importance of optimal calcium-phosphorus
metabolism control in order to prevent or reduce the
occurrence of CV events [105].

Although accurate MSCT is more invasive and the
ionizing radiation dose is higher compared to
roentgenography, it is likely that patients with higher
iPTH and phosphorus levels could be suitable for
screening and widespread clinical use in asymptomatic
patients, may although provide additional information
in situations in which a more accurate assessment of
CV risk would be necessary.

CONCLUSIONS

Following our previous interest on aging [106-108],
here we show that extensive coronary artery
calcifications strongly predict long term CV morbidity
and mortality in non diabetic Caucasian mHD patients

independently of atherogenic indices. A full cost benefit
analysis would be needed before more widespread
screening of MSCT could be advocated in clinical
practice, employing a CV risk stratification plan that
includes iPTH with other usual stronger atherogenic
indices, linked to cholesterol and triglycerides ratios.

MATERIALS AND METHODS

Study design and patients. This prospective and cohort
study was designed specifically to evaluate CACS as a
possible predictor of CV events in mHD patients with no
evidence of cardiovascular disease. Patients recruited
from five dialysis facilities, had coronary artery
calcifications measured by multi-layer spiral computed
tomography (MSCT). All of them were performed at our
university centre. Clinical data, features of dialytic
treatment and information on outcome were provided for
each patient at regular six-month interval. Recruitment
started in January 2003. Participants’ clinical status was
annually reviewed annualy up to January 2011.

The study protocol complied with the declaration of
Helsinki and was appointed by our local ethical
committee and by ethical committee of each of the
participating institutions. A written fully informed
consent was provided by all patients before entering the
study.

Men and women aged 18 years or more, on mHD since 6
months at least were considered eligible for the study.
Exclusion criteria were: diabetes, pregnancy, known
coronary artery disease, congestive heart failure,
uncontrolled HT, cerebro-vascular ischemic events in the
last six months, cardiac arrhythmias (that would impede
assessment of CACS with computer tomography),
neoplastic disease, inability to provide informed consent
or other medical conditions likely to limit life expectancy
or requiring extensive medical treatment.

Two-hundred five (105 male and 100 female)
Caucasian mHD patients were enrolled into the study.
At enrolment time each patients performed the coronary
MSCT. Mean age was 59.85+12.77 years, HD vintage
was 62.30+55 months.

All patients received standard bicarbonate dialysis
with1.5-2.0m*> hollow-fiber low-flux polysulphone
membranes (Lo-PS Diacap Polysulphone, B. Braun
gmbh, Melsungen, Germany), four hours three times
weekly, through a well-functioning native A-V fistula
or a cuffed internal jugular indwelling venous catheter.
The vascular access performance was satisfactory with a
blood flow of at least 300ml/min and a Kt/V e
ratio>1.3 [109].
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Body mass index (BMI) was calculated upon the post-
dialysis body weight (“dry weight”) at enrollment by
dividing weight in kilograms by the square of height in
meters for every patient.

Laboratory measurements. After an overnight fast blood
samples were taken for baseline measurements of serum
glucose, serum Hb, total and HDL cholesterol, (LDL
cholesterol was calculated by Friedewald method),
triglycerides, serum Calcium and Phosphorus, iPTH,
fibrinogen and CRP. Blood samples were drawn in a
midweek non-dialysis day.

Atherogenic indices were calculated as follows: total
cholesterol (mg/dl) /HDL cholesterol (mg/dl) (normal
value <5 for male and <4.5 for female), LDL
cholesterol (mg/dl)/HDL cholesterol (mg/dl) (normal
value<3.5 for male and <3 for female). An atherogenic
plasma index [log (triglycerides mg/dl/ HDL cholesterol
mg/dl)], >0.5 has been proposed as cut-off point
indicating atherogenic risk. Risk categories and target
levels for total cholesterol/HDL-cholesterol, LDL-
cholesterol/HDL-cholesterol in primary and secondary
prevention, stratified by gender, were considered [110].

Cardiac calcifications. Quantification of CACS was
obtained with a coronary MSCT. The measurement of
CACS was expressed in Agatston score (AS) units
[111].

MSCT was performed with a 64-channel multidetector
scanner (LightSpeed VCT, General Electric Medical
Systems, EU) and retrospective synchronization
technique. Images were acquired without enhancement
with the patient in the supine position. All scans were
performed with the following parameters: detector
collimation 4 x 2.5mm, reconstruction interval 10mm,
gantry rotation time 0.5 sec, tube voltage 120Ky,
intensity 300mA, field of view 25cm, cranio-caudal
scan direction.

Calcium was scored according to the Agatston method
to quantify the amount of calcification in the coronary
arteries.

Coronary calcification was defined as the presence of
four or more contiguous pixels with more than 130
Hounsfield units (HU). The investigator scored each of
the 20 slices individually, using GE Medical Systems-
Advantage Workstation software. Thereby, each plaque
score was generated as the product of the area and
density. This method has previously been described in
detail by Agatston et al. [112,113]. According to the AS
patients were then divided in four groups: group

1(AS=0), group 2 (0<AS<400), group 3
(400<AS<1000) and group 4 (AS>1000).

Clinical endpoints. Primary clinical endpoint was a fatal
major CV event: death due to myocardial infarction
(M), heart failure or other CV causes (aortic aneurysm
rupture, stroke, i.e.) during the 7 year follow-up period
following baseline evaluation. Clinical outcome was
assessed by direct interview contact to the patients and
inspection of medical or other records.

Statistical analysis. Results related to biochemical and
radiological findings are expressed as the mean +
standard deviation (SD) of three independent
determinations. Two-tailed independent-sample T test
and two sided Fisher’s exact test were employed for
analysis of results; p-values <0.05 were considered
statistically significant.

Seven-year actuarial survival was calculated in the four
groups separately by Kaplan-Meier method. The “log
rank” test was employed to compare survival curves.
Patients who died for causes other than CV diseases and
transplanted patients were censored. To study the linear
relationship between i-PTH levels and AS values, non
parametric correlation (Spearman p) was used. Data
were elaborated through the MedCalc Statistical
Software (MedCalc Software, 9030 Mariakerke,
Belgium).
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