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The cerebellum ages slowly according to the epigenetic clock
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Abstract: Studies that elucidate why some human tissues age faster than others may shed light on how we age, and
ultimately suggest what interventions may be possible. Here we utilize a recent biomarker of aging (referred to as epigenetic
clock) to assess the epigenetic ages of up to 30 anatomic sites from supercentenarians (subjects who reached an age of 110 or
older) and younger subjects. Using three novel and three published human DNA methylation data sets, we demonstrate that
the cerebellum ages more slowly than other parts of the human body. We used both transcriptional data and genetic data to
elucidate molecular mechanisms which may explain this finding. The two largest superfamilies of helicases (SF1 and SF2) are
significantly over-represented (p=9.2x10'9) among gene transcripts that are over-expressed in the cerebellum compared to
other brain regions from the same subject. Furthermore, SNPs that are associated with epigenetic age acceleration in the
cerebellum tend to be located near genes from helicase superfamilies SF1 and SF2 (enrichment p=5.8x10"%). Our genetic and
transcriptional studies of epigenetic age acceleration support the hypothesis that the slow aging rate of the cerebellum is due
to processes that involve RNA helicases.

INTRODUCTION

[5-14]. Several recent studies propose to measure
Since it is difficult to study what one cannot measure, accelerated aging effects using DNA methylation levels
the development of suitable measures of biological age [15_20] While previous epigenetic age predictors app]y
has been a major goal of gerontology [I, 2]. Many to a single tissue, our recently developed "epigenetic
biomarkers of aging have been studied ranging from clock" (based on 353 dinucleotide markers known as
telomere length [3, 4] to whole-body function such as Cytosine phosphate Guanines or CpGs) applies to most
gait speed. DNA methylation (DNAm) levels are human cell types, tissues, and organs [19]. Predicted age,
particularly promising biomarkers of aging since referred to as DNA methylation age, correlates with
chronological age (i.e. the calendar years that have chronological age in sorted cell types (CD4 T cells,
passed since birth) has a profound effect on DNA monocytes, B cells, glial cells, neurons), tissues and
methylation levels in most human tissues and cell types organs including whole blood, brain, breast, kidney, liver,
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lung, saliva [19], and even prenatal brain samples [21].
The epigenetic clock is an attractive biomarker of aging
for the following reasons: a) it is more highly correlated
with chronological age than previous biomarkers [22,
23], b) it applies to most tissues, cell types, and fluids that
contain human DNA (with the exception of sperm), c) it
relates, to some extent, to biological age since DNAm
age of blood is predictive of all-cause mortality even after
adjusting for chronological age and a variety of known
risk factors [24]. Similarly, markers of physical and
mental fitness are also found to be associated with the
epigenetic age of blood (lower abilities associated with
age acceleration) [25]. Perhaps the most exciting feature
of the epigenetic clock is the prospect of using it for
comparing the ages of different tissues and cell types
from the same individual [19]. While the mathematical
algorithm lends itself for contrasting the ages of different
tissues, it remains an open research question whether the
results are biologically meaningful. To provide empirical

data for addressing this question, we proceed with all due
caution in this study.

RESULTS

We had previously shown that tissues from the same
middle aged individuals exhibit similar DNAm ages
[19] and additional data from the public domain confirm
this result (Figure 1). But it is not yet known whether
some tissues collected from centenarians - and
particularly supercentenarians appear to be younger
than the rest of the body, which would indicate that they
are better protected against aging. Here we assess the
epigenetic ages of an unprecedented number of tissues
(up to 30 tissues) from supercentenarians and younger
controls. An overview of our data sets is presented in
Table 1. Apart from three novel DNA methylation data
sets, we also analyzed three publicly available data sets.

DNA methylation age vs. actual age in different tissues
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Figure 1. DNA methylation ages of various tissues from four middle-aged individuals. Here we use data set 4
(Lokk, et al; 2014) to assess the tissue ages of 4 subjects (each of which corresponds to a different panel and person
identifier such as BM419.9). Bars report the DNAm age in the corresponding tissue. The red horizontal line reports the
chronological age. These plots confirm that tissues from the same middle aged individuals exhibit similar DNAm ages.
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Figure 2. Epigenetic age acceleration in various brain regions. (a) Scatter plot relating the DNAm age of each brain
sample (y-axis) versus the corresponding chronological age (x-axis). Points are colored by brain regions (e.g. turquoise for
cerebellum) as indicated in (b-h). Linear regression lines through cerebellar samples and non-cerebellar samples are
colored in turquoise and red, respectively. Note that cerebellar samples (turquoise points) exhibit a lower rate of change
(i.e. slope of the turquoise line) than non-cerebellar samples. In the scatter plots, circles and squares correspond to brain
regions from Alzheimer's disease subjects and controls, respectively. Scatter plots show (b) cerebellar samples only, (c)
frontal lobe, (d) hippocampus, (e) midbrain, (f) occipital cortex, (g) temporal cortex, and (h) remaining brain regions,
which include caudate nucleus, cingulate gyrus, motor cortex, sensory cortex and parietal cortex. The subtitle of each
scatter plot reports a Pearson correlation coefficient and corresponding p-value. Epigenetic age acceleration was defined
as the vertical distance of each sample from the red regression line in (a). (i-l) Age acceleration versus brain region in
different age groups as indicated in the respective titles. Cerebellar samples tend have the lowest (negative) age
acceleration (turquoise bars) followed by occipital cortex (blue bars). Each bar plot depicts the mean value and one
standard error and reports a non-parametric group comparison test p-value (Kruskal Wallis Test).

Epigenetic age (referred to as DNAm age) was
calculated as described in [19] from human samples
profiled with the Illumina Infinium 450K platform. As
expected, DNAm age has a strong linear relationship
with chronological age in brain tissue samples (Figure
2a-h). We did not find a relationship between Alzhei-

mer's disease (AD) and age acceleration in these
samples from older subjects, which is why we ignored
disease status in the analysis. Strikingly, the DNAm age
of cerebellar samples exhibits a lower rate of change with
age than non-cerebellar samples (as can be seen by
comparing the turquoise line with the red line in Figure
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Age Acceleration

Age Acceleration

2a,b). To formally measure age acceleration effects, we
defined age acceleration as the residual resulting from a
linear model that regressed DNAm age against
chronological age in non-cerebellar brain sample. Thus,
a tissue sample that exhibits negative age acceleration
appears to be younger than expected based simply on
chronological age.

All brain regions have similar DNAm ages in subjects
younger than 80 (Figure 2i), but brain region becomes
an increasingly significant determinant of age
acceleration in older subjects (as can be seen from the
Kruskal Wallis test p-values in Figure 2i-1).

Note that the cerebellum and to a lesser extent the
occipital cortex exhibit negative epigenetic age
acceleration in the oldest old (Figure 2k), i.e. these brain
regions are younger than expected. These results can
also be observed by focusing on six individual
centenarians (Figure 3) and when evaluating two

independent validation data sets (Figure 5).
Comprehensive tissue analysis of a supercentenarian

To study age acceleration effects in non-brain tissues as
well, we profiled a total of 30 tissues of a 112 year old
woman (Figure 3a) who is described in Methods. We
generated at least 2 replicate measurements per tissue
and found that replicate age estimates are highly
reproducible (r=0.71, Figure 4). Interestingly, the
cerebellum exhibited the lowest (negative) age
acceleration effect compared to the remaining 29 other
regions. In contrast, bone, bone marrow, and blood
exhibit relatively older DNAm ages. Given that bone
appears to be older than other parts of the body, it is
worth mentioning that our novel data demonstrate that
the epigenetic clock applies to bone samples (largely
comprised of osteocytes/osteoblasts) as well (Figure 6).
To understand why the cerebellum evades epigenetic
aging, we turned to transcriptional and genetic data.
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Figure 3. Epigenetic age acceleration in tissues from individual centenarians. (a) Mean DNAm age
acceleration per tissue (y-axis) for the 30 tissues and organs collected from a 112 year old woman. (b-f) Age
acceleration in brain regions of 5 additional centenarians (whose age is in the title). Age acceleration here is defined
relative to age of non-cerebellar brain samples as indicated by the red regression line in Figure 2a. Bars corresponding
to different brain regions are colored as in Figure 2. For each of the six centenarians, cerebellar samples (turquoise
bars) take on the lowest (negative values). Each bar plot reports the mean value and one standard error. Number of
replicate measurements for each tissue was two except for bone and bone marrow, which were four.
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Table 1. Overview of the DNA methylation datasets. The rows correspond to the datasets used in this
article. Columns report the tissue source, DNA methylation platform, number of subjects, access
information and citation and a reference to the use in this text.
Tissue Platform | No. No. No. Mean Age GEO/ArrayEx | Citation Figure
source arrays | subjects | females | (range) press ID
I Brain | Hlumina |, 39 19 73 (15, 114) GSE64509 Current 2
- o 450K ’ article
2. [llumina Current
Multlple 450K 64 1 1 112 GSE64491 article 34
tissues
3. Bone | Humina | g 48 46 78 (49-104) GSE64490 Current 6
. Bone 450k i article
4. Illumina
Multiple 450K 70 4 1 52 (40, 6) GSE50192 Lokk 2014 1
tissues
5. Brain+ | Illumina Lunnon
blood 450K 531 122 72 85 (40,105) GSE59685 2014 5
. Illumina Pidsley
6. Brain 450K 87 46 16 62 (25,96) GSE61431 2014 5

Table 2. Functional enrichment of differentially expressed genes in the cerebellum compared to pons, frontal
cortex and temporal cortex.

Category Term DAVID GWAS
MAGENTA
CRBM
1239 transcripts over-expressed in cerebellum n FE P Bonf. P-value
Cellular nuclear lumen (GO:0031981) 202 2.5 6.0x107° 1.6x107
Compartment nucleoplasm (GO:0005654) 125 25 24x107% 0.018
nucleolus (GO:0005730) 101 2.6 1.7x107° 0.014
spliceosome (GO:0005681) 32 4.4 2.2x107 0.29
Biol. Process transcription (GO:0006350) 265 1.9 9.5x107% 0.15
mRNA processing (GO_0006397) 55 3.4 1.4x107"2 0.38
chromatin modification (GO:0016568) 55 3.1 4.5x10"° 0.026
RNA binding (GO:0003723) 93 1.9 7.1x107 0.040
Molecular F.
helicase activity (GO:0004386) 31 33 8.5x10°° 3.0x10°
INTERPRO DEAD-like helicase, N-terminal (IPR014001) 31 4.4 9.2x10” 5.8x107
808 under-expressed in cerebellum
Biol. Process synaptic transmission (GO:0007268) 39 3.1 2.2x10° 0.50
neuron differentiation (GO:0030182) 49 2.7 2.4x10° 0.030
neuron projection development (GO:0010975) 19 6.5 9.6x107 0.54

www.impactaging.com 298

AGING, May 2015, Vol. 7 No.5




Characterizing gene transcripts that are over/under Reproducibility of tissue age:
expressed in cerebellum cor=0.71, p=1.1e-05

Using gene expression data from multiple brain regions 110 -

of the Gibbs [26] data set (GSE15745), we identified S .°
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(DAVID, v6.7) [27] can be found in Table 1. The 1239 < —
over-expressed genes are highly enriched with genes 60 70 80 90 100 110

that are located in the nucleus and are known to play a
significant role in gene transcription, mMRNA
processing, RNA splicing and chromatin modifications.
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Figure 4. Reproducibility of DNAm age in the 112 year old
supercentenarian. For each of the 30 tissues of the supercente-
narian, we assessed at least two replicates (two independent
DNA extractions for distant regions of the same tissue).
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Figure 5. Epigenetic age acceleration in two multi-tissue data sets. The first column (a, c) report
results for samples from data set 5 [42]. The last column (b, d) reports findings for data set 6 [43]. (a-b)
Scatter plots relating the DNAm age of each sample (y-axis) versus the corresponding chronological age
(x-axis). Linear regression lines through cerebellar samples and non-cerebellar samples are colored in
turquoise and red, respectively. Note that cerebellar samples (turquoise points) tend to lie below non-
cerebellar samples. (a) Squares, circles, and triangles correspond to samples from controls, AD, and
mixed dementia subjects, respectively. (b) Squares and circles corresponds to controls and
schizophrenia subjects, respectively. (c) The barplots depict the mean DNAmAge (y-axis) versus tissue
type for all subjects from panel A for whom all 5 tissue types (including whole blood) were available. (d)
Analogous plot for all subjects from data set 6 for whom both brain regions were available.
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Thirty one of these over-expressed genes are involved in
helicase activity (Bonferroni corrected p-value=8.5x10°°).
RNA and DNA helicases are considered to be enzymes
that catalyze the separation of double-stranded nucleic
acids in an energy-dependent manner often coupled to
ATP hydrolysis. However RNA helicases can function in
other roles such as RNA folding, ribosome biogenesis,
anchoring of substrates to form ribonucleoprotein
complexes as well as disruption of RNA-protein
complexes [28]. Helicases have been classified into six
superfamilies (SF1-SF6)[29, 30]. We find that the two
largest superfamilies (SF1 and SF2) are over-represented
among the 1239 gene transcripts (p=9.2x10™) with
enrichment of genes with helicase or ATP binding
domains including DEAD/DEAH box domains
(IPRO14001). Specifically when we considered genes
listed on rnahelicase.org that are involved in pre-mRNA
splicing (AQR, SNRNP200, DHXS8, DHX15, DHX16,
DHX38, EIF4A3, DDX39B, DDX3X, DDX3Y, DDXS5,
DDX23, DDX42 and DDX46), seven of these 14 (AQR,
SNRNP200, DHX16, DHX38, DDXS5, DDX42 and
DDX46) are significantly overexpressed in cerebellum
compared to cerebral cortex (p = 1.28x10'5).

Bone (data set 3)
cor=0.88, p=8.6e-18
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Figure 6. DNAm age (y-axis) versus age (x-axis) in bone
(osteocytes/osteoblasts). The blue dots corresponds to the
samples in data set 3 (bone). The red dots corresponds to the
replicate bone samples from the 112 year old super centenarian.

Similarly, we identified 808 gene transcripts that were
under-expressed in cerebellum at an FDR threshold of
0.05. The top gene ontology categories among these
under-expressed are specifically related to neuronal
function and include neuron projection development,
neuron differentiation, and synaptic transmission.

Genetic enrichment analysis

To determine which of the cerebellum associated
transcriptional differences might play a causal role in

keeping the cerebellum young, we tested whether the
gene categories from Table 2 show enrichment for
SNPs that relate to epigenetic age acceleration in
cerebellum. The MAGENTA approach [31] was used to
test whether the sets of functionally related genes in
Table 2 are enriched for SNP associations with
epigenetic age acceleration in cerebellar samples.
Toward this end, we applied MAGENTA to results
from our GWAS meta-analysis of epigenetic
acceleration in cerebellum (Methods). The meta
analysis was based on four independent data sets for
which both SNP data and cerebellar DNA methylation
data were measured on the same subjects (n = 354, see
Methods). The MAGENTA results can be found in the
last column of Table 2. Even after adjusting for multiple
comparisons, significant enrichment results can be
observed for the GO category '"nuclear lumen"
(p=0.0016), and the molecular function "helicase
activity" (p=0.0030). Helicase superfamilies SF1 and
SF2 (particularly SF2) are highly enriched (p = 5.8x10
*) based on SNPs associated with the following genes
DHX57, CHDS, DHX15, DDX19A, DDX19B, DDX2,
BLM, SMARCAS, SNORA67, EIF4A1, HLTEF,
C90rf102. Interestingly, another DEAD box related
gene, DHX16, was the most significantly (q-
value=1.5x107) over-expressed gene in cerebellum
compared to other brain regions but it was not
implicated in our GWAS analysis.

DISCUSSION

While our study of a supercentenarian suggests that the
epigenetic age of cerebellar tissue is younger than other
part of the body we need to highlight several caveats.
Although the epigenetic clock lends itself for comparing
the epigenetic ages of multiple tissues, it remains to be
seen whether the difference between nervous and non-
nervous tissue reflects differences in biological aging
rates. We are on safer ground when it comes to
comparing the ages of different brain regions. We are
confident in the finding that the cerebellum has a lower
epigenetic age than other brain regions in older subjects
since this effect could be observed in three independent
data sets and 6 individual centenarians. This finding
raises several questions. The most pressing question is
whether this implies that the cerebellum is biologically
younger than other brain regions? While the epigenetic
age of blood has been shown to relate to biological age
[24, 25], the same cannot yet been said about brain
tissue. As a matter of fact, our study provides the first
admittedly indirect and circumstantial evidence that the
epigenetic age of brain tissue relates to biological age
because the cerebellum exhibits fewer neuro-
pathological hallmarks of age related dementias
compared to other brain regions. But prospective studies
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in model organisms will be needed to show that the
epigenetic age of brain tissue predicts the future onset
of age related diseases even after correcting for
chronological age and known risk factors. Another open
question is why does the cerebellum have a slower
aging rate? In an attempt to address this question, we
used both transcriptional and genetic data. We found
several gene ontology categories that are enriched in
genes that are over-expressed in the cerebellum
(including helicases). But the results from our
differential expression analysis must be interpreted with
caution for two reasons. First, cellular heterogeneity
may confound these results since the cerebellum
involves distinct cell types. Second, this cross-sectional
analysis does not lend itself for dissecting cause and
effect relationships. To partially address these concerns,
we used genetic data. It is striking that SNPs that relate
to the epigenetic age acceleration of the cerebellum also
tend to be located near RNA helicase genes as observed
in our transcriptional data. These results suggest that
RNA helicase genes might play a role in slowing down
the epigenetic age of the cerebellum. Unfortunately,
RNA helicase genes are not a "smoking gun" for any
particular molecular process. RNA helicases are
ubiquitous and essential proteins for most processes of
RNA metabolism (e.g. ribosome biogenesis, pre-mRNA
splicing, translation initiation) and also function as
regulators of gene expression by non-coding RNAs,
detection of specific RNA molecules, sensing of small
compounds or transduction of metabolic signals [32].
Although we could not find any prior literature on the
role of RNA helicases in tissue aging, the same cannot be
said for DNA helicases: e.g. WRN, which is a member of
the RecQ helicase family, is implicated in Werner's
syndrome, which is a recessively inherited progeria.

The interpretation of our main finding (regarding the
epigenetic age of the cerebellum) is also complicated by
the fact that we still don't know what is being measured
by epigenetic age. While many articles suggest that age-
related changes in DNAm levels represent random noise
others suggest that there might be a purposeful
biological mechanism [33-35]. DNAm age might
measure the cumulative work of an Epigenomic
Maintenance System (EMS) [19]. Under the EMS
hypothesis, our findings suggest that cerebellar DNA is
epigenetically more stable and requires less
"maintenance work". But many other explanations
could explain our findings including the following: a)
the cerebellum has a lower metabolic rate than cortex
[36-38], b) it has far fewer mitochondrial DNA
(mtDNA) deletions than cortex especially in older
subjects [39], and it accumulates less oxidative damage
to both mtDNA and nuclear DNA than does cortex [40].

In conclusion, this is probably the first study to show
that the cerebellum ages more slowly than other brain
regions and possibly many other parts of the body. By
understanding why the cerebellum is protected against
aging, it might be possible to understand the cause of
tissue aging, which remains a central mystery of
biology.

METHODS

Description of datasets listed in Table 1. All data
presented in this article have been made publicly
available in public repositories. Gene Expression
Omnibus accession numbers are presented in Table 1.

Data set 1: Bisulphite converted DNA from these
samples were hybridized to the Illumina Infinium 450K
Human Methylation Beadchip. 260 arrays were
generated from 39 subjects (19 females). Twenty-one
subjects presented with Alzheimer's Disease (AD)
whereas 18 subjects did not have any neurodegenerative
disease. None of the subjects had brain malignancies.
After adjusting for chronological age, we could not
detect an age acceleration effect due to AD status,
which is why we ignored AD status in the analysis. We
profiled the following brain regions: caudate nucleus (n
= 12 arrays), cingulate gyrus (n=12 arrays), cerebellum
(32), hippocampus (25), inferior parietal cortex (11),
left frontal lobe (9), left occipital cortex (12), left
temporal cortex (18), midbrain (18), middle frontal
gyrus (12), motor cortex (12), right frontal lobe (20),
right occipital cortex (21), right temporal cortex (11),
sensory cortex (12), superior parietal cortex (12), and
visual cortex (11).

Data set 2: Multiple tissues from a 112 year old, female
supercentenarian. 64 arrays were generated from 30
tissues/regions (listed in Figure 3).

Data set 3: Novel bone data set. The trabecular bone
pieces were obtained from the central part of the
femoral head of Spanish (Caucasian) patients with hip
fractures (due to osteoporosis) or subjects with
osteoarthritis. Since osteoarthritis status was not related
to DNA methylation age, we ignored it in the analysis.
Data set 4: Multiple tissues (listed in Figure 1) from
GEO: GSES0192 [41].

Data set 5: Various brain regions and whole blood from
(GEO data GSE59685) [42].

Specifically, the following tissues were available:
entorhinal cortex, cerebellum, frontal cortex, superior
temporal gyrus, and whole blood.

Data set 6: Pre-frontal cortex and cerebellum samples
from schizophrenics and controls (GEO data
GSE61431) [43].
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Disease status could be ignored in data sets 5 and 6
because our tissue comparisons involved samples from
the same subjects. Our results were qualitatively the
same after using a multivariate regression model that
accounted for disease status.

DNA extraction. AllPrep DNA/RNA/miRNA Universal
Kit (Qiagen, cat # 80224) was used for the DNA
extractions for frozen tissue samples. Cubes 3x3x3mm
with approximate mass of ~30 mg were cut from
histological specimens collected during necropsies.
Bone was dissected into bone and bone marrow
(3x3x3mm each specimen) and separated into 2
different microcentrifuge tubes for DNA extractions.
The procedure was conducted on dry ice without
thawing the samples down to preserve RNA quality for
prospective studies. 30mg of frozen tissue was lysed
with 600uL guanidine-isothiocyanate—containing Buffer
RLT Plus in a 2.0mL microcentrifuge tube, and
homogenized by using TissueLyser II (Qiagen) with
Smm stainless steel beads. Tissue lysate was continued
with the AllPrep protocol for simultaneous extraction of
genomic DNA and total RNA using RNeasy Mini spin
column technology. DNA yields were on average 16ug,
with the highest yield from Spleen tissue (46 ug) and
the lowest yield from Adipose tissue (2.2 ug).

We did not use bone specimens where we could
macroscopically see both solid bone and bone marrow,
so we did not use any additional washing steps to
remove bone marrow.

Preprocessing of Illumina Infinium 450K arrays. In
brief, bisulfite conversion using the Zymo EZ DNA

Methylation Kit (ZymoResearch, Orange, CA, USA) as
well as  subsequent  hybridization of  the
HumanMethylation450k ~ Bead  Chip  (Illumina,
SanDiego, CA), and scanning (iScan, Illumina) were
performed according to the manufacturers protocols by
applying standard settings. DNA methylation levels (B
values) were determined by calculating the ratio of
intensities between methylated (signal A) and un-
methylated (signal B) sites. Specifically, the B value
was calculated from the intensity of the methylated (M
corresponding to signal A) and un-methylated (U
corresponding to signal B) sites, as the ratio of
fluorescent signals f = Max(M,0)/[Max(M,0)+Max(U,0)
+100]. Thus, B values range from 0 (completely un-
methylated) to 1 (completely methylated) [44].

Many authors have described methods for dealing with
the two types of probes found on the Illumina 450k
array [45-47]. This is not a concern for the epigenetic
clock since it mainly involves type II probes. But our
software implements a data normalization step that

repurposes the BMIQ normalization method from
Teschendorff [46] so that it automatically references
each sample to a gold standard based on type II probes
(details can be found in Additional file 2 from [19]).

DNA methylation age and epigenetic clock. Many
articles describe sets of CpGs that correlate with age in
multiple tissues [5, 7, 8, 14, 48-50]. Although these
reports firmly establish the strong effect of age on
epigenetic modifications, individual CpG sites are
unsuitable for global contrasting of the epigenetic ages
of different tissues derived from the same individual.
Epigenetic age was calculated as reported previously.
The epigenetic clock is defined as a prediction method
of age based on the DNAm levels of 353 CpGs.
Predicted age, referred to as DNAm age, correlates with
chronological age in sorted cell types (CD4 T cells,
monocytes, B cells, glial cells, neurons) and tissues and
organs including whole blood, brain, breast, kidney,
liver, lung, saliva [19]. Mathematical details and
software tutorials for the epigenetic clock can be found
in the Additional files of [19]. An online age calculator
can be found at our webpage
(https://dnamage.genetics.ucla.edu).

Finding gene transcripts that were differentially
expressed in cerebellum compared to three other brain
regions. The data set from Gibbs et al [26] also
contained gene expression data from the brain regions
of the same subjects for whom DNA methylation data
were available. We used these data to find genes that
were over-expressed in cerebellum compared to the
pons, temporal cortex, and frontal cortex.

Since multiple brain regions were available for each
subject, we used a paired T test to find genes that were
differentially expressed between a) cerebellum and
pons, b) cerebellum and temporal cortex, and c)
cerebellum and frontal cortex. The matched design (3
brain regions from the same subjects) allowed us to
condition out chronological age, ethnicity, gender, and
other subject level confounders. For each of the three
matched pairwise comparisons, we obtained a T-
statistic based on the differences in expression values.
Next we combined the resulting three T statistics using
a conservative meta analysis approach: the scaled
Stouffer method implemented in the "rankPvalue" R
function [51, 52]. The resulting meta analysis p-values
were transformed to local false discovery rates (g-
values) using the gvalue R package [53]. At a 1-sided
false discovery rate (FDR) threshold (qValueHighScale)
of 0.05 we found 1239 Illumina probes that were over-
expressed in cerebellum. Details on these and all other
probes on the Illumina array can be found in
Supplementary Table S1 (Marginal AnalysisGibbsMeta).
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Similarly we identified 808 gene transcripts that were
significantly under-expressed in cerebellum at a FDR
threshold of 0.05.

The results of a functional enrichment analysis with the
“Database for Annotation, Visualization and Integrated
Discovery” (DAVID, v6.7) [27] applied to the 1239
overexpressed and the 808 underexpressed genes can be
found in Supplementary Table S2 (DavidEASEQO5over.
xIsx) and Supplementary table S3 (DavidEASEQO05
under.xlsx), respectively.

Also our functional enrichment analysis results using
DAVID are qualitatively unchanged when other FDR
thresholds (e.g. 0.01) are used.

MAGENTA  analysis for GWAS enrichment.
MAGENTA 1is a computational tool that tests for
enrichment of genetic associations in predefined
biological processes or sets of functionally related
genes, using genome-wide association results as input
[31]. MAGENTA is designed to analyze datasets for
which genotype data are not readily available, such as
large genome-wide association study (GWAS) meta-
analyses. As input of MAGENTA, we used the results
of a genome-wide meta-analysis for epigenetic age
acceleration in human cerebellum. In total, this analysis
involved cerebellar DNA methylation data and SNP
data from 354 Caucasian subjects from the following
independent studies: 59 Caucasian individuals from a
study for Alzheimer’s disease [42], 112 neurologically
normal samples from [26], 147 samples from a case
control of psychiatric disorders [54], and 36 Caucasian
samples from a case control study of schizophrenia
[43]. We ignored disease status in our GWAS analysis
since it had a negligible effect on age acceleration in
cerebellum (t-test P > 0.1). Caucasian ethnicity was
verified in PLINK or EIGENSTRATI[55].

Age acceleration outcome measure was defined in the
same way that we utilized the residuals from regression
of DNAm age on chronological age. Quantitative trait
association analysis was performed on each study,
adjusted for principal components when necessary.
Fixed-effects models weighted by inverse variance [56]
were applied to combine the association results across
studies, yielding a total of 4,586,301 association P
values as the input for the MAGENTA analysis. We
extended the gene boundary with +/- 50 kilobases to
assign SNPs to their nearby genes and selected the
GSEA (Genome Set Enrichment Analysis) method with
cutoff set at 95" percentile to estimate enrichment P
values starting with 10,000 permutations then increased
to 100,000 for P < 1.0x10™,

Brief Information of the 112 year old. The likely cause
of death was bilateral organizing pneumonia.
Neuropathologic findings were those of Alzheimer's
disease, Braak stage IV-V, NIA-AA stage A2B2C2
[57]. Neuritic plaques were abundant in hippocampus,
frontal cortex and temporal cortex and less prominant in
basal ganglia and occipital cortex. Neurofibrillary
tangles were abundant in hippocampus and sparse in
frontal and temporal cortices.

Ethics review and IRB. All subjects from the UCLA
tissue bank signed the "Consent for Autopsy" form by
the Department of Pathology at UCLA, and research
procurement was performed under IRB Research
Protocol Number 11-002504. Further, the epigenetic
analysis is covered by IRB Research Protocol Number:
19119.
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