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Abstract: It has been a long standing hypothesis that blood tissue of PD Parkinson's disease (PD) patients may exhibit
signs of accelerated aging. Here we use DNA methylation based biomarkers of aging ("epigenetic clock") to assess the
aging rate of blood in two ethnically distinct case-control data sets. Using n=508 Caucasian and n=84 Hispanic blood
samples, we assess a) the intrinsic epigenetic age acceleration of blood (IEAA), which is independent of blood cell counts,
and b) the extrinsic epigenetic age acceleration rate of blood (EEAA) which is associated with age dependent changes in
blood cell counts. Blood of PD subjects exhibits increased age acceleration according to both IEAA (p=0.019) and EEAA
(p=6.1x10%). We find striking differences in imputed blood cell counts between PD cases and controls. Compared to
control subjects, PD subjects contains more granulocytes (p=1.0x10'9 in Caucasians, p=0.00066 in Hispanics) but fewer T
helper cells (p=1.4x10'6 in Caucasians, p=0.0024 in Hispanics) and fewer B cells (p=1.6x10" in Caucasians, p=4.5x10" in
Hispanics). Overall, this study shows that the epigenetic age of the immune system is significantly increased in PD patients
and that granulocytes play a significant role.

INTRODUCTION

The progressive motor and non-motor decline in
Parkinson's disease (PD) leads to disability and loss of
quality of life. Onset is insidious with some non-motor
symptoms occurring years before diagnosis [1]. The
extensive loss of dopamine neurons prior to diagnosis
makes early interventions the ultimate treatment goal.
For this to become reality, development of biomarkers
with the potential of early detection and treatment of PD

during a period coined the ‘molecular prodrome’ is
critical [2]. While blood provides an easily accessible
tissue, biomarker development based on it has remained
an elusive goal. Even though substantial evidence exists
that inflammation contributes to the pathogenesis of PD
[3], the question remains whether blood tissue also
reflects earliest changes in PD such that blood cell
counts or immune markers can help predict onset or
even become a treatment target. This idea inspired
research as early as 1985, when Marttila et al. observed
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that PD patients exhibit signs of immune suppression
partially resembling those seen in normal aging but
being quantitatively exaggerated with a decrease in
helper (CD4+) T cells [4].

Until recently relatively few molecular biomarkers of
aging have lent themselves for rigorously testing
whether PD is associated with accelerated aging in the
immune system and blood. Telomere length can be used
as a molecular aging marker but its association with PD
status remains ambiguous despite considerable research
effort. A keyword search for ["telomere" AND
"Parkinson's disease"] in Pubmed led to the identifica-
tion of 10 articles. After eliminating a commentary and
a study of mice, we reviewed references [5-12]. Two of
these studies did not find an association between
telomere length and PD status [5, 8]. Three studies,
including the largest study to date [12], found
borderline significant (P=0.02) associations in the
opposite direction from what would be expected, i.e.
counter to the aging hypothesis PD cases had longer
telomeres [6, 9, 12]. Here, we answer the challenge to
explore these counterintuitive results observed in a
methodologically strong study by exploiting an entirely
new class of molecular biomarker of aging based on
epigenetic data. Several recent studies have proposed to
measure the physiological age of tissue samples by
combining the DNA methylation levels of multiple
dinucleotide markers, known as Cytosine phosphate
Guanines or CpGs [13-15]. In particular, the epigenetic
clock (based on 353 CpG markers) was developed to
measure the age (known as "DNA methylation age" or
"epigenetic age") of sorted human cell types (CD4+T
cells or neurons), tissues, and organs—including blood,
brain, breast, kidney, liver, lung [14], and even prenatal
brain samples [16].

The epigenetic clock method - applied to two
commercially standardized methylation platforms: the
[llumina 450K array and the 27K arrays - is an
attractive biomarker of aging because (1) it applies to
most human tissues; (2) its accurate measurement of
chronological age is unprecedented [14]; (3) it is
predictive of all-cause mortality even after adjusting for
a variety of known risk factors [17]; (4) it correlates
with measures of cognitive and physical fitness in the
elderly [18]; and (5) it has already been useful in
detecting accelerated aging due to obesity [19], Down
syndrome [20], and HIV infection [21]. Further, the
epigenetic clock was used to show that age acceleration
of blood may predict the future onset of lung cancer
[22], the cerebellum ages slowly [23], and 3) that the
blood of subjects with a severe developmental disorder
ages normally [24]. Despite many diverse applications
of the epigenetic clock [16, 25-27], we are not aware of

any study that related epigenetic age acceleration to PD
status.

In this large epigenetic study of PD, we show for the
first time that measures of epigenetic age acceleration
are associated with PD status. Different from typical
epigenome wide association studies (EWAS) that
interrogate individual CpGs, the current study posits
two broad hypotheses: First, that a measure of
epigenetic age acceleration is associated with PD status.
Second, that (imputed) measures of blood cell types
(based on DNA methylation levels) are associated with
PD status. To address these hypotheses, we leverage a
large and unique community-based case control study
described in the following.

RESULTS
Study design and study population

The Parkinson's disease, Environment, and Genes
(PEG) case-control study aims to identify
environmental risk factors (e.g. neurotoxic pesticide
exposures) for Parkinson's disease. The PEG study is a
large population-based study of Parkinson's disease of
mostly rural and township residents of California's
central valley [28]. Cases were identified with the help
of local neurologists, clinics, and community outreach
and controls were randomly sampled from Medicare
lists and residential tax assessor’s records. All
covariates were ascertained in interviews with subjects.

Every PD patient was evaluated by a UCLA movement
disorder specialist. Most subjects were seen multiple
times. Blood was drawn early in the disease, on average
1.5 years after PD diagnosis. We only used DNA
samples from wave 1 (PEG1).

In our analysis we started out with analyzing all
subjects (irrespective of race/ethnicity). Next we
focused on specific ethnic strata (Caucasians only or
Hispanics only).

DNA methylation data sets

The first blood DNA methylation data set was
comprised of 508 Caucasians (non-Hispanic whites)
and the second of 84 Hispanics enrolled in the PEG
study, respectively. Descriptive information for the
data sets we used can be found in Table 1. When we
related various demographic and known risk factors to
PD status in a marginal analysis, education was
associated positively (p=0.0085 in Caucasians, p=0.27
in Hispanics, Table 1) and smoking negatively with
PD in this subsample. The first association reflects a
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well-known ascertainment bias in epidemiological case-
control studies: healthy controls with little incentive to
participate in research tend to be more highly educated.
For smoking, our finding is consistent with the literature

which is reviewed and discussed in [29].

our previous publications [30].

Table 1. Overview of the two DNA methylation data sets

Our marginal analysis also shows that exposure to
pesticides (total organophosphate count in residential or
occupational settings) is strongly associated with an
increased PD risk (p=4x10" Table 1) consistent with

Caucasian (Data Set 1) Hispanic (Data Set 2)
P-value PD control P-value PD control
Sample size 289 219 46 38
No. Female 0.47 125 102 0.05 14 20
Smoking Status 0.013 021
Smoking: 15 13 3 4
current
Smoking: former 120 118 21 6
Smoking: never 154 88 22 8
P-value mean I(E;EX), min, mean I(:fx)’ min, P-value mean I(:;EX), min, mean I(:fx), min,
Smoking: total | ) o05; | 114130175 14.8 (1.6),0,125 0.65 5.7(2).0,73 7(2.9),0,39
pack years
Age 0.053 71 (0.6),37,91 68 (0.8),35,92 0.60 67.3(1.6),37,83 65 (2.1),36,86
Year Born 1932 1935 1938
0.14 (0.6),1915,1966 (0.8),1912,1969 0.27 (2),1920,1964 1944 (4),1918,1969
Education: no.
of years in 0.0085 14.1 (0.2),6,30 14.8 (0.2),5,27 0.16 9.6 (0.72),0,20 11.2 (1),1,19
school
PD Family
History 0.16 0.15(0.021),0,1 0.11 (0.021),0,1 0.30 0.15 (0.05),0,1 0.6 (0.056),0,1
Caffeinated
Coffee: lifetime
weighted ave. 0.21 1.8 (0.12),0,14 2.2 (0.18),0,19 0.54 1.6 (0.48),0,20 1.3(0.29),0,4
(cup/day)
Organophospat
e count 2.8x10- 1.7x10-
(residential-occ ] 9 (0.59),0,46 4.9 (0.47),0,41 3 13.3 (1.63),0,37 5.9(2.4),0,30
uputation)
Year diagnosed 2001 2002
with PD (0.3),1998,2007 (0.3),1998,2006
Levodopa
Medication 0.7 (0.03) 0.67 (0.07)
status
Levodopa
mg/day 350 (16),0,2300 369 (41),0,1020

Data sets 1 and 2 are comprised of Caucasians (non-Hispanic whites) and Hispanics, respectively. The p-value resulted from
relating the respective variables to PD status using a non-parametric group comparison test (Kruskal Wallis test) or Fisher's exact

test (for categorical variables).
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Accuracy of the epigenetic clock

DNAm age (also referred to as epigenetic age) was
calculated as described in [14] from human samples
profiled with the Illumina Infinium 450K platform. The
epigenetic clock is defined as a prediction method of age
based on the DNAm levels of 353 CpGs. Predicted age,
referred to as DNAm age, correlates with chronological
age in sorted cell types (CD4 T cells, monocytes, B cells,
glial cells, neurons), tissues and organs, including: whole
blood, brain, breast, kidney, liver, lung, saliva [14].
Mathematical details and software tutorials for the

A PEG Blood cor=0.82, p=4.3e-145

B Caucasian PEG cor=0.82, p=1e-124

epigenetic clock can be found in the Additional files of
[14]. An online age calculator can be found at our
webpage (https://dnamage.genetics.ucla.edu). All of the
described epigenetic measures of aging and age accelera-
tion are implemented in our freely available software.

As expected, DNAm age has a strong linear relationship
with chronological age (Figure 1). The high accuracy of
the epigenetic clock is validated in both data sets in
which DNAm age is highly correlated with
chronological age (r=0.82 in Caucasians; r=0.81 in
Hispanics, Figure 1A-C).

C Hispanic PEG cor=0.81, p=1.1e-20
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Figure 1. Epigenetic age analysis of PD. (A-C) DNA methylation age (y-axis) versus chronological age (x-axis) in (A)
all subjects, (B) Caucasians only, and (C) Hispanics only. Dots corresponds to subjects and are colored by PD disease
status (red=PD, black=control). We define three measures of epigenetic age acceleration. (D-F) presents results for
the "universal" measure of epigenetic age acceleration, which is defined as residual to a regression line through the
control samples, i.e. the vertical distance of a point from the line. By definition, the mean age acceleration in controls
is zero. (G-1) The bar plots relate measures of intrinsic epigenetic age acceleration to PD status. This measure is
independent of blood cell counts. The fourth row (panels J-L) reports findings for the measure of extrinsic epigenetic
age acceleration, which does relate to changes in cell composition. Each bar plot depicts the mean value (y-axis), 1
standard error, and the group size (underneath the bar). The p-value results from a Student T-test.
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Three measures of epigenetic age acceleration

In this article, we consider three measures of epigenetic
age acceleration (as detailed in Methods). The first
measure, which will be referred to as universal measure
of age acceleration (denoted AgeAccel) applies to
virtually all tissues and cell types (with the exception of
sperm) [25]. The other two measures (referred to as
intrinsic and extrinsic age acceleration, respectively)
only apply to blood. The universal measure AgeAccel is
defined as the difference between DNAm age value and
the value predicted by a spline regression model in
controls.

The measure of intrinsic epigenetic age acceleration
(IEAA) measures "pure" epigenetic ageing effects in
blood that are not confounded by differences in blood
cell counts.

A PEG Blood bicor=0.0031, p=0.95

B Caucasian PEG bicor=0.012, p=0.84

The measure of extrinsic epigenetic age acceleration
(EEAA) aims to measure ageing in immune related
components also relates to age related changes in blood
cell composition such as the decrease of naive CD8+ T
cells and the increase in memory or exhausted CD8+ T
cells [31-33]. EEAA is defined on the basis of a
weighted average of the epigenetic age measure from
Hannum et al (2013) [13] and three blood cell types that
are known to change with age: naive
(CD45RA+CCR7+) cytotoxic T cells, exhausted
(CD28-CD45RA-) cytotoxic T cells, and plasma B
cells. By definition, EEAA has a positive correlation
with the amount of exhausted CD8 T cells and plasma
blast cells and a negative correlation with the amount of
naive CD8+ T cells. Blood cell counts were estimated
based on DNA methylation data as described in the
section entitled "Estimating blood cell counts based on
DNA methylation levels".

C Hispanic PEG bicor=-0.079, p=0.6
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Figure 2. Levodopa medication (x-axis) versus epigenetic age acceleration in PD subjects. Each scatter plot depicts the

amount of levodopa medication (milligram per day) versus (A,B,C) universal epigenetic age acceleration, (D,E,F) intrinsic
epigenetic age acceleration (G,H,l), extrinsic epigenetic age acceleration. The first, second, and third column correspond to all
subjects, Caucasians only, and Hispanics only, respectively. Each dot (PD patient) is colored in red for the sake of consistency with

Figure 1. The heading of each plot reports a robust correlation coefficient (biweight midcorrelation and a corresponding p-value).
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Figure 3. Levodopa medication status versus epigenetic age acceleration in PD patients. The first, second,
and third column correspond to all subjects, Caucasians only, and Hispanics only, respectively. Levodopa medication
status versus (A,B,C) universal epigenetic age acceleration, (D,E,F) intrinsic epigenetic age acceleration (G,H,l),
extrinsic epigenetic age acceleration. Each bar plot depicts the mean value (y-axis), 1 standard error, and the group
size (underneath the bar). The p-value results from a non-parametric group comparison test (Kruskal Wallis).

The three different measures of epigenetic age
acceleration are not independent of each other. The
universal measure AgeAccel is correlated with IEAA
(r=0.90 in Caucasians and r=0.77 in Hispanics) and with
EEAA (r=0.55 in Caucasians and r=0.74 in Hispanics).
IEAA is also correlated with EEAA (=0.41 in
Caucasians and again 1=0.41 in Hispanics). By
construction, our three measures of epigenetic age
acceleration are uncorrelated (r=0) with chronological
age at the time of blood draw.
PD is associated with intrinsic and extrinsic
epigenetic age acceleration

PD status has a (marginally) significant relationship
with all 3 measures of age acceleration: p=0.06 for the
universal measure of age acceleration (Figure 1A-C),

p=0.019 for IEAA (Figure 1G-I), and p=0.0061 for
EEAA (Figure 1J-L).

It is unlikely that Levodopa medication explains the
increased epigenetic age acceleration since we find no
significant association between the amount of Levodopa
medication and any of the measures of age acceleration
in PD patients (Figure 2). These results were
corroborated in a second analysis in which we related
medication status (binary grouping variable) to the
measures of epigenetic age acceleration in PD patients
(Figure 3) and found no associations.

None of the measures of epigenetic age acceleration
were significantly associated with smoking status,
pesticide exposure, or family history of PD; however,
sex had a significant association: compared to men,
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women have a low EEAA (p-value=2.9x10° in
Caucasians and p=0.016 in Hispanics) and a low IEAA
(p=0.0050 in Caucasians, p=0.35 in Hispanics). By
study design, sex was not associated with PD status in
Caucasians (p=0.45) but there was a marginally
significant association in Hispanics (p=0.04). Family
history of PD was not predictive of PD status.

In a multivariate logistic regression analysis with PD
status as the outcome we find that AgeAccel (p=0.037)
remains a significant covariate even after adjusting for
chronological age (at the time of blood draw), blood cell
counts, pesticide exposure (organophosphate), smoking
(cumulative pack years), education (number of years in
school), coffee consumption (life time measured as a
weighted average cup per day), and ethnicity. In an
analogous model, IEAA is only marginally significant
(p=0.084, Table 2). EEAA is significantly associated
with PD status (p=0.031, Table 2) after adjusting for
chronological age, pesticide exposure (organophosphate),
smoking (cumulative pack years), education (number of
years in school), coffee consumption (life time measured
as a weighted average cup per day), and ethnicity.

To estimate the actual amount of age acceleration, we
regressed DNAm age on disease status, age, granulo-
cytes, smoking, ethnicity, and sex. According to this
multivariate regression model, the blood of PD
patients is 1.5 years older than that of age matched
controls.

PD patients have more granulocytes but fewer
helper T cells and B cells than controls

We find striking differences in blood cell composition
between PD cases and controls (Figure 4). Compared to
control samples, PD patients have more granulocytes
(p=l.0xlO'9 in Caucasians, p=0.00066 in Hispanics
Figure 40,P) and plasma cells (activated B cells)
(p=0.00065 in Caucasians Figure 4S) but fewer helper
(CD4+) T cells (p=1.4x10" in Caucasians, p=0.0024 in
Hispanics, Figure 4G,H), fewer naive CD4+ T cells
(p=0.0074 in Caucasians, p=0.13 in Hispanics Figure
41)), fewer B cells (p=1.6x10" in Caucasians,
p=4.5x10" in Hispanics Figure 4Q,R), and fewer
cytotoxic (CD8+) T cells (p=0.0017 in Caucasians,
p=0.072 in Hispanics Figure 4A,B).

Table 2. Logistic model that regresses PD status on covariates.

Measure= Measure= Measure
.. AgeAccel IEAA =EEAA
Logistic model.
Outcome= PD
P- p-
Covariates Coef SE value Coef SE value Coef SE P-value
Age 0.016 0.0085  0.061 0.015  0.0085 0.071 0.023  0.008  0.004
Measure of Age 0.036 0.017  0.037 0.031 0.018 0.084 | 0031 0014 0031
Acceleration
Granulocyte 35 1.6 0.027 2.7 1.5 0.07
CD4+T cell 3.8 2.3 0.11 49 2.3 0.029
CD8+T cell 1.6 3 0.59 13 3 0.67
Organo phosphate 0.054 0.012  4E-6 0.055 0.012 3.7E-6 | 0059  0.012 4E-7
exposure
Sm"k“;geg‘s’;alp“k 20.0081  0.0043 0.063 | -0.0082 0.0043  0.06 | -0.0077 0.004  0.067
Numbzrcﬁioylearsm -0.058 0.028  0.036 | -0.058 0.028  0.035 | -0.049  0.027  0.064
LifetimeCoffee (ave | )35 0.041 0.4 20.034 0041 041 20.037  0.04 0.36
cup/day)
Ethnicity(Hispanic) 0.32 0.35 0.36 031 0.35 0.37 03 0.34 0.37
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Figure 4. Blood cell counts versus PD status. As indicated in the heading of each panel, the panels alternate between the two data
sets. PD status (x-axis) versus (A,B) proportion of cytotoxic CD8+ T cells, (C,D) naive CD8+ T cell count, (E,F) percentage of exhausted CD8+
T cells (defined as CD8+CD28-CD45RA- ), (G,H) proportion of helper CD4+ T cells, (1,J) naive CD4+ T cell count, (K,L) proportion of natural
killer cells, (M,N) proportion of monocytes, (0,P) granulocytes, (Q,R) B cells, (S,T) plasma blasts (activated B cells). The abundance
measures of blood cell counts were estimated based on DNA methylation levels using the epigenetic clock software. The y-axis of (E,F)
reports a percentage, that of (C,D,1,J) a cell counts but it is best to interpret these measures as ordinal abundance measures. The y-axis of
the other panels reports estimated proportions based on the Houseman method [45]. Each bar plot depicts the mean value (y-axis), 1
standard error, and the group size (underneath the bar). The p-value results from a non-parametric group comparison test (Kruskal Wallis).

A multivariate logistic regression analysis shows that
granulocyte count remains a significant predictor of PD
status (p=0.027, Table 2) even after adjusting for other
covariates. We did not observe significant association
between PD status and the amount of naive CD8+ T
cells (Figure 4C,D), exhausted CD8+ T cells (Figure
4E,F), natural killer cells (Figure 4K,L) or monocytes
(Figure 4M,N).

It is unlikely that medications explain the difference in
blood cell counts because both medication status and
amount of medication have no more than a weak
association with blood cell counts in PD subjects
(Figure 5): when relating the amount of Levodopa (mg
per day) to blood cell counts in PD subjects, we only
found a weak marginally significant correlation with
CD4+ T cells (r=-0.14, p=0.017 in Caucasians, Figure
5G).

We only observed relatively weak associations between
Levodopa medication status (binary) and blood cell
counts (Figure 6). In Caucasian PD patients, we found
that medicated patients have fewer CD4+ T cells
(p=0.0018 Figure 6G), granulocytes (p=0.025 Figure
60), and B cells (p=0.012 Figure 6Q) but more
exhausted CD8+ T cells (p=0.019 Figure 6E). In
Hispanic PD patients, we could not detect a significant
association between medication status and blood cell
counts, which might reflect the small number (n=15) of
un-medicated PD patients in this group.

DISCUSSION

We and others have shown that epigenetic biomarkers
of aging based on genome-wide DNA methylation
levels are highly robust and reproducible (see also
Figure 1A,B) [13-15, 17, 19]. We use these biomarkers
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Figure 5. Amount of medication (x-axis) versus epigenetic age acceleration in PD subjects. As indicated in the heading of each
panel, the panels alternate between the two data sets. PD status (x-axis) versus (A,B) proportion of CD8+ T cells, (C,D) naive CD8+ T cell
count, (E,F) exhausted CD4+T cell counts (defined as CD8+CD28-CD45RA- ), (G,H) proportion of CD4+ T cells, (1,J) naive CD4 T cell count,
(K,L) proportion of natural killer cells, (M,N) proportion of monocytes, (0,P) granulocytes, (Q,R) B cells, (S,T) plasma blasts (activated B
cells). All cell types were estimated based on DNA methylation levels as described in Methods. The heading of each plot reports a robust
correlation coefficient (biweight midcorrelation and a corresponding p-value).

of aging to explore the contributions of aging in a large
community-based study of PD. Ours is the first data
substantiating the longstanding hypothesis regarding
accelerated aging effects in PD wusing epigenetic
biomarkers of aging. PD status has a significant
relationship with all 3 measures of age acceleration but
the strongest associations can be observed for the
extrinsic measure EEAA, which also keeps track of age
related changes in blood cell composition.

However, the observed accelerated aging effects do not
simply reflect changes in blood cell composition as can
be seen from the fact that PD subjects also exhibit
increased intrinsic epigenetic aging rates.

Our study demonstrates an unexpectedly strong
association between granulocytes and PD status.
Several previous studies evaluated blood cell counts in

PD subjects using flow cytometric method [34-38]. The
most recent study including the largest number of
patients yet (88 PD cases and 77 age-gender matched
controls)[38] reported reduced numbers of T helper and
B lymphocytes in Parkinson's disease. Our studéy
corroborates these findings for T helper (p=1.4x10")
and B cells (p=1.6x10" Figure 4Q) however,
granulocytes exhibited a far more significant association
with PD status (p=1.0x10” Figure 40) in our
population. Our study does not allow us to identify the
type of granulocytes (neutrophil, eosinophil, or
basophil) with the strongest effect. Yet, given the
abundance of neutrophils (~60% of all blood cells
compared with 0.5-2.5% for eosinophils and basophils)
we suspect that they are responsible for the signal we
saw in blood. An increased neutrophil/lymphocyte ratio
has been observed in PD subjects [39] and differential
neutrophil infiltration has been shown to contribute to

www.impactaging.com

1138

AGING,December 2015, Vol. 7 No.12




regional differences with brain inflammation favoring
the substantia nigra pars compacta over the cortex [40].
We acknowledge the following limitations. First, the
one-time only blood sampling protocol early in disease
does not allow us to establish temporality of cause and
effect. We hypothesize that accelerated aging of the
immune system and/or altered blood cell counts
(including neutrophils) precede the onset of motor and
cognitive symptoms in PD but future studies are needed
to determine whether these blood based biomarkers are
prognostic of incident PD.

Second, we necessarily focused only on blood tissue.
Future studies should evaluate whether accelerated
epigenetic aging effects can also be found in other
tissues (notably brain tissue).

Finally, we did not relate individual CpGs to PD status
since this is beyond the scope of this article which

focuses on epigenetic aging effects and blood cell
counts. We refer the reader to future publications from
our group and other DNA methylation studies of
Parkinson disease (PD) and related disorders [41-43].
Our study also has strengths including a novel data set
for two distinct ethnic populations, a large sample size
(total n=592), powerful epigenetic biomarkers of aging,
an unprecedented breadth of blood cell counts, a
community (population)-based design, and extensive
clinical evaluations by movement disorder specialists to
establish PD diagnoses.

Increased levels of epigenetic age acceleration or blood
cell counts are not specific to PD but our results may
inform the future development of DNA methylation
based biomarkers of PD. Overall, our results support the
notion that neuroinflammation, which leads to brain cell
death and PD disease progression, is fueled by activated
glial cells communicating with peripheral immune cells.
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Figure 6. Medication status versus blood cell counts in PD patients. As indicated in the heading of each panel, the
panels alternate between the two data sets. Levodopa medication status (x-axis) versus (A,B) proportion of CD8+ T cells, (C,D)
naive CD8+ T cell count, (E,F) exhausted CD+T cell counts (defined as CD8+CD28-CD45RA- ), (G,H) proportion of CD4+ T cells,
(1,J) naive CD4+ T cell count, (K,L) proportion of natural killer cells, (M,N) proportion of monocytes, (O,P) granulocytes, (Q,R) B
cells, (S,T) plasma blasts (activated B cells). All cell types were estimated based on DNA methylation levels as described in
Methods. Each bar plot depicts the mean value (y-axis), 1 standard error, and the group size (underneath the bar). The p-value
results from a non-parametric group comparison test (Kruskal Wallis).
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METHODS

Ethics review and IRB. Informed consent was obtained
from all subjects. This study was reviewed by the
UCLA institutional review board (IRB#13-000671 and
IRB#14-000061).

Preprocessing of Illumina Infinium 450K arrays. In
brief, bisulfite conversion using the Zymo EZ DNA

Methylation Kit (ZymoResearch, Orange, CA, USA) as
well as  subsequent  hybridization of  the
HumanMethylation450k ~ Bead  Chip  (Illumina,
SanDiego, CA), and scanning (iScan, Illumina) were
performed according to the manufacturers protocols by
applying standard settings. DNA methylation levels (B
values) were determined by calculating the ratio of
intensities between methylated (signal A) and un-
methylated (signal B) sites. Thus, § values range from 0
(completely un-methylated) to 1 (completely
methylated).

Measures of epigenetic age acceleration. The name of
our universal measure of age acceleration (AgeAccel)
reflects that it applies to virtually all sources of human
DNA (with the exception of sperm). Here we defined it
as follows. First, we regresssd DNAm age on
chronological age in controls. Next, we used the
resulting model to predict the DNAm age of each
subject. Next the universal measure was defined as the
difference between the observed measure of DNAm age
and the predicted value. Thus, a high positive value for
AgeAccel indicates that the observed DNAm age is
higher than that predicted based on controls. AgeAccel
has a relatively weak correlation with blood cell counts
[21] but it still relates to blood cell counts. To subtract
out the effect of blood cell counts, we find it useful to
define a measure of intrinsic epigenetic age acceleration
(IEAA) which measures "pure" epigenetic ageing
effects that are not confounded by differences in blood
cell counts. It is defined as the residual resulting from a
multivariate regression model of DNAm age on
chronological age and various blood immune cell
counts (naive CD8+ T cells, exhausted CD8+ T cells,
plasma B cells, CD4+ T cells, natural killer cells,
monocytes, and granulocytes).

The measure of extrinsic epigenetic age acceleration
(EEAA) aims to measure epigenetic ageing in immune
related components. EEAA is defined using the
following three steps. First, we calculated the epigenetic
age measure from Hannum et al (2013) [13] based on
71 CpGs. The resulting age estimate is correlated with
certain blood cell types [17]. Second, we increased the
contribution of blood cell types to the age estimate by
forming a weighted average of the Hannum estimate

with 3 cell types that are known to change with age:
naive (CD45RA+CCR7+) cytotoxic T cells, exhausted
(CD28-CD45RA-) cytotoxic T cells, and plasma B cells
using the approach of [44]. The resulting measure of
blood age is referred to as BioAge4 in our epigenetic
clock software. Third, we defined a measure of age
acceleration (EEAA) as the residual resulting from a
univariate model regressing BioAge4 on chronological
age. By definition, our measure of EEAA has a positive
correlation with the amount of exhausted CD8+ T cells
and plasma blast cells and a negative correlation with
the amount of naive CD8+ T cells. Blood cell counts
were estimated based on DNA methylation data as
described in the section entitled "Estimating blood cell
counts based on DNA methylation levels". By
construction, EEAA tracks both age related changes in
blood cell composition and intrinsic epigenetic changes.
By definition, none of our three measures of epigenetic
age acceleration are correlated with the chronological
age.

Estimating blood cell counts based on DNA
methylation levels. We estimate blood cell proportions
using two different software tools. Houseman's
estimation method [45], which is based on DNA
methylation signatures from purified leukocyte samples,
was used to estimate the proportions of CD8+ T cells,
CD4+ T, natural killer, B cells, and granulocytes.
Granulocytes are also known as polymorphonuclear
leukocytes. The advanced analysis option of the
epigenetic clock software [14, 21] was used to estimate
the percentage of exhausted CD8+ T cells (defined as
CD28-CD45RA-) and the number (count) of naive
CD8+ T cells (defined as (CD45RA+CCR7+).
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