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Abstract: There is an urgent need to develop molecular biomarkers of brain age in order to advance our understanding
of age related neurodegeneration. Recently, we developed a highly accurate epigenetic biomarker of tissue age (known as
epigenetic clock) which is based on DNA methylation levels. Here we use n=700 dorsolateral prefrontal cortex (DLPFC)
samples from Caucasian subjects of the Religious Order Study and the Rush Memory and Aging Project to examine the
association between epigenetic age and Alzheimer’s disease (AD) related cognitive decline, and AD related
neuropathological markers.

Epigenetic age acceleration of DLPFC is correlated with several neuropathological measurements including diffuse plaques
(r=0.12, p=0.0015), neuritic plaques (r=0.11, p=0.0036), and amyloid load (r=0.091, p=0.016). Further, it is associated with a
decline in global cognitive functioning ($=-0.500, p=0.009), episodic memory (B=-0.411, p=0.009) and working memory (p=-
0.405, p=0.011) among individuals with AD. The neuropathological markers may mediate the association between
epigenetic age and cognitive decline. Genetic complex trait analysis (GCTA) revealed that epigenetic age acceleration is
heritable (h?=0.41) and has significant genetic correlations with diffuse plaques (r=0.24, p=0.010) and possibly working
memory (r=-0.35, p=0.065). Overall, these results suggest that the epigenetic clock may lend itself as a molecular
biomarker of brain age.

INTRODUCTION shown to double every five years, and by age 85, the

prevalence of dementia is estimated to be as high as

Cognitive aging is on a continuum from normality, to
mild cognitive impairment (MCI), to dementia [1-3].
Aging is also tied to an increasing susceptibility for a
number of neurodegenerative diseases. After the age of
65 the risk of developing a neurodegenerative form of
dementia, such as Alzheimer’s Disease (AD), has been

31% [4].

AD dementia is an irreversible progressive
neurodegenerative disease affecting the central nervous
system. It is typically characterized by the presence of
amyloid-beta plaques and hyperphosphorylated paired
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helical filament tau protein—rich neurofibrillary tangles
(NFT) [5]. Both types of lesions have been linked to AD
dementia, MCI, and cognitive decline. There is also
evidence that NFT mediates the association between
amyloid plaques and clinical manifestations of AD [6].
While the exact physiology through which NFT and
amyloid-beta plaques influence AD pathogenesis remains
somewhat unclear, the presence of such deposits among
those afflicted with AD is typically associated with much
steeper trajectories of cognitive deficit accumulation with
age [7, 8]. Cognition is not a unitary process but is com-
posed of several dissociable cognitive systems, such as
episodic memory the clinical hallmark of AD dementia.

Epigenetic alterations, such as DNA methylation
(DNAm), have been linked to the both AD pathology
[9] and cognitive aging in the absence of AD dementia
[10]. DNAm refers to the addition of a methyl group to
a cytosine nucleotide at cytosine-phosphate-guanine
(CpQG) sites. Hyper- or hypo methylation of sites can
change over time, as a function of genes and
environment, and have implications for gene expression
via alterations in chromatin structure. We recently
developed a highly accurate molecular biomarker of
aging based on DNA methylation (DNAm) levels [11],
known as “epigenetic clock”, which can be used to
measure the age of human cells, tissues, and organs.
Given that aging is associated with a normal loss in
cognitive ability as well as the rapidly increasing
susceptibility to AD, an aging biomarker based on
DNAm could account for between-person differences in
either the rate of cognitive aging among non-demented
individuals or the rate of disease progression among
those with AD. As a result, the goals of our study were
to 1) examine the association between DNAm age and
AD neuropathology, 2) test whether DNAm age relates
to AD dementia status and measures of cognitive
functioning, 3) determine if differences in DNAm age
reflect cognitive decline in persons with or with AD-
dementia, 4) examine whether neuropathology underlies
the association between higher DNAm age and worse
cognitive functioning. We hypothesize that participants
who have higher levels of neuropathology, lower
cognitive functioning, and/or who are diagnosed with AD
will have higher DNAm age in PFC samples at death—
signifying that their brains are biologically older. We also
hypothesize that neuropathology will mediate the
association between DNAm age and cognition.

RESULTS
Study Sample

Our analytic sample included Caucasian subjects from
the Religious Order Study (ROS) and the Rush Memory

and Aging Project (MAP) [12, 13]. Both are
longitudinal community based cohort studies of aging
and dementia. The majority of participants in both
studies are 75-80 years old at baseline with no known
dementia. All participants agree to organ donation at
death. Participants sign and informed consent,
repository consent, and Anatomical Gift Act. The
studies were approved by the Institutional Review
Board of Rush University Medical Center. Inclusion in
the studies requires participants to consent to
undergoing annual clinical evaluations as well as
postmortem organ donation. The ROS sample includes
Catholic priests, nuns, and brothers from across the
United States, whereas the MAP sample includes a
more general community based population from
northeastern Illinois. For our analysis, we excluded
subjects with missing DNAm age, or who were
diagnosed with dementias other than AD leaving us
with 700 Caucasian subjects. Participants were
administered annual structured interviews and a battery
of cognitive tests such as episodic memory (EM),
working memory (WM), and semantic memory (SM),
perceptual orientation (PO), and perceptual speed (PS).
Tests were averaged to yield a measure of global
cognitive  functioning (GCF). Neuropathological
assessments were carried out postmortem as described
in Methods.

Sample characteristics

As shown in Table 1, upon enrollment into the two
studies, subjects were 63-102 years of age (mean=
81.36, standard deviation=6.59). Cognitive follow-up
time after baseline ranged from 0 to 16 years, with a
mean of 4.07 years (s.d.=3.42). Of 700 participants,
615 had at least three measures of cognitive functioning
(baseline plus two follow-up), while half of our
participants had seven or more cognitive measures.
Average lifespan was approximately 89 years
(s.d.=6.44). Overall, subjects from ROS (n=375) were 5
years younger at baseline and lived 1.5 years longer
compared to those from MAP (n=325). Nearly two-
thirds of participants (63.6%) were female.

Just over 300 of our 700 participants were diagnosed
with AD dementia. Mean GCF, EM, WM, SM, PO, and
PS were -0.33 (s5.d=0.90), -0.28 (s.d.=1.08),-0.23
(s.d.=0.90), -0.31 (s.d.=0.99), -0.34 (s.d.=0.92), and -
0.53 (s.d.=1.06), respectively. Additionally, between-
and within-person standard deviations were 0.82 and
0.47 for GCF, respectively; 1.00 and 0.55 for EM,
respectively; 0.77 and 0.53 for WM, respectively; 0.91
and 0.53 for SM, respectively; 0.83 and 0.52 for PO,
respectively; and 0.95 and 0.59 for PS, respectively.
Finally, mean overall amyloid level was 3.47
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(s.d.=3.68), mean neuritic plaque average 0.80
(s.d.=0.84), mean diffuse plaque average 0.71
(s.d.=0.80), mean NFT (silverstain) average 0.60

(s.d.=0.77),
(PHF) tangle score 6.52 (s.d.=8.16).
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Figure 1. Epigenetic age of DLPFC samples versus neuropathological measures. (A) Scatter plot relating the DNAm age
of each PFC sample (y-axis) versus chronological age at time of death (x-axis). The red line depicts a linear regression line. The y-
axis of the remaining panels (B-l) involves the measure of epigenetic age acceleration which has been adjusted for sex. The
scatter plots relate epigenetic age acceleration (y-axis) to (B) diffuse plaques, (D) neuritic plaques, (F) NFTs, and (H) amyloid load.
The title of each scatter plot reports a robust correlation coefficient (biweight midcorrelation) and a corresponding p-value.
(C,E,G,l) The x-axis of the bar plots involve a binary grouping variable that results from using the median value for dichotomizing
(C) diffuse plaques, (E) neuritic plaques, (G) NFT, and (l) beta-amyloid load, respectively. Each bar plot depicts the mean value,
one standard error, and reports the p-value results from a non-parametric group comparison test (Kruskal Wallis test). The title of
each scatter plot reports a robust correlation coefficient (biweight midcorrelation) and a corresponding p-value.
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Table 1. Sample characteristics

Variable Statistic
Age at Enrollment, Mean (Std. Dev.) 81.4 (6.95)
Age at Death, Mean (Std. Dev.) 88.1 (6.60)
DNAm Age, Mean (Std. Dev.) 66.2 (5.04)
GCF, Mean (Std. Dev.) -0.33 (0.90)
EM, Mean (Std. Dev.) -0.28 (1.08)
WM, Mean (Std. Dev.) -0.23 (0.90)
SM, Mean (Std. Dev.) -0.31 (0.99)
PO, Mean (Std. Dev.) -0.34 (0.92)
PS, Mean (Std. Dev.) -0.53 (1.06)
Amyloid Load, Mean (Std. Dev.) 3.47 (3.68)
NP, Mean (Std. Dev.) 0.80 (0.84)
DP, Mean (Std. Dev.) 0.71 (0.80)
NFT, Mean (Std. Dev.) 0.60 (0.77)
Tangle Score, Mean (Std. Dev.) 6.52 (8.16)
Sex (Female=1), Frequency 0.636
Study (ROS=1), Frequency 0.536
AD Status, Frequency 0.433

DNAm age (in units of years) estimates the number of
years that passed since birth. DNAm age was highly
correlated with chronological age at time of death
across all samples (correlation r=0.67, Figure 1A). We
defined a measure of epigenetic age acceleration as
residual resulting from regressing DNAm age on
chronological age and sex. Thus, a positive value of age
acceleration indicates that the epigenetic age is higher
than expected based on chronological age and sex. Our
study addresses the hypothesis that epigenetic age
acceleration (that measures deviations between DNAm
age and chronological age) captures aspects of the
biological age of brain tissue. We test this hypothesis by
relating epigenetic age acceleration to various measures
of neuropathology and cognitive functioning.

Results from biweight midcorrelation showed that
epigenetic age acceleration is associated with several
postmortem neuropathological indices. Epigenetic age
acceleration had a correlation of 0.12 with diffuse
plaques (p=0.0015, Figure 1B,C), 0.11 with neuritic
plaques (p=0.0036, Figure 1D,E), and 0.019 with
amyloid load (p=0.016, Figure 1H,I). Further, it showed
a marginally significant association with neurofibrillary
tangle status (p=0.053 in Figure 1G) when the latter was
defined by dichotomizing the NFT variable by its
median value. These associations were also examined
using multivariate models (Table 2), adjusting for age at
death, sex, and study (ROS vs MAP), and again, we
found positive associations between DNAm age and
neuritic plaques (B=0.45, p=0.004), diffuse plaques
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(B=0.47, p=0.004), amyloid load (p=0.10, p=0.006),
NFT (B=0.38, p=0.021), and Tangle Score (=0.03,
p=0.041).

DNAm age, cognitive functioning and AD status

As shown in Table 3, we used linear models, adjusting
standard errors to account for multiple observations, to
examine whether postmortem estimates of DNAm age
were associated with GCF, EM, WM, SM, PO, PS,
and/or AD status. We found associations between
DNAm age and both GCF and EM, the clinical hallmark

of AD. For instance, results showed that a one unit
decrease in GCF was associated with about a one third
of a year increase in DNAm age (B = -0.34, P = 0.019),
while a one unit decrease in EM was also associated
with about a one third of a year increase in DNAm age
(B =-0.30, P = 0.009). By contrast, we did not find a
relationship between DNAm age and WM (3 = -0.16, P
=0.172), SM (B =-0.21, P =0.072), PO (B =-0.10, P =
0.270), or PS (p =-0.13, P = 0.191). We also examined
whether AD dementia status was associated with higher
DNAm age. Results showed a moderate, but non-
significant association (§ = 0.38, P =0.103).

Table 2. Multivariate associations between DNAm age and neuropathological measures

Beta Coefficient (One-Tailed P-Value)

Amyloid Load
NP

DP

NFT

Tangle Score

0.100 (0.006)
0.451 (0.004)
0.468 (0.004)
0.377 (0.021)
0.030 (0.041)

Results are from independent multivariate models that adjust for age at death, study, and sex

Table 3. Associations between DNAm age and cognitive functioning,

and mediation by AD status

P-value

B (SE)
GCF -0.340 (0.163)
EM -0.297 (0.126)
WM -0.160 (0.170)
SM -0.205 (0.140)
PO -0.102 (0.166)
PS -0.134 (0.153)
AD Status 0.377 (0.298)

0.019

0.009

0.172

0.072

0.270

0.191

0.103

DNAm age was used as the dependent variable for all models. All models were run
adjusting for study (ROS or MAP), age at death, age a clinical evaluation (accept for the
model for AD), and sex. GCF=Global Cognitive Functioning, EM=Episodic Memory,

WM=Working Memory,

SM=Semantic

Memory, PO=Perceptual Orientation,

PS=Processing Speed. P-values represent significance assuming a one-tailed hypothesis
test. Standard errors were adjusted via clustering by Sample ID, in order to account for
multiple observations (except for the model for AD).
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Table 4. Associations between DNAm age and cognitive functioning, by AD status

Non-Demented Participants (n=397) AD Participants (n=303)
B (SE) P-value B (SE) P-value
GCF -0.059 (0.503) 0.454 -0.500 (0.210) 0.009
EM -0.209 (0.322) 0.258 -0.411 (0.173) 0.009
WM 0.340 (0.328) 0.836 -0.405 (0.177) 0.011
SM -0.047 (0.429) 0.456 -0.262 (0.160) 0.051
PO -0.049 (0.312) 0.437 -0.102 (0.210) 0.313
PS -0.058 (0.304) 0.425 -0.178 (0.205) 0.193

DNAm age was used as the dependent variable for all models. All models were run adjusting for study (ROS or MAP), age at
death, age a clinical evaluation, and sex. GCF=Global Cognitive Functioning, EM=Episodic Memory, WM=Working Memory. P-
values represent significance assuming a one-tailed hypothesis test. Standard errors were adjusted via clustering by Sample ID,

in order to account for multiple observations.

Using linear models, we then examined the association
between DNAm age and cognitive functioning by AD
dementia status (Table 4). Overall, we found no
association between DNAm age and any of the
cognitive functioning measures among participants
without AD dementia which might reflect the relatively
low variance of cognitive measures among controls.
However, among participants with AD dementia, GCF,
EM, and WM were all associated with DNAm age.
Results showed that for persons who developed AD
dementia, every one unit decrease in GCF was
associated with a half a year increase in DNAm (f = -
0.50, P = 0.009). Similarly, for persons who developed
AD dementia, every one unit decrease in EM or WM
was associated with about a 0.4 year increase in DNAm
(EM: B =-0.41, P =0.009; WM: B =-0.40, P =0.011).

Mediation analysis involving neuropathological
variables and cognitive scores

Using multivariate linear models, with DNAm age as
the dependent variable and adjusting for study (ROS vs
MAP), age at clinical assessment, age at death, and sex,
we examined whether neuropathological measures
accounted for the association between worse cognitive
functioning (GCF, EM) and higher DNAm age (Table 5
and Table 6). All models were run on n=695 participants

who had complete neuropathology data. Standard errors
were adjusted to account for repeat cognitive measures.
For each cognitive measure, seven models were run.
The first model shows the association between the
cognitive measure and DNAm age, after adjusting for
covariates. We find that (as reported previously), GCF
and EM were inversely associated with DNAm age
(GCF: B=-0.336, P=0.020; EM: B=-0.286, P=0.012).
Model 2, is similar to model 1, but includes the addition
of amyloid load, to examine whether it alters the
association between cognitive functioning and DNAm
age. We find that amyloid load is significantly
associated with DNAm age. Furthermore, it accounts
for 31.8% and 30.8% of the association between DNAm
age and GCF and EM, respectively. Model 3, is similar
to model 1, but with the addition of neuritic plaques.
We find that NP is significantly associated with DNAm
age and accounts for 66.1% of the association between
DNAm age and GCF, as well as 65.0% of the
association between DNAm age and EM. Model 4,
includes the addition of diffuse plaques, which is
significantly associated with DNAm age. However,
diffuse plaques only account for 15.5% of the
association between DNAm age and GCF, and 17.8% of
the association between DNAm age and EM. Model 5,
includes the addition of neurofibrillary tangles, which is
not significantly associated with DNAm age, yet NFT
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accounts for 25.9% of the association between DNAmM
age and GCF, and 23.4% of the association between
DNAm age and EM. Model 6, includes the addition of
overall tangle score, which, like NFT, is not
significantly associated with DNAm age, yet it account
for a significant proportion of the association between
DNAm age and GCF (24.4%), as well as DNAm age
and EM (19.9%). Finally, Model 7 is similar to model 1,
but with the addition of all five neuropathology
variables. We find that the inclusion of all these
measures accounts for 52.4% of the association between
DNAm age and GCF, and 51.4% of the association
between DNAm age and EM.

Heritability and genetic correlation analysis

We estimated the heritability of epigenetic age accelera-

tion using the GCTA software [14, 15] from SNP
markers measured on the same subjects. We find that
epigenetic age acceleration in DLPFC is highly
heritable (h’=0.41, Table 7), which is similar to
heritability estimate reported for blood [11, 16].

We find that diffuse plaques are highly heritable
(h*=0.38, Table 7) and have a significant genetic
correlation with epigenetic age acceleration (r=0.24,
p=0.010, Table 7). Neuritic plaques also exhibit a
significant genetic correlation with epigenetic age
acceleration (r=0.78, p=0.014) but the result needs to be
interpreted with caution since neuritic plaques are at
best weakly heritable (h’=0.05). We also find a
suggestive genetic correlation with working memory at
the last assessment (r=-0.35, p=0.065) but working
memory is only weakly heritable (h*=0.07).

Table 5. Neuropathological mediation of the association between GCF and DNAm age

Beta Coefficient

(One-Tailed P-Value)

Modell Model2 Model3

Model4 Model5 Model6 Model7

GCF -0.336 -0.229

Amyloid 0.094

(0.015)

Neuritic Plaques

Diffuse Plaques

NFT

Tangles

(0.020) (0.087) (0.256)

(0.004)

-0.284 -0.249 -0.254 -0.160
(0.044)  (0.088)  (0.084) (0.193)
0.026
(0.305)

0.514
(0.025)

0.360 0.144
(0.044) (0.268)
0.231 -0.028

(0.139) (0.537)

0.019 -0.016

(0.165) (0.720)
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Table 6. Neuropathological aediation of the association between EM and DNAm age

Beta Coefficient
(One-Tailed P-Value)
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
EM -0.286 -0.198 -0.100 -0.235 -0.219 -0.229 -0.139
(0.012) (0.064) (0.229) (0.032) (0.057) (0.048) (0.161)
Amyloid 0.094 0.028
(0.015) (0.287)
Neuritic Plaques 0.538 0.487
(0.005) (0.033)
Diffuse Plaques 0.368 0.165
(0.044) (0.243)
NFT 0.210 -0.032
(0.164) (0.540)
Tangles 0.016 -0.017
(0.202) (0.725)
DISCUSSION and processing speed—was associated with DNAm age

Overall, we found that postmortem DNAm age in
DLPFC was associated with neuropathological
variables (Figure 1 and Table 2) and with pre-mortem
measures of cognitive decline, after adjusting for
chronological age, sex, and other possible confounders
(Tables 3 and 4). Our mediation analysis (Tables 5-6)
suggests that a proportion (up to 66%) of the association
between DNAm age and measures of cognitive function
is mediated by neuropathological measures. Our genetic
analysis (Table 7) indicates that pleiotropic genetic loci
affect epigenetic age acceleration, neuropathological
variables, and cognitive traits.

The association between cognitive function and DNAm
age is consistent with previous work showing that
general cognitive ability—defined as a composite score
for six cognitive function tests comprising working
memory, non-verbal reasoning, constructional ability,

in pre-mortem blood samples [17]. However, previous
work has not examined the role of neuropathology or
AD dementia in the association between DNAm age
and cognitive decline. Our study showed that about half
of the association between DNAm age and cognition
was accounted for by variations in neuropathological
variables. For instance, we found that worse GCF and
EM was associated with higher DNAm age; however,
this association was significantly reduced or eliminated
after adjusting for amyloid load or neuritic plaques.

Previous studies have shown that there is little or no age
effect on many cognitive domains after accounting for
common neuropathologies [18]. The extended
preclinical phase of dementia is typically characterized
by an accumulation of neuropathology underlying
cognitive decline, and as such, pathologies have been
shown to relate to decline across the entire continuum,
from normal, to MCI, to dementia [19, 20].
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Table 7. Heritability analysis and genetic correlations

Genetic correlation with
Heritability epigenetic age acceleration

Trait
(residuals) Estimate P Estimate P
DNAm age 041 0.19 - -
Mean GCF <0.01 0.50 -- --
Mean WM 0.17 0.32 -0.19 0.12
Mean EM <0.01 0.50 -- -
Last GCF <0.01 0.50 -- -
Last WM 0.07 0.43 -0.35 0.065
Last EM <0.01 0.50 - -
Amyloid 0.03 0.46 -- -
Neuritic plaque 0.05 0.43 0.78 0.014
Diffuse plaque 0.38 0.080 0.24 0.010
NFT <0.01 0.50 - -
Tangles <0.01 0.50 -- -

The GCTA software was used to estimate the heritability (first two columns) and the genetic
correlations with epigenetic age acceleration (last two columns).

Nevertheless, declines in cognitive functioning have
been shown to be significantly steeper among those
with AD [21-24]. In contrast to those with non-
pathological cognitive aging, the more drastic cognitive
decline associated with AD is thought to reflect AD-
mediated neuronal injury, larger decreases in brain
volume, functional disconnection between PFC and the
hippocampus, and dramatic increases in ventricle size
(3, 25].

While our results showed that DNAm age was
associated with cognitive decline among persons with a
clinical diagnosis of AD, we did not find an association
between AD dementia status and DNAm age. One poten-

tial explanation for the lack of association between AD
dementia status and DNAm age is that the clinical
diagnosis AD is only an incomplete measure of the
underlying neuropathology such as the accumulation of
amyloid-beta plaques and NFT. For this reason, AD
reflects a heterogeneous group, which is why the
severity of AD (as estimated by cognitive decline or
neuropathology) may be more strongly associated with
DNAm age than AD dementia status alone. Among our
participants, we found that both the between-person and
within-person variance in GCF and EM change was
much higher for those with AD versus those without
AD dementia (Table 8), suggesting that 1) the AD
group may be far more heterogeneous in regards to
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neurocognitive decline, and 2) experience far more
cognitive  aging  changes.  Additionally,  this
interpretation is supported by our analysis of
neuropathological variables, for which we found strong
associations between DNAm age and all five measures
(amyloid load, neuritic plaques, diffuse plaques, NFT,
and overall tangle score). Additionally, results from
step-wise models showed that neuropathological
variables, especially amyloid load and neuritic plaques,
may explain the association between DNAm age and
cognitive functioning. This suggests that increased
DNAm age may influence changes in the regulation of
amyloid proteins, contributing to AD neuropathology,
and thus manifesting as steeper cognitive declines [26].

Finally, our genetic analysis showed that DNAm age,
neuropathology, and cognitive decline may be
pleiotropic, which could reflect mediation among these
factors. For instance, alleles could be associated with
faster cognitive decline via acceleration of the
biological aging process, which in turn leads to a faster
accumulation of neuropathology (Figure 2A). Another
alternative is that physiological consequences
associated with neuropathological accumulation could
influence both biological brain aging and cognitive
decline, simultaneously (Figure 2B). Finally, loci could
pleiotropically influence both neuropathology and
biological aging, independently, with no causal pathway
between them (Figure 2C). In moving forward, examina-

Table 8. Between- and within-person statistics for cognitive function, by AD

No AD AD
Mean Std. Dev. N Mean Std. Dev. N
GCF Overall 0.126 0.496 2554 -0.894 0.954 2105
Between 0.448 397 0.786 300
Within 0.235 0.649
EM Overall 0.252 0.649 2482 -0.928 1.139 2029
Between 0.607 397 0.951 300
Within 0.323 0.731

Genetic
Signature

Neuropathology Neuropathology

Neuropathology Biological

Accumulation Aging Accumulation Accumulation

Cognitive Cognitive Cognitive
Decline Decline Decline

Figure 2. Causal scenarios that might explain the significant genetic correlations between epigenetic
age, neuropathology and cognitive decline. Genetic variants form a causal anchor that affect biological age
(and associated measures such as epigenetic age) and various measures of neuropathology and cognitive decline.
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tion of these pathways will be important for facilitating
our understanding of brain aging and neurodegenerative
disease.

There are limitations to this study. First, DNAm age
was only measured postmortem, which prevented us
from determining if it was predictive of AD status or
cognitive decline. Furthermore, DNAm age changes
with time, yet in our sample it was only measured at a
single time-point. For that reason we were unable to
examine if larger changes in DLPFC DNAm age were
associated with steeper cognitive decline or AD.
Nevertheless, our study was strengthened by the
inclusion of neuropathological variables, longitudinal
measurements of multiple cognitive functioning
domains, measurement of DNAm age in DLPFC rather
than whole blood, and availability of postmortem data
for neuropathologic indices.

Overall, our study shows that epigenetic aging in
DLPFC is associated with the severity of cognitive
decline as well as neuropathological hallmarks of AD.
These results strongly suggests that the epigenetic clock
lend itself as a molecular biomarker of brain age.

METHODS

Study sample. Our analytic sample included 700 non-
Latino white subjects from the Religious Order Study
(ROS) and the Rush Memory and Aging Project (MAP)
[12, 13]. Both are longitudinal community based cohort
studies of aging and dementia. The majority of
participants in both studies are 75-80 years old at
baseline with no known dementia. Inclusion in the
studies requires participants to consent to undergoing
annual clinical evaluations as well as postmortem organ
donation. The ROS sample includes Catholic priests,
nuns, and brothers from across the United States,
whereas the MAP sample includes a more general
community based population from northeastern Illinois.
For our analysis, excluded subjects included those with
missing DNAm age, or who were diagnosed with
dementias other than AD.

Clinical evaluations. Participants were administered
annual structured interviews to assess cognitive
functioning. These included tests for EM (immediate
recall (word list), delayed recall (word list), word
recognition (word list), immediate recall (East Boston
story), delayed recall (East Boston story), logical
memory immediate recall, logical memory delayed
recall), WM (digits forward, digits backward, digit
ordering), SM (Boston naming, category fluency,
reading test), PO (line orientation, progressive
matrices), and PS (symbol digits modality-oral, number

comparison, stroop color naming, stroop color reading).
For each domain, composite measures were calculated
as the average across tests. Before taking the average,
each cognitive test was converted to a z-score (with
mean of zero and standard deviation of 1). Finally, GCF
is meant to represent overall cognitive functioning. At
each wave it was estimated as the average across z-
scores from the 19 cognitive tests for EM, WM, SM,
PO, and PS.

Neuropathological examination. Upon  participants’
death, brains were extracted, weighed, sectioned into 1

cm-thick coronal slabs, and stored. Neuropathological
indices were examined in order to diagnose cognitive
pathologies such as AD, Lewy Body diseases, and
cerebrovascular disease [27]. Modified Bielschowsky
silver stain was used to identify AD pathology based on
NIA-Reagan and modified CERAD criteria. Global AD
pathologic burden was estimated by averaging
standardized numbers of neuritic plaques, diffuse
plaques, and NFT across five brain regions as described
in [28]. Moreover, amyloid load was quantified as
abundance of amyloid-f, labeled with a N-terminal
directed monoclonal antibody, while PHFtau tangles,
was quantified as the density of paired helical filament
tau tangles.

We focused on the following aggregated
neuropathological variables (Figure 1 and elsewhere):
a) "neuritic plaques" and "diffuse plaques" were
defined as average of 5 scaled scores (namely scaled
mid-frontal, temporal cortex, inferior parietal cortex,
entorhinal cortex, and hippocampus plaques) [29, 30].

b) "NFT" measures the tangle average across 5
regions (mid-frontal cortex, mid-temporal cortex,
inferior parietal cortex, entorhinal cortex, and

hippocampus CA1) [29].

c) "Amyloid load" measures the overall amyloid
load, which was defined as the mean amyloid scores
across 8 regions (namely hippocampus entorhinal
cortex, mid-frontal, inferior parietal cortex, anterior
gyrus, calcarine cortex, cingulate regions, superior
frontal gyrus) [29, 31, 32].

d) Overall tangle score which reports the PHFtau
tangle score across 8 regions (hippocampus, entorhinal
cortex, midfrontal gyrus, inferior temporal, anterior
gyrus, calcarine cortex. cingulate region, superior
frontal gyrus).

DNA methylation data. DNAm was measured using the
[llumina Infinium HumanMethylation450 BeadChip.
The Illumina BeadChips measures bisulfite-conversion-
based, single-CpG resolution DNA methylation levels
at 485577 different CpG sites in the human genome.
These data were generated by following the standard
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protocol of Illumina methylation assays, which
quantifies methylation levels by the B value using the
ratio of intensities between methylated and un-
methylated alleles. Specifically, the [ value is
calculated from the intensity of the methylated (M
corresponding to signal A) and un-methylated (U
corresponding to signal B) alleles, as the ratio of
fluorescent signals p = Max(M,0) / [Max(M,0) +
Max(U,0) + 100]. Thus, B values range from 0
(completely  un-methylated) to 1  (completely
methylated) (Dunning, 2008). The DNA methylation
data are available at the following webpage
https://www.synapse.org/#!Synapse:syn3168763. We
focused on brain samples of Caucasian subjects from
ROS and MAP that include brain donation at the time of
death (n=700) [12, 13]. Additional details on the DNA
methylation data can be found in [9].

Epigenetic clock analysis and DNAm age. Several
recent studies have proposed to measure the age of
tissue samples by combining the DNA methylation
levels of multiple dinucleotide markers, known as
Cytosine phosphate Guanines or CpGs [11, 33, 34]. In
particular, the epigenetic clock based on 353 Cytosine
phosphate Guanine (CpG) markers was developed to
measure the age (known as "DNA methylation age" or
"epigenetic age") of human tissues, organs and cell
types—including brain, breast, kidney, liver, lung,
blood [11], and even applies to prenatal brain samples
[35]. The epigenetic clock method - applied to two
commercially standardized methylation platforms: the
Ilumina 450K array and the 27K arrays - is an
attractive biomarker of aging because (1) it applies to
most human tissues; (2) its accurate measurement of
chronological age is unprecedented [11]; (3) it is
predictive of all-cause mortality even after adjusting for
a variety of known risk factors [16]; (4) it correlates
with measures of cognitive and physical fitness in the
elderly [17]; (5) it has already been useful in detecting
accelerated aging due to obesity [36], Down syndrome
[37], Parkinson’s disease [38], and HIV infection [39];
and . Further, the epigenetic clock was used to show
that age acceleration of blood may predict the future
onset of lung cancer [40], that the cerebellum ages
slowly [41], that the blood of subjects with a severe
developmental disorder ages normally [42], and that
semi-supercentenarians and their offspring age more
slowly [47].

Weighted DNAm measures across the 353 CpGs from
the epigenetic clock were used to measure the DNAm
age of DLPFC samples. These CpGs and their weights
(coefficient values) were chosen in independent data
sets by regressing chronological age on CpGs. DNAm
age is then defined as predicted age, in years [43].

Statistical analysis. Biweight midcorrelations and
ordinary least squares regression models were used to
examine whether postmortem neuropathology was
associated with postmortem DNAm age in DLPFC,
after controlling for age at death, study (ROS vs. MAP),
and sex. For the bar plots in Figure 1, we defined a
grouping variable (high versus low) by dichotomizing
the respective neuropathological variable according to
the median value. The median was chosen in order to
arrive at equal group sizes (high versus low) and to
avoid overfitting due to the selection of an optimal
threshold. Multivariate linear regression models were fit
in the whole sample and in strata defined by AD
dementia status (according to the clinical diagnosis).
Here we did not use a linear mixed effects model since
our dependent variable (DNAm age) is a time-invariant
variable based on postmortem brain tissue. The linear
models were used to determine whether GCF, WM,
EM, SM, PO, and PS over all waves leading up to death
were related to postmortem DNAm age in DLPFC.
Standard errors for cognitive decline models were
adjusted to account for multiple observations. These
models also included potential confounders, such as age
of clinical evaluation, age at death, study (ROS vs.
MAP), and sex. Finally, step-wise linear models were
run with DNAm age as the dependent variable and
cognitive measures as the independent models. For
these models we examined how the association between
DNAm age and cognition was altered with the inclusion
of either one or all of the neuropathology measure.

We report one-sided (one-tailed) p-values for the
cognitive scores and neuropathology variables in our
multivariate model analyses because our hypotheses
involving cognitive scores are one-sided (e.g. that
higher DNAm age is associated with worse cognitive
functioning and higher levels of neuropathology).

Genetic analysis. Of the study samples, a total of 1102
individuals (632 normal/ 470 AD) were available with
both genotypes and cognitive functioning or
neuropathological measure. The GCTA software was
used to estimate the heritability and genetic correlations
based on both genotyped and imputed SNP markers.
We used IMPUTE2 [44, 45] with haplotypes phased
using SHAPEIT[46] to impute SNP and INDEL
markers, with a reference panel based on the 1000
Genome haplotypes from 2,504 individuals (released in
October 2014). As study individuals were genotyped on
either Affymetrix SNP Array 6.0 or Illumina
HumanOmniExpress, we performed imputation on each
subset of individuals stratified by platform. We merged
the imputation outputs across platforms and pruned in
the markers with info measure > 0.4 in both sets. The
other quality control was based on minor allele
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frequency (MAF) > 0.02. We converted the IMPUTE2
output format to MaCH dosage format in order to use it
as input for the GCTA software.
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