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Abstract: Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the
population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-
related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial
infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of
kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies.
Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid
metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total
amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of
phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldhlal, a key enzyme in vitamin
A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in
old kidneys. Moreover, ceramidase Asahl was highly expressed in aged kidneys, consistent with a decrease in ceramide C16.
In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the
development of chronic kidney disease.

INTRODUCTION graphics comes the necessity to better understand the

mechanisms of aging in different organs and associated
Developed countries face an enormous increase in the diseases. Chronic kidney disease (CKD), as an example,
elderly population. Estimates predict an increase in life has already become a major health and economic
expectancy to 88 years for men and to 91 years for burden that will further increase in the future [1-4].
women aged 65 in 2030 [1]. With this change in demo- Renal aging involves cellular and structural changes
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within the kidney and has important implications for
aging-associated comorbidities especially cardio-
vascular disease. On the molecular level an increase of
oxidative damage and its products as well as an increase
in cyclin-dependent kinase (CDK) inhibitors such as
pl6, has been reported [2], leading to senescence
especially in the cortical tubular system [4,5]. This
contributes to a chronic inflammatory response with
accumulating macrophages and lymphocytes in the
interstitium [1-4]. Histopathological consequences are
tubular damage with tubular atrophy and interstitial
fibrosis. In addition, glomerulosclerosis is a hallmark of
age-related kidney disease [1,2,4]. Macroscopically,
aged kidneys develop cysts and a global loss in weight
and mass while, functionally, these alterations lead to
potassium retention and impairment of sodium and fluid
balance. In addition, the response of erythropoietin to
anemia and also vitamin D activation are reduced with
age. These developments are worsened with underlying
diseases such as diabetic nephropathy or cardiovascular
disease [1,2,4,5]. Vice versa, CKD as a major
contributor and risk factor aggravates cardiovascular
disease [2,6]. However, the exact underlying molecular
mechanisms for these changes remain largely unknown.

The aim of this study was to gain a better understanding
of the mechanisms underlying renal aging by employing
a three-layered omic strategy. We characterized age-
related transcriptional changes comparing gene
expression in kidneys of young and aged wild-type
mice. Our results identified genes involved in lipid
metabolism to be differentially expressed in aged
kidneys. These findings were partially confirmed on the
protein level. They are consistent with changes in
lipidomic profiles suggesting dysregulated lipid
metabolism as a pathogenic factor and potential target
of future therapeutic strategies.

RESULTS

Mice develop a distinct kidney aging phenotype with
up-regulation of kidney damage markers

Histological examination of 96 week old wild type (wt)
C57BL6 mouse kidney tissue revealed renal cysts,
dilated tubules and hypertrophic glomeruli as well as
prominent basal membranes and dilated capillary loops
in the renal cortex compared to 14 week old renal tissue
(Fig.1a). Aged kidneys also displayed protein cylinders
in parts of the medulla. Analysis of glomerular size and
diameter showed glomerular hypertrophy  with
increased glomerular tuft area and increased external
diameter in aged glomeruli (Fig.1b). We detected an
increase of kidney damage markers such as fatty acid
binding protein 1 (Fabpl), kidney injury molecule-

1/hepatitis A virus cellular receptor 1, (Kiml1/Havcrl)
and neutrophil gelatinase-associated lipocalin/lipocalin
2 (Ngal/Len2) in old kidneys on the transcriptomic level
(Fig.1c). These data were confirmed by qPCR (Fig.1d).
Increased Ngal/Len2 expression occurred primarily in
the kidney medulla as shown by in situ hybridization
(Fig.1le) and could be detected on the protein level in
immunoblots of whole kidney lysates (Fig.1f).

Genes involved in lipid metabolism are differentially
expressed in old wt Kidneys

Using microarray analysis of total RNA from 14 and 96
week old kidney tissue we detected 25.528 annotated

genes (www.ncbi.nlm.nih.gov/geo/query/acc.cgi? acc=
GSM1921101).

Of these genes 420 were found to be differentially
expressed between age groups with a clear age-specific
clustering (Fig.2a). Fold changes were validated by
gPCR analysis of 11 candidate genes (Fig.S1). We
performed gene ontology (GO) analyses to better
understand common pathophysiologic mechanisms. A
substantial number of genes differentially expressed in
young versus old kidney tissue are related to lipid
metabolism. In particular, genes involved in modifying
sterol and lipid metabolism represent the most
prominent cellular processes influenced by aging
(Fig.2b,c,). Additionally, differentially expressed genes
were involved in cellular and immune responses in both
GO and network analysis (Fig.2b, Fig.S2).

Proteomic analysis reveals alterations in proteins
involved in lipid metabolism

We analyzed lysates of 14 week old kidneys and 96
week old kidneys by label-free quantitative mass
spectrometry. More than 2000 proteins were detected
and 1300 high-confidence proteins were quantified
(Data Set 1). To indicate which protein functions were
affected, we performed GO term analysis of the
changed proteins as compared to the non-changed
proteins. Among the 65 changed proteins, the most
significantly enriched GO term was “cellular lipid
metabolism” (-log (p) = 2.65), followed by “cellular
amino acid metabolic process (-log (p) = 2.59) and lipid
transport” (-log (p) = 2.48).

Integration of proteomic and transcriptomic data

We correlated fold-changes detected by mass
spectrometry analyses of 14 and 96 week old whole
kidney lysates to all differentially expressed genes
annotated in our microarray analysis (Data Set 1). After
annotation to Gene ontology biologic processes
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(GOPBs), UniProt keywords and published gene sets, we
performed a 2D GO enrichment analysis [7-9] (Fig.3a).
GOBPs for lipid metabolism are differentially regulated
on both transcriptomic and lipidomic level. The
published gene set for aged human kidneys by Rodwell et
al. is also reflected by our mouse kidney data
[2,5,7,10,11]. We observed a weak but significant
correlation  between mRNA  transcription  and
corresponding protein abundance (r=0.111; p<0.0001,
Fig.3a), indicating that transcription may influence aging-
associated differences in cellular protein abundance,
although the effect of transcription appears to be small.

Mapping transcriptome and proteome data, aldehyde
dehydrogenase family 1 subfamily Al (Aldhlal)
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exhibited the strongest correlation, with an age-related
fold-change of 1.56 (on a log2 scale) on the
transcriptome and a fold-change of 2.66 (on a log2
scale) on the proteome level (Fig.3b). We validated this
finding by Aldhlal immunoblot of whole kidney
lysates from young and old mice showing an increase in
Aldhlal protein abundance in aged kidneys (Fig.3c).
Immunohistochemistry (IHC) for Aldhlal identified the
medullary part of the thick ascending limb of the loop
of Henle as the main segment for its expression
(Fig.3d). Interestingly, we detected an accumulation of
apolipoprotein A and E (ApoA and ApoE) as well as
uromodulin (Umod) on the proteome level with only
little differential expression on the transcriptome level
(Fig.3b).
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Figure 1. Histology, transcriptome analysis, western blot and in situ hybridization reveal a kidney aging phenotype. (a)
PAS staining of young and aged wildtype kidneys. Aged kidneys show cysts and hypertrophic glomeruli, prominent basal membranes and
dilated capillary loops in the renal cortex as well as protein cylinders in parts of the medulla. Scale bars - upper panel: 50um; lower panel:
100pm (b) Quantitative measurement of glomeruli by their external diameter and glomerular tuft area. Aged glomeruli show a hypertrophy
compared to 14 week old glomeruli. (c) Table of fold change (FC) in kidney damage markers obtained from microarray analysis. (d) gPCR
validation of array data for kidney damage markers. (e) In situ hybridization for Lcn2 (NGAL)-RNA on formalin-fixed paraffin-embedded
kidney tissue. 96 week old kidneys show increased Lcn2 RNA levels in the papilla compared to young animals. Scale bar: 100um (f)
Immunoblot for Lcn2 shows a clear increase in protein content in 96 week old kidney lysates. B-tubulin was used as a loading control and for
normalization of densitometry. Boxplots depict mean values with whiskers showing 5-95% percentile.*p<0.05, **p<0.01, ***p<0,001.
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Figure 2. Microarray analysis reveals age-specific clustering and differentially expressed genes to be associated
with lipid metabolism. (a) Hierarchical clustering of 1000 genes with the strongest variation reveals age-specific clustering.
Genes with low expression are depicted in blue color, genes with high expression in red color. (b) Gene ontology (GO)
enrichment of differentially expressed genes (96W — 14W WT kidney). We observed a strong enrichment of lipid and
lipoprotein metabolism, of immune system and defense response, of small ion transport and transmembrane transport in
aged wild-type kidneys (see also Data Set 2). Nodes of GO terms are color-coded according to enrichment strength.

Phospholipid mass spectrometry analysis shows
differences in lipid species and subspecies between
young and aged mouse kidneys

To integrate the proteomic and transcriptomic analysis
into a broad analysis of lipid metabolism, we performed
targeted mass spectrometry-based lipidomic analysis.
Lipidomic analysis comparing young versus old kidney
lysates detected an overall of 189 lipid subspecies in all
of our samples (Data Set 2). We performed hierarchical

clustering analysis of the absolute lipid concentrations
and found an age-specific clustering for all aged kidney
samples and all young kidney samples (Fig.4a).
Interestingly, this age-related separation of samples was
not detected in liver, heart and muscle samples. When
looking at the overall content of phosphatidylcholine
(PC), phosphatidylethanolamine (PE), phosphatidyl-
glycerol (PG), phosphatidylserine (PS), ceramides (Cer)
and sphingomyelins (SM), we detected a significant
decrease for PC, PE and SM in aged kidneys (Fig.4b).
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Figure 3. Proteome analysis depicts little correlation between transcriptome and proteome. Aldh1al is identified as
an aging marker in the kidney. (a) 2D GO enrichment analysis. Positive values indicate higher RNA expression or protein
abundance per GO term in 14 week old samples. Negative values show higher expression / abundance per GO term in 96 week old
samples. Blue: Gene ontology biological process (GOBP), red: selected UniProt keywords, green: representation of published geneset
(b) Correlation analysis of transcriptome and proteome differences between age groups. Positive values indicate higher RNA
expression or protein abundance in 14 week old samples. Negative values show higher expression / abundance in 96 week old
samples. Colors depict proximity values ranging from blue (very close together) to dark green. Aldhlal shows the highest difference
and correlation. (c) Immunoblot for Aldhlal shows a clear increase in protein content in 96 week old kidney lysates. 14-3-3 was used
as a loading control. (d) Immunohistochemistry for Aldh1al on formalin-fixed paraffin-embedded mouse kidney tissue. Staining showed a
clear localization to the brush border of the medullary thick ascending limb (mTAL) segment. This staining did not vary in intensity
and localization between age groups. **p<0.01; Scale bars in left panels indicate 400um. Scale bars in right panels indicate 100um.

With traditional biochemical staining methods based on
PE or SM binding agents we did not detect a difference
between 14 and 96 week old kidney tissue in
immunofluorescence (Fig.S3). None of the other organs
investigated (liver, heart, muscle) revealed a lipid
pattern similar to the kidney pattern. Since both PE and
PC were detected at lower levels in 96 week old
kidneys, we examined the PE:PC ratio. We found no

significant difference between age groups (Fig.S3). We
detected a significant decrease in lipid subspecies
depending on their overall fatty acid chain length and
number of double bonds. Data for significant
differences in abundance of PE, PC, PS, Cer and SM
are shown in Fig.4c,d,f. PS aa C38:4 was significantly
more abundant and N-C16:0-Cer significantly less
abundant in aged kidneys (Fig.4e,g).
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Figure 4. Lipidome analysis shows age-specific clustering and a decrease of lipid species and subspecies with age. (a)
Hierarchical clustering of lipid subspecies detected in all organ samples. Low abundant lipids are depicted in blue, high abundant lipids in red
color. (b) Overall lipid sums detected in whole kidney lysates. C: Ceramide, PC: Phosphatidylcholine, PE: Phosphatidylehtanolamine, PG:
Phosphatidylglycerol, PS: Phosphatidylserine, SM: Sphingomyeline (c) PE subspecies with significantly different abundance between age
groups. (d) PC subspecies with significantly different abundance between age groups. (e) PS subspecies with significantly different abundance
between age groups. (f) Cer subspecies with significantly different abundance between age groups. (g) SM subspecies with significantly
different abundance between age groups. Boxplots depict mean values with whiskers showing 5-95% percentile. **p<0.01; ***p<0.001.

Asahl shows a higher abundance in aged kidneys
and correlates with a decrease in bioactive ceramide
Cl1e6

Since important classes of lipids were significantly
altered within the aging kidney, we re-examined the
data obtained from proteomics to identify corresponding
regulations on the proteome level. We mapped each
metabolite to corresponding proteins involved in its
synthesis or degradation (see methods for details, Data

Set 3). Two metabolites were related to the detected
proteins in our proteome analysis, with N-acyl-
sphingosine amidohydrolase 1 (Asahl) showing a
significantly higher abundance in aged kidneys (Fig.5a).
Asahl is a ceramidase catalyzing the degradation of
ceramides which nicely correlates to the decrease we
see in N-C16:0-Cer (Fig.4f). Immunohistochemistry for
Asahl identified the protein to be expressed mostly in
the cortical tubular network with an increase in
abundance in the medulla of aged kidneys (Fig.5b).
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Figure 5. Increased abundance of Asahl correlates with a decrease in ceramide 16 in aged kidneys. (a)
Volcano plot of differences in protein abundance between age groups. Positive values indicate higher protein abundance
in 14 week old samples. Negative values indicate higher abundance in 96 week old samples. Asah1 was detected to have
a fold change of 0.69 in aged kidneys. Aldhlal is highlighted as a comparison. (b) Immunohistochemistry for Asah1 on
formalin-fixed, paraffin-embedded mouse kidney tissue showing low expression in the cortical tubular system with no
expression in glomeruli and decreased expression in the young medulla. Scale bars indicate 100um.
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DISCUSSION

Gene expression profiling provides major insights into
genetic mechanisms of the aging process. RNA
expression profiles and proteomic analyses of different
organs have identified age-related changes in different
tissues, including the kidney [1,12-14]. Recently, the
metabolome has revealed strong predictors of healthy
aging, longevity as well as brain aging and
neurodegenerative disease [15-18]. The metabolome
and its subdiscipline, the lipidome, represent a
functional readout of cellular biochemistry [19]. Thus,
the integration of information on lipidomics with
proteomics and expression profiles can help to shape the
understanding of metabolic pathways as potential
targets for future therapeutic interventions [20]. In this
study, we used a three-layered multi-system approach to
identify genes and pathways involved in kidney aging.
Lipid metabolism was among the most prominent
hallmarks of kidney aging [12,21,22]. A previous study
investigating gene expression of liver, kidney and brain
of 33 different mammalian species identified genes
involved in lipid oxidation and lipid modification to be
negatively correlated with lifespan and organism
maturity time [23]. Comparing transcriptomic patterns
of prematurely aged and long-lived mice, Schumacher
et al. detected genes involved in lipid metabolism
among genes differentially expressed during the aging
process in various tissues including the kidney [24]. In
agreement with data on RNA profiles of 3 and 23 month
old C57BL6 mice we detected a decrease in acetyl
coenzyme A oxidases on the protein level in our aged
samples [25]. However, our data did not reflect higher
levels of renal triglycerides and cholesterol or an
increase in 3-hydroxy-3-methylglutaryl-coenzyme-A
reductase (HMGCR) with aging, as previously
described [25]. We detected a decrease in HMGCR
mRNA, the key enzyme in cholesterol synthesis. These
findings support the hypothesis that the aging process
specifically affects the synthesis of lipids and their
bioactive derivatives like sterols. Interestingly, carnitine
palmitoyltransferase la (Cptla) protein abundance was
decreased in the proteome of aged kidneys (TbL.S1).
This is in accordance with a previous study in which
Cptla expression was inhibited in diabetic nephropathy,
a common aging-associated disease [26].

The role of lipids in aging, disease and longevity has
been described previously [25,27-29]. In our analysis,
we focused on phospholipids known to be essential
cellular components and signaling molecules.
Lipidomic analyses exhibited age-specific alterations in
phosphatidylcholine, phosphatidylethanolamine and
sphingomyelin ~ species and  subspecies. Lipid
composition in our study clearly distinguished old from

young kidney samples (Fig.4a) with a decrease in
phospholipids with age. The correlation of this decrease
with aging-related diseases is further supported by a
study on the offspring of nonagenarians, revealing a
significant increase in phosphatidylcholine and
sphingomyelin plasma levels compared to controls to be
associated with a lower risk for hypertension and
diabetes [17]. Furthermore, a potential pathologic role
for a decrease in PE and the subspecies PE C38:4, PE
C38:5, PE C38:6 and PE C36:4 was recently
hypothesized by a study comparing the lipid
composition of kidney tumors to surrounding tissue
[30]. However, the ratio of phosphatidylcholines (PC)
versus phosphatidylethanolamines (PE), a parameter
with importance for membrane integrity and
progression to a high fat-induced disease [31], was not
changed (Fig.S3a).

Of specific interest is a significant decrease in
bioreactive ceramide within the aging kidney. This is
consistent with an increase in RNA and protein
abundance of the acid ceramidase Asahl in old kidneys.
Asahl mediates the hydrolysis of ceramide into
sphingosine and free fatty acids [32]. An increase in
sphingolipid-degrading enzymes has been demonstrated
in aging rat kidneys which is supported by our data
[33]. Ceramides as bioactive lipids have been shown to
modulate Ca*'-signaling in basolateral membranes of
proximal tubular cells in vitro [34]. An increase in total
plasma ceramide levels was detected in mice fed a high
fat diet and corresponded with renal injury [35]. A
decrease in ceramides, as observed in aged kidneys in
this study, may lead to alterations in cellular survival,
apoptosis as well as migration and cytoskeletal
rearrangements [36-38]. This is in part mediated
through the catabolic product of Asahl, sphingosine,
and its phosphorylated form (S1P). As a ligand for five
G protein-coupled receptors, S1P has already been
shown to mediate renal fibrosis directly in vitro and in
vivo [39]. Thus, alterations in ceramide metabolism may
directly influence the aging process in the kidney.

Correlating transcriptome and proteome data in our
study revealed a coefficient of 0.111. Compared to
previous studies investigating transcriptome and
proteome correlations in mice, zebrafish or human cells,
this coefficient is rather low [40-42]. Nevertheless,
numerous studies suggest that age-related changes may
also include posttranslational modifications and
alterations in protein degradation [43,44]. More
importantly, our whole kidney proteome also reflects
proteostatic changes associated with aging, which
consist of protein aggregates and deposits also in the
extracellular system. This is supported by an increased
abundance of Tamm-Horsfall protein (Umod) and
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albumin (Alb) in the aging kidney correlating with loss
of filter function and the formation of tubular protein
casts (Fig.la, Fig.3b). We identified Aldhlal to be
increased on both the transcriptomic and proteomic
level in aged kidneys. Aldhlal is a key enzyme in
lipophilic vitamin A metabolism, converting retinal to
retinoate.  Interestingly, Aldhlal expression is
selectively regulated by sterol regulatory element-
binding protein (SREBP-1c), a transcription factor
involved in regulation of sterol metabolism-associated
genes [45]. Target genes include ATP citrate lyase,
acetyl-CoA carboxylase and fatty acid synthase [46,47].
It has been demonstrated that SREBP-1c expression is
increased in aging mouse kidneys [25] as well as in
kidneys of a diabetic mouse model with a subsequent
decrease in all-trans-retinoic acid and Pparf/6 [48]. This
supports the hypothesis that Aldhlal and its regulation
play a prominent role in the kidney aging process, but
mainly in the thick ascending limb of the loop of Henle
(Fig.3b).

Beyond lipid metabolism, our data display changes in
biomarkers of kidney disease. Consistent with the
transcriptomic data of a study on young and aged
human kidneys we found apolipoprotein E and Fabpl, a
potential marker of acute kidney injury, to be increased
in aged kidney samples pointing to a conserved aging
mechanism [49, 50]. Two additional kidney damage
markers, Kiml and Ngal/Lcn2, were found to be
upregulated on the transcriptional level in aged kidneys
in our study (Fig.1). These markers have been
investigated in numerous studies as potential new
biomarkers for acute kidney injury in human [50-52]. In
concordance with a previous analysis, our study
suggests that these proteins could also be useful markers
of renal damage during kidney aging, and their role
during the aging process needs further characterization
[53].

We demonstrate that lipid metabolism is altered on both
the transcriptomic and the proteomic level with clear,
potential decisive links towards a dominant aging-
associated lipid phenotype. In particular, we show that
sphingolipid signaling and the vitamin A pathway play
an important role in the aging process. The three-
layered omics strategy exemplified here can be useful to
discover, understand and prioritize untapped molecular
pathways in kidney aging and disease.

MATERIALS AND METHODS

Mice. Mice were bred in either C57BL6 (proteomic,
lipidomic, in situ hybridization) or mixed FVB/C57BL6
(microarray analysis & histology) background. All
experiments were conducted according to institutional

and federal guidelines and approved by the IACUC in
Bilthoven, NIH/NIA 1PO1 AG 17242. Following
federal regulations, the Animal Care Committee of the
University of Cologne reviewed and approved the
experimental protocol. Animals were housed at specific
pathogen-free (SPF) conditions with three-monthly
monitoring according to FELASA suggestions. Housing
was done in groups of less than six adult animals
receiving CRM pelleted breeder and maintenance diet
irradiated with 25 kGy (Special Diet Services, Witham,
UK), and water ad libitum.

For RNA preparation and Affymetrix array analysis 5
mice were sacrificed at 14 and 96 weeks of age. 4
animals of 14 and 96 weeks of age were sacrificed for
lipidomic and proteomic analysis.

Renal tissue was embedded in OCT (Sakura, Torrance,
CA) and frozen at -80°C or fixed in 4% neutral buffered
formalin and subsequently embedded in paraffin.

Preparation of RNA. Mice were anaesthetized by
intraperitoneal injection of 10 pl per g bodyweight of
0,01% xylocaine and 12,5 mg/ml ketamine — and
perfused with cold phosphate buffered saline (PBS).
Kidneys were excised and snap frozen in liquid
nitrogen. Total RNA was extracted and purified using
commercial homogenization (Bio 101 FastPrep FP120-
120 V, Savant, Midland, MI, USA) and the RNeasy kit
(Qiagen, Hilden, Germany).

Microarray hybridization. Reverse transcription of RNA
was done using the Applause WT- Amp ST RNA
Amplification System (NuGen Technologies, Inc., San
Carlos, CA, USA) in accordance to the manufacturer’s
protocol. cDNA probes were labelled with Encore
Biotin Module (NuGen Technologies, Inc.), hybridized
to the Affymetrix GeneChip Mouse Gene 1.0 ST Array
according to the manufacturer’s instructions and
scanned with a GeneChip 3,000 6G scanner.

Affymetrix microarray data analyses. Raw data (CEL
files) were processed using the robust multi-array
average (RMA) algorithm and quantile normalization
with the Affymetrix Power Tools, version 1.12.0, and
platform-specific library files [54]. Differential gene
expression was analyzed using descriptive statistics
(fold change) and Student’s T-Test method for pairwise
comparisons. Genes were prioritized by statistical
evidence. In order to create candidate lists for
differential gene expression between conditions, we
used all genes regulated at least 1.5-fold where
differential expression was significant at level 0.05.
Type I error inflation was ignored because the p-values
were used to prioritize the list rather than being
interpreted in a confirmatory sense.
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All microarray data reported in this study are described
in accordance with MIAME guidelines and have been
deposited in the National Center for Biotechnology
Information Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih. gov/geo/) public repository.
The data sets supporting the results of this article are
available in the GEO public repository at: www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSM1921101.

Quantitative RT-PCR. For control purposes we assessed
RNA expression of high-scoring genes from our
microarray analyses using quantitative real-time PCR.
After cDNA amplification we used SYBR green on an
ABI 7900 HT thermocycler (Applied Biosystems, Life
Technologies Cooperation, Carlsbad, CA, USA).
Expression levels of housekeeping genes HPRT and
ACTB were employed for normalization, and RNA
expression levels were calculated with the comparative
threshold cycle (Ct) method as previously described
[55]. Primer sequences are provided in Supplemental
Table S1.

Annotation and enrichment analysis. DAVID [56] was
used for gene annotation, as well as enrichment
analysis. To visualize GO enrichments using REVIGO
[57], we first translated GO-terms to GOslim using
GO:TermFinder [58]. Visualization for Fig.2 was done
using Cytoscape [59].

Pathway enrichment analysis was done using the
Reactome FI plugin [60] for Cytoscape. One linker was
allowed. Visual preparation of the network file was
done in Cytoscape and Illustrator™.

Lipidomic analysis. Snap frozen kidneys, hearts, brains
and skeletal muscles were sent to Biocrates Inc.,
Innsbruck, for lipid mass spectrometry. The biologically

most abundant members of (lyso-)
glycerophospholipids, i.e. (lyso-) glycerophospho-
cholines, -ethanolamines, -serines, -glycerols, and
sphingolipids,  i.e.  sphingomyelins,  ceramides,

dihydroceramides, and 2-hydroxyacyl ceramides were
quantitatively analyzed by a high throughput flow
injection ESI-MS/MS screening method. The MRM
detection in positive and negative mode was performed
using a 4000 QTrap® tandem mass spectrometry
instrument (AB SCIEX). The sample preparation of
20uL sample volume followed a MeOH/CHCI3 -
liquid/liquid-extraction protocol. Besides five internal
standards to compensate for matrix effects, 43 external
standards were used for a multipoint calibration. The
quantitative data analysis was performed with Biocrates
MetIDQ™ enabling isotopic correction and basic
statistical analysis.

Clustering analysis was done using Perseus software
with euclidian distances. JMP (SAS, Boblingen) was
used for quantitative analysis (3way-ANOVA) and
visualization of results.

Proteomic analysis. Snap frozen kidneys were thawed in
8M urea buffer and complete protease inhibitors (PIM,
Roche) and dounce homogenized on ice 20 times.
Suspension was sonicated at 10% amplitude, 10% pulse
for 2 seconds and centrifuged at 4°C full speed for 15
minutes. Supernatant was purified using C18 StageTips
as previously described [61].

LC-MS/MS and search parameters. Samples were
analysed using a nLC (90 min gradient separation on a
15m C18 column (parameters in [62]) coupled to a
QExactive plus machine (Thermo Scientific) with
machine settings as previously described [63]. Raw files
were searched using MQ v 1.4.1.2 against a recent
mouse reference proteome database (uniprot) including
a list of contaminants [64] using default parameters.
Decoy mode was revert. PSM, protein and site FDR
was set to 0.01. Minimum peptide length was 7AA.
Fixed modification was carbamidomethylation on
cysteins. Variable modifications included in protein
quantification were acetyl (Protein N-term) and
methionine oxidation. Label-free quantification and
match between runs option was enabled.

Bioinformatic _analysis. Protein groups file was
imported in Perseus (v 1.5.0.24) [8] and processed as
previously described with few modifications [65].
Common contaminants, reverse hits and proteins
identified by site only were entirely removed from the
dataset. Logarithmized intensities were normalized and
missing values (at least 3 valid values in at least 1 group
had to be present) were imputed according to the
normal distribution (downshift 1.8 SD, width =0.3).
LFQ of 14 and 96 week old kidney samples were
compared using a two-tailed t-test with correction for
FDR by using a method similar to SAM [66]. Cutoff
was s0=0.1 and FDR was set to less than 0.2. Proteins
were annotated with GO terms, KEGG pathways, and
gene sets using the Perseus annotation package.
Normalized expression values from microarray analysis
were imported and logarithmized. Data were merged
based on the gene symbol matches. 2D enrichment of
annotations based on the differences [log2(signal 14
weeks/signal 96 weeks)] of the transcriptomic and
proteomic dataset was performed [8]. The permutation
based FDR cutoff was set to 0.05.

Western blot. The snap frozen kidney samples were
minced and lysed in 1% Triton X-100 buffer [1%
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Triton X-100, 20 mM Tris-HCI pH 7.5, 50 mM NacCl,
50 mM NaF, 15 mM Na4P207, 2 mM Na3VO4, and
complete protease inhibitors (PIM; Roche)] by dounce
homogenization and sonication at 10% amplitude, 10%
pulse for 1m20s on ice. After centrifugation at 15,000 g
for 15 min at 4°C protein content was measured using
BCA assay (Life Technologies, Darmstadt).
Supernatant was diluted according to protein mass with
1% triton X-100 buffer and 4% SDS sample buffer was
added accordingly.

Size separation was done using SDS-PAGE. Samples
were blotted onto polyvinylidene difluoride membranes
and visualized with enhanced chemiluminescence after
incubation of blots with corresponding antibodies (goat
anti mouse lipocalin-2/NGAL antibody; R&D Systems,
Minneapolis; mouse anti beta tubulin antibody;
HybridomaBank).

Immunohistochemistry (IHC) methods. Paraffin-

embedded sections were deparaffinized in Xylene
(VWR, Darmstadt, Germany) and rehydrated in
decreasing concentrations of ethanol. Heat-induced
antigen retrieval was performed in 10mM Tris 1mM
EDTA 0,005% Tween buffer, pH9.0 for 15. Peroxidase
blocking was performed in 3% hydrogen peroxidase
(Roth, Karlsruhe, Germany). After incubation in
primary antibody (anti-Aldhlal antibody, ab52492;
anti-Asahl antibody, ab74469 Abcam, Cambridge, UK)
1:200 in TBS 1% BSA at 4°C overnight, sections were
washed in TBS and incubated in biotinylated mouse
anti-rabbit secondary antibody (Jackson Immuno-
research, West Grove, USA) 1h at room temperature.
For signal amplification the ABC Kit (Vector,
Burlingame, CA, USA) was used before applying 3,30-
diaminobenzamidine (Sigma-Aldrich, St Louis, USA)
as a chromogen. Hematoxylin was used for counter-
staining. After dehydration slides were covered in
Histomount (National Diagnostics, Atlanta, USA).

For the assessment of age-related histologic alterations
periodic acid Schiff staining was used.

Lipid staining. OCT-embedded sections were dried for
30 minutes at room temperature. After fixation in 4%
PFA (Sigma-Aldrich) sections were washed in
Dulbecco’s PBS (DPBS) before blocking and
permeabilization in 0,1% Triton, 2% BSA in DPBS for
1h at room temperature. Afterwards sections were
washed again in DPBS.

For SM staining, sections were incubated in lysenin
(PeptaNova, Sandhausen, Germany) 2pg/ml in DPBS at
4°C o/n, washed and reincubated in rabbit anti-lysenin
serum (PeptaNova) in 2% BSA in DPBS at 4°C o/n.

After washing in DPBS, sections were incubated in
Cy3-coupled donkey anti-rabbit antibody (Jackson)
1:500 in 2% BSA in DPBS at room temperature for 1h,
washed again and mounted in Prolong Gold + DAPI
(Life Technologies).

For PE staining, sections were incubated in duramycin-
LC-biotin (Molecular Targeting Technologies Inc.,
West Chester, USA) 0,5pg/ml in 2% BSA in DPBS at
4°C o/n. After washing, sections were incubated in Cy3-
coupled streptavidin (Life Technologies) 1:2000 in 2%
BSA in DPBS at room temperature for 1h, washed
again and mounted in Prolong Gold + DAPI (Life
Technologies).

In situ hybridization. 10 um sections of paraffin-
embedded kidney tissue were deparaffinised in xylene
and rehydrated in decreasing concentrations of ethanol.
In situ hybridization was carried out according to the
GUDMAP protocol accessible at www.gudmap.org/
Research/Protocols/McMahon/SISH.pdf"
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