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Abstract: DNA-methylation (DNAm) levels at age-associated CpG sites can be combined into epigenetic aging signatures
to estimate donor age. It has been demonstrated that the difference between such epigenetic age-predictions and
chronological age is indicative for of all-cause mortality in later life. In this study, we tested alternative epigenetic
signatures and followed the hypothesis that even individual age-associated CpG sites might be indicative for life-
expectancy. Using a 99-CpG aging model, a five-year higher age-prediction was associated with 11% greater mortality risk
in DNAm profiles of the Lothian Birth Cohort 1921 study. However, models based on three CpGs, or even individual CpGs,
generally revealed very high offsets in age-predictions if applied to independent microarray datasets. On the other hand,
we demonstrate that DNAm levels at several individual age-associated CpGs seem to be associated with life expectancy —
e.g., at CpGs associated with the genes PDE4C and CLCN6. Our results support the notion that small aging signatures
should rather be analysed by more quantitative methods, such as site-specific pyrosequencing, as the precision of age-
predictions is rather low on independent microarray datasets. Nevertheless, the results hold the perspective that simple
epigenetic biomarkers, based on few or individual age-associated CpGs, could assist the estimation of biological age.

INTRODUCTION and the average absolute difference of DNAm-predicted

and chronological age (A,g) can be less than five years
Aging is associated with highly reproducible DNA- [6-8]. While such epigenetic aging signatures are
methylation (DNAm) changes at specific sites in the usually trained to be as precise as possible, the A,g. can
genome [1-5]. Various combinations of age-associated partly be attributed to effects of biological aging.
CpG dinucleotides have been used for age-estimation Recently, it has been demonstrated that A, is indicative
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for life expectancy: in four longitudinal cohorts of older
people, accelerated epigenetic aging was associated
with higher all-cause mortality [9]. That study utilized
two independent aging signatures: a predictor by
Hannum and coworkers [6] based on 71 CpGs, and an
“epigenetic clock” by Horvath that utilizes 353 CpGs
[7]. However, using our previously described model
based on three CpG sites (associated with genes ASPA,
ITGA2B and PDE4C) [8] there was no clear correlation
with chronological age and therefore this 3-CpG model
was not further considered [9].

Simple aging signatures - based on few or even
individual CpGs - facilitate site-specific analysis with
more quantitative methods without need of profiling
technology. When we apply the 3-CpG model on
pyrosequencing data of blood samples the median Ay,
is usually about 5 years [8,10]. The discrepancy to the
above mentioned study [9] can partly be attributed to
the fact that the 3-CpG model was not trained on
[llumina HumanMethylation450 BeadChip data and that
it involves a neighbouring CpG site not measured by
these microarrays. Therefore, we have now adjusted the
3-CpG model to Illumina HumanMethylation450
BeadChip data to test it again on the dataset of the
Lothian Birth Cohort 1921 study (LBC1921). If such
concise age-predictors are associated with life
expectancy, they might provide convenient and cost-
effective biomarkers for biological age.

RESULTS AND DISCUSSION

Epigenetic aging-signatures are more robust if
considering more CpGs

For an independent aging-signature based on multiple
CpGs we used our previously described model based on
99 age-associated CpGs (99-CpG model; Figure 1A)
[8,11]. This model was initially derived from
HumanMethylation27 BeadChip data [8] and
subsequently trained on 656 DNAm profiles of blood
samples [6]. The coefficients for this model are
provided in Supplementary Table 1. To estimate the
validity of this model, we have tested over ~2,100
DNAm profiles from 12 additional studies
(Supplementary Table 2): overall, there was a high
correlation of predicted and chronological age (Pearson
correlation R = 0.97; median error = 3.45 years; Figure
1B). Thus, this relatively large signature of 99 CpGs
can be applied to DNAm profiles without need of an
additional normalization regimen.

Similarly, we compared the performance of our 3-CpG
model [8] - as an example for a simple age-predictor -
on independent microarray datasets. This model was
initially trained on pyrosequencing data and it was
therefore retrained on the above mentioned dataset of
656 DNAm profiles [6]. Thereby, we derived the
following multivariate 3-CpG model for Illumina
HumanMethylation450 BeadChip profiles:

Table 1. Age-prediction of the two mortality cohorts

Lothian Birth Cohorts LBC1921 LBC1936

N 446 920

n (death) 328 135

Age (years + S.D.) 79.1£0.6 69.5+0.8

Sex (male) 176 (40%) 465 (51%)

99CpG DNAm Age (years £ S.D.) 76.6 £8.8 66.4+9.4

99CpG Ay (years £ S.D.) -2.5+8.8 -32+90.1

99CpG median error (years) 53 54

99CpG Ay HR [95% CI] 1.11 [1.04,1.19] 1.02 [0.93,1.14]

3CpG DNAm Age (years = S.D.) 68.4+99 61.2+89

3CpG Agge (years £ S.D.) -10.7£ 10 -83+£9.0

3CpG median error (years) 11.5 8.6

3CpG A, HR [95% CI] 1.01 [0.96,1.08] 1.02 [0.92,1.13]
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Figure 1. Epigenetic age-predictions correlate with mortality. (A) Scheme for the study design. Epigenetic age was estimated
based on our previously published models with 99 CpGs, 3 CpGs, or individual CpGs thereof [8]. The offset of predicted age and
chronological age was subsequently correlated with all-cause mortality in the Lothian Birth Cohort 1921 (LBC1921) and LBC1936. (B) The
99-CpG model and (C) the 3-CpG model were specifically trained for lllumina HumanMethylation450 BeadChip data using Hannum
dataset (GSE40279) and subsequently validated using additional 12 DNAm datasets of blood samples. (D) The 99-CpG model was then
applied on DNAm profiles of LBC1921 and the deviation of predicted and chronological age (A,) was determined for each sample.
Samples in the lowest (Q1) and highest quartiles (Q4) of A, are depicted in navy and red, respectively. (E) Kaplan-Meier plots (K-M) of
LBC1921 participants classified by respective quartiles indicate lower mortality for those with increased A, . (F, G) In analogy the same
analysis was performed for the 3-CpG model, but there was no significant association between these age-predictions and mortality.
(H, 1) Alternatively, we tested association of DNAm at individual age-associated CpGs with mortality. To this end, linear models were
trained for each CpG site using Hannum dataset and then applied to the LBC1921 cohort. cg17861230 (associated with PDE4C) reveals a
significant association with mortality. The calculated A is subject to survival analysis with adjustment for chorological age and gender.

www.impactaging.com 396 AGING, February 2016, Vol. 8 No.2



Predicted age (in years) = 111.83 - 64.57[B-value
cg02228185] - 42.57 [B-value cg25809905] + 75.15 [pB-
value cg17861230].

In the validation set of ~2,100 DNAm profiles the
correlation with chronological age was R = 0.79 and
median error was 10.9 years (Figure 1C). Thus, the
precision of this adjusted 3-CpG model is better than
before [9], but still not in the range of predictions for
pyrosequencing data (median A,z = 5 years). Notably,
samples of younger donors were more likely to be
overestimated in their epigenetic age. This might be
partly attributed to the fact that the training datasets did
not comprise samples of children. Furthermore, it has
been demonstrated that many DNAm changes are not
linearly acquired over childhood [12]. DNAm patterns
vary between cell types and therefore blood counts may
affect age-predictions — albeit we have previously
demonstrated that the composition of different blood
cell types has relatively little impact on predictions by
our 3-CpG model [8]. Accuracy can be improved by
using additional CpGs (Supplementary Figure 1).
Another possibility is to normalize the DNAm profiles —
but this would again necessitate DNAm levels of a
multitude of additional CpGs.

Advantages of age-predictors based on few or
individual CpGs are that (i) they can be measured site-
specifically with quantitative and cost-effective
methods, (ii) they can be applied with less bioinformatic
knowledge, and (iii) they are independent from specific
microarray platforms. The importance of the latter
becomes evident by the fact that Illumina has recently
announced to replace the HumanMethylation450
BeadChip with a new platform. On the other hand, our
analysis exemplarily demonstrates that age-predictors
based on few CpGs are less precise in cross-comparison
of different studies if applied to f-values of microarray
data. Although simple age-predictors reveal higher
deviation of chronological age in microarray data, their
Aage might still be indicative for overall survival.

Aqge Is indicative for life expectancy

The 99-CpG model and the adjusted 3-CpG model were
subsequently applied to DNAm profiles of the
LBC1921 study [9,13]. These participants were born in
1921 and recruited and tested in older age between 1999
and 2001 (N = 446; ngea, = 328). The 99-CpG model
and 3-CpG model revealed median error of 5.3 and 11.5
years, respectively (Table 1) — whereas it was 5.5 and
6.0 years using the age-predictors by Hannum et al. or
Horvath [9]. In the 99-CpG model, a five-year higher
age-prediction was associated with 11% greater
mortality risk (95% confidence interval: [1.04, 1.19];

Cox regression P = 0.003) after adjustment for gender
and chronological age. Kaplan-Meier (K-M) analysis of
quartiles with highest and lowest Ay (P = 0.0032)
further visualized and wvalidated that epigenetic-age
predictions are indicative for all-cause mortality (Figure
1D,E).

When we used the 3-CpG signature this association was
not significant (Hazard ratio [95% CI] of Cox
regression: 1.02 [0.93,1.14]); Figure 1F,G). This might
be due to the higher offset in age-predictions. Overall,
the LBC1921 samples were underestimated in their
epigenetic age and the median error was relatively high.
It is also conceivable that some age-associated CpGs
reflect life expectancy better than others. Therefore, we
trained linear models for each of the three age-
associated CpGs individually and tested association of
their A,ge With life-expectancy. For the CpG associated
with the phosphodiesterase 4C (PDE4C; cgl7861230)
we found a significant association with overall survival
(HR = 1.08 [1.01; 1.17]; Cox P = 0.026; Figure 1H,I)
but not for the other two CpGs. Subsequently, we tested
all individual CpGs of the three larger signatures: our
99-CpG model, the age-predictor by Hannum et al. [6],
and of Horvath [7]. Although, the underlying algorithms
are based on the combinatorial effect of multiple age-
associated CpGs, we identified 5 (of 99), 10 (of 71), and
0 (of 353) significant CpGs, which are highly associated
with mortality, respectively (Cox P < 0.05, multiple
correction testing by the Benjamini-Hochberg
procedure; Supplementary Tables 3-5).

Comparisons in LBC1921 and LBC1936

To further validate mortality-association of these CpGs
we used DNAm profiles of the first wave in the Lothian
Birth Cohort 1936 study (LBC1936). These participants
were analyzed at an average age of 70 years (N = 920;
Ngeath = 135). However, neither the 99-CpG model nor
the 3-CpG model revealed significant association with
mortality, which might be due to the relatively low
number of deaths in this cohort (Table 1). On the other
hand, age-predictions by the models of Hannum and
coworkers and of Horvath have previously been
demonstrated to be indicative for all-cause mortality in
the LBC1936 dataset [9].

Subsequently, we tested for associations of single-CpG
derived age-predictions with mortality: several CpGs
revealed significant results in the LBC1936 data but
there was only a moderate overlap with survival-
associated CpGs in LBC1921 (Supplementary Tables 3-
5). For example, the CpG site located in PDE4C
(cgl7861230) revealed a similar trend but the results
were not significant (HR = 1.09 [0.98; 1.21]; Cox P =
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0.12; Supplementary Figure 2). It might be expected
that DNAm changes at these CpGs are not entirely
linear over time and hence they may have different
prognostic value in cohorts of different age.

Only one of the tested CpG sites (from the 99-CpG
model) revealed significant association with survival in
the LBC1921 and LBC1936 datasets. It was associated
with the gene for the chloride transport protein 6
(CLCN6; cg05228408) and we observed significant
association in LBC1921 (HR =1.16 [1.06,1.26]; Cox P =
0.00072) and LBC1936 (HR = 1.26 [1.12,1.42]; Cox P =
0.00013) after multiple correction and adjustment for age
and gender in each cohort (Figure 2). Notably, several
studies identified single nucleotide polymorphisms in
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vicinity to this location that are associated with blood
pressure and hypertension [14-16]. Furthermore, a
genome-wide association study in rats supported the
notion that multiple modifiers of hypertension co-
segregate at this locus [17]. We have checked in both
LBC cohorts if DNAm at CLCNG6 is directly associated
with hypertension, but the correlation with systolic and
diastolic blood pressure was low (Spearman correlation:
R = -0.022 and 0.013, respectively). Other parameters,
such as specific drugs, smoking, and alcohol intake might
also affect DNAm. Either way, B-values at this age-
associated CpG seem to be associated with life
expectancy — this should be validated by site-specific
analysis (e.g. by pyrosequencing of bisulfite converted
DNA) in a suitable cohort in the future.
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Figure 2. A CpG site in CLCNG is indicative for survival in LBC1921 and LBC1936. (A) A
CpG site associated with the gene for the chloride transport protein 6 (CLCN6; cg05228408) was
used to estimate age in the LBC1921 cohort. (B) Participants in the lowest and highest quartiles of
A,qe Were subsequently analysed in Kaplan-Meier plots (K-M). Hazard ratio and cox-regression
analysis of survival were subsequently tested with adjustment for chorological age and gender.
(C, D) In analogy, the same analysis was performed for this CpG site using the LBC1936 cohort.
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Conclusions

This follow-up study further substantiates the notion
that epigenetic age-predictions are indicative for
biological rather than chronological age [9,18]. Similar
findings have recently been described in a longitudinal
Danish twin study [19]. We demonstrated that the error
of age-predictions can be improved for the 3-CpG
model by training on HumanMethylation450 BeadChip
data. However, without additional normalization
regimen, such small aging signatures are not reliable for
microarray data — they should rather be addressed by
more quantitative methods for site-specific analysis
such as pyrosequencing or MassARRAY. On the other
hand, we demonstrate that even B-values at individual
age-associated CpGs seem to be indicative for life
expectancy.

Microarray data of genome wide DNAm profiles of
large cohort studies resemble a valuable resource to
correlate DNAm patterns with clinical parameters —
however, if there is a systematic off-set in epigenetic
age-predictions, resulting in a different slope in
comparisons of predicted and chronological ages, then
this will falsify association with life-expectancy,
because the percentage of elderly patients that are
predicted to be older than their chronological age is
affected. Such a confounding factor is particularly
relevant for the small aging-signatures that are generally
more likely to reveal offsets in other microarray datasets
— but it was hardly relevant in our exemplary analysis,
as we only considered the first waves of the LBC1921
and LBC1936 datasets with well-defined donor ages
close to 79 and 70 years, respectively. To ultimately
validate the association of simple epigenetic biomarkers
with biological age, it will be necessary to utilize site-
specific methods for DNAm analysis — so far DNAm
results by pyrosequencing are not available for large
cohorts with adequate information on life-expectancy
and other clinical parameters. Our study provides the
research perspective that site-specific analysis of
individual age-associated CpG sites can facilitate cost-
effective high throughput analysis to better discern
environmental or genetic risk factors to improve the
odds of staying healthy.

METHODS

The Lothian Birth Cohorts. The Lothian Birth Cohorts
of 1921 and 1936 are follow-up studies of the Scottish
Mental Surveys of 1932 and 1947 — for participants
born in 1921 and 1936, respectively. These nationwide
studies were initially set up to study determinants of
non-pathological cognitive ageing [13]. The LBC1921
and LBC1936 studies attempted to follow-up

individuals in the Lothian region (Edinburgh and its
surrounding areas of Scotland) at about the age of 79
years and 70 years, respectively. There have been
various additional follow up waves at higher ages but
we restricted our analysis to the first waves to facilitate
better comparison with the previous analysis [9] and to
exclude effects that might be caused by offsets in the
regression of age-predictions or by repeated analysis of
the same individuals.

Ethics and data deposition. Ethics permission for
LBC1921 was obtained from the Lothian Research
Ethics Committee (Wave 1: LREC/1998/4/183) and for
LBC1936 from the Multi-Centre Research Ethics
Committee for Scotland (Wave 1: MREC/01/0/56).
Written informed consent was obtained from all
subjects. The data have been deposited at the European
Genomephenome Archive (EGA; www.ebi.ac.uk/ega/
home) under the accession number EGAS00001000910.

DNA methylation of LBC cohorts. The DNAm data
were processed as previously described [9]. Briefly, raw
DNAm data of LBC cohort (LBC1921 N = 514;
LBC1936 N = 1,004) were background corrected and
converted to methylation B-values using the R minfi
package (B-values range between 0 and 1 and roughly
correspond to 0% and 100% DNAm level,
respectively). The probes with a low (<95%) detection
rate at P <0.01 were removed from further analysis. In
addition, manual inspection of the array control probe
signals was used to identify and remove low quality
samples, resulting two high quality datasets for aging
prediction (LBC1921: N = 443; LBC1936: N = 920; all
samples are from first wave).

Derivation of age predictors. Our 99-CpG model and
our 3-CpG model for epigenetic age-predictions was
initially derived from 102 CpGs that revealed linear
age-associated changes in 575 DNAm profiles of blood
that were generated on Illumina HumanMethylation27
BeadChips (Pearson correlation R > 0.85 or R < -0.85;
age range 0 to 78 years) [8]. Ninety-nine of these CpGs
are also represented on the Illumina Human-
Methylation450 BeadChips. Derivation of the 99-CpG
model has been described in detail before [8,11] and the
coefficients are provided in Supplementary Table 1. The
3-CpG model was based on B-values of the CpG sites
cg02228185 (ASPA), 225809905 (ITGA2B), and
cgl7861230 (PDE4C). It was retrained on the 656
DNAm profiles of blood samples of Hannum and
coworkers (age range 19 to 101) [6] using leave-one-out
cross validation. Age predictors based on individual
CpGs were also trained on the dataset by Hannum et al.
using leave-one-out cross validation. Please note that
using B-values of the corresponding CpGs would have
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provided similar results as the participants of the waves
1 were all of similar age. The analysis were performed
using R [20] and ‘caret’ package [21].

Training and validation of the epigenetic age-predictors.
To validate the 99-CpG and 3-CpG model (trained
using dataset by Hannum et al. [6]; GSE40279) we used
12 additional publically available DNAm datasets of
blood that were retrieved from NCBI GEO: GSE30870
[22], GSE32148 [23], GSE36064 [12], GSE40005,
GSE41169 [24], GSE42861 [25], GSE50660 [26],
GSE56105 [27], GSES6581 [28], GSE58651 [29],
GSE61496 [30] and GSE62924 [31] (Supplementary
Table 2). These validation datasets were all generated
using Illumina HumanMethylation450 BeadChip.

Survival analysis. The association of A, and mortality
was tested using cox proportional hazard regression
models, adjusting for age and gender. The deaths within
the first 2 years of follow-up were excluded to minimize
the potential influences of acute illness when cox
regression analysis is applied for the A,g. of 99-CpG and
3-CpG models [9]. Hazard ratios for A, were
expressed per 5 years of methylation age acceleration as
previously described [9]. For Kaplan-Meier (K-M)
estimation of mortality samples were stratified by first
and forth quantile of A,. adjusting for age and gender.
The analysis were performed using R and ‘survival’
package [32].
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