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Abstract: strong epidemiologic evidence and common molecular mechanisms support an association between
Alzheimer’s disease (AD) and type 2-diabetes. Local inflammation and amyloidosis occur in both diseases and are
associated with periodontitis and various infectious agents. This article reviews the evidence for the presence of local
inflammation and bacteria in type 2 diabetes and discusses host pathogen interactions in chronic inflammatory disorders.
Chlamydophyla pneumoniae, Helicobacter pylori and spirochetes are demonstrated in association with dementia and brain
lesions in AD and islet lesions in type 2 diabetes. The presence of pathogens in host tissues activates immune responses
through Toll-like receptor signaling pathways. Evasion of pathogens from complement-mediated attack results in
persistent infection, inflammation and amyloidosis. Amyloid beta and the pancreatic amyloid called amylin bind to lipid
bilayers and produce Ca(2+) influx and bacteriolysis. Similarly to AD, accumulation of amylin deposits in type 2 diabetes
may result from an innate immune response to chronic bacterial infections, which are known to be associated with
amyloidosis. Further research based on an infectious origin of both AD and type 2 diabetes may lead to novel treatment
strategies.

INTRODUCTION beta (AB) [11] and amylin [12]. Insulin and insulin-like
growth factor (IGF-1) prevent amyloid formation by
There is a strong association between Alzheimer’s decreasing APP in AD [13].

disease (AD) and type-2 diabetes [1-3]. Patients with
type 2-diabetes have twice the risk of controls to
develop AD [4-9], and the percentage of type 2-diabetes
among AD patients is significantly higher than among
age-matched non-AD controls [4, 10].

Amyloidosis is a group of conditions of diverse
etiologies characterized by the accumulation of
insoluble fibrillar proteins in various organs.
Amyloidosis is a key pathological feature of both AD

Insulin receptor (IR) and insulin-like growth factor-1 and type 2-diabetes, and chronic bacterial infections are

receptor (IGF-1R) are abundant in the normal human frequently associated with amyloidosis. Bacteria and
brain and are significantly decreased in AD. Insulin their toxic components, the bacterial endotoxin
receptor substrate-1 (IRS-1) binds not only to IR and lipopolysaccharide (LPS) and bacterial cell wall
IGF-1R but also to the amyloid precursor protein peptidoglycan (BPG) are amyloidogenic and have been
(APP). Moreover, insulin-degrading enzyme (IDE) not successfully used for almost a century in models of
only degrades insulin, IDE also degrades APP, amyloid experimental inflammation and amyloidosis.
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Because of the pioneering work of Warren and Marshall
[14] infection with Helicobacter pylori (H. pylori) is
accepted as a cause of gastro-duodenal ulcers. Recent
observations show that infectious agents are factors in
various chronic inflammatory disorders, including
atherosclerosis, cardiovascular and cerebrovascular
disorders [15-23], chronic lung diseases, [24-26],
inflammatory bowel diseases, diabetes [27] and
neuropsychiatric disorders, including AD [28, 29].
Polymorphisms in inflammatory genes are also
implicated as risk factors in these age-related chronic
disorders [30-32].

Increasing evidence supports an association between
periodontal and systemic disorders [33, 34]. Periodontal
pathogens are predominantly Gram-negative bacteria,
and include Porphyromonas gingivalis, various oral

Treponema (T) spirochetes e.g. T. denticola, T.
pectinovorum, T. amylovorum, T. maltophilum, T.
medium and T. socranskii, as well as various herpes
viruses [21, 35-38]. Periodontitis is a risk factor for
several chronic inflammatory disorders including
atherosclerosis, stroke, diabetes and AD [33]. AP binds
and disrupts lipid bilayers of bacterial membranes
causing Ca(2+) influx and bacteriolysis [39]. Islet
amyloid amylin is also able to form ion channels on
lipid bilayers, causing Ca(2+) influx and cell destruction
[40] and recent observations demonstrate antimicrobial
activity of amylin [41, 42]. Thus, both AP and amylin
accumulation are a response of the innate immune
system to invading pathogens. This review considers
recent information related to the role of local
inflammation and involvement of pathogens in type 2
diabetes and AD.
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Destruction of bacteria by specific antibodies
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LTR signaling in host defenses against pathogens. Conserved components unique to

microorganisms, like bacterial lipopolysaccharide (LPS), bacterial peptidoglycan (PGN) and bacterial lipoproteins
(BLP), are called pathogen-associated molecular patterns (PAMPs). PAMPs are sensed by pattern recognition
receptors (PRRs), which include CD14 and various Toll-like receptors (TLRs). LPS is recognized following its binding
to lipoprotein binding protein (LBP). CD14, is part of the LPS receptor complex, and together with the functionally
linked TLR2 and TLR4, and the associated molecule MD-2 (lymphocyte antigen 96) are expressed in the endocrine
cells of human pancreatic islets. PRRs and TLRs signaling pathways play a major role in maintaining pathogen-free
host tissues. When TLRs are activated by PAMPs, through NFkB signaling the innate and adaptive immune
systems are activated. Invading bacteria are killed by the terminal attack complex (MAC) of the classical
complement pathway and by specific anti-bacterial antibodies provided by the adaptive immune system.
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AD is characterized by a slowly progressive dementia
and brain atrophy predominantly localized to the
cerebral cortex and hippocampus. Senile plaques, and
neurofibrillary tangles accumulate in parallel with
disease progression. Senile plaques and tangles,
argyrophilic filamentous structures, named curly fibers,
neuropil threads or dystrophic neurites accumulate in
abundance in the cerebral cortex [43, 44]. These slender
curly structures are independent filaments, which do not
form continuous networks. Their main length as
determined by morphometric analysis is about 22 pum
[44]. Amyloid deposits in AD mainly consist of AP,
which include peptides of 40, 42 and 43 amino acid
length, deriving from the larger 120 kDa APP by - and
y-secretase cleavages [46-50]. APP is implicated in cell-
cell interactions, in regulation of immune system
responses, and in T-cell differentiation [51-53].
Neurofibrillary tangles contain paired helical filaments
composed mainly of the microtubule-associated protein
tau, which is in a hyperphosphorylated state. The role of
inflammation as a factor in the pathogenesis of AD is
well established [32, 54-57]. McGeer, Rogers and
Griffin documented first the importance of local
inflammation and IL-1 signaling in AD [55, 58, 59].
Historic and recent observations indicate that pathogens
are able to initiate and sustain chronic infection and
inflammation and to reproduce the pathological and
biological hallmarks of AD [29]. An analysis of the
available historic and recent data following Koch’s and
Hill’s criteria favors a causal relationship between
spirochetal infection and AD [28]. Co-infection with
several spirochetes also occurs in AD [28, 29, 60].
Chlamydophyla ~ (Chlamydia)  pneumoniae  (C.
pneumoniae), Porphyromonas gingivalis, H. Pylori and
Herpes simplex virus type 1 (HSV-1) are other
microorganisms, which are demonstrated in AD [61-
64].

Type 2 diabetes

Type 2 diabetes is a major health problem worldwide,
and the number of AD cases is predicted to double
during the next decades [65]. In order to solve this
urgent problem, prompt action is recommended for both
diseases [28, 66]. Type 2-diabetes, previously termed
non-insulin dependent diabetes mellitus (NIDDM) or
adult-onset diabetes, is characterized by progressive
destruction of islet B-cells, resulting in decreased insulin
production and decreased action of insulin on peripheral
tissues. Type 2 diabetes is the most common form of
diabetes, comprising 90-95% of all diabetic cases [67].
Local amyloid deposits are present in more than 95% of
type 2 diabetic patients [68] and are mainly composed
of amylin [69-71]. This islet amyloid polypeptide of 37
amino acids is derived by proteolytic cleavage of the

89-amino acid islet amyloid precursor protein or
proamylin [69, 70, 72]. Amylin is related to the
calcitonin/calcitonin gene-related peptide family [73].
Along with insulin, amylin is produced by B-cells in the
Langerhans islets of the pancreas. The extent of
amyloid deposition correlates with the clinical severity
of diabetes, with the impairment in insulin secretion and
glucose metabolism, and with the severity of beta-cell
loss [69, 70, 74]. The cause of type 2 diabetes and the
pathophysiological processes involved in amyloid
formation are not well understood.

AP and insulin share a common sequence recognition
motif [75], and AP is a direct competitive inhibitor of
insulin binding and action, which reduces insulin
receptor autophosphorylation [75]. AB and insulin are
both substrates for the same insulin degrading enzyme
(IDE). High-affinity interaction between AP and
proamylin result in cross-suppression of cytotoxic self-
assembly of both peptides, further suggesting a
molecular association between AD and type 2 diabetes
[76]. Beta-amyloid oligomers induce phosphorylation of
tau and inactivation of insulin receptor substrate via c-
Jun N-terminal kinase signaling [77]. It is noteworthy
that insulin dysfunction can lead to tau phosphorylation
in vivo [78].

AP and tau in the pancreas in type 2 diabetes

Tau mRNA and protein expression are observed in
normal and tumoral pancreatic and B-cell-derived cell
lines [79-82]. Six predominant tau isoforms are
identified by immunoblotting, which form tau deposits
detectable by immunofluorescence and sarkosyl-
insoluble pellets [83]. The expression of APP and tau
mRNAs by RT-PCR in normal and type 2 diabetes
pancreas and in insulinoma beta cells (INS), as well as
the detection of APP and tau immunoreactive bands by
Western blot, indicates that APP and tau are present in
the pancreatic tissue and in islet beta cells [82]. Slight
upregulation of tau expression is also defined at the
gene level in pancreatic islets in type 2 diabetic patients
compared to normal age matched controls [84].

Aggregated AP, hyperphosphorylated tau, ubiquitin,
apolipoprotein E, apolipoprotein(a), IB1/JIP-1 and JNK1
are immuno-expressed in the affected Langerhans islets
in patients with type 2 diabetes [82, 85, 86] and AP is co-
localized with amylin [82]. The secondary structure of
islet amyloid deposits as analyzed in situ by Synchrotron
InfraRed MicroSpectroscopy (SIMRS) reveals a protein
(Amide I) absorbance maximum near 1630 cm™, which is
representative of beta-sheet protein structure and
identical with the in situ infrared microspectra of amyloid
deposits of senile plaques [82, 87, 88].
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In transgenic mice carrying the carboxyl-terminus of the
beta APP gene, AP is demonstrated not only in the
brain, but also in the kidney and pancreas [89-91].
Formation of AP plaques is also observed in the
pancreas in transgenic NORBA mice overexpressing
human APP [92]. Remarkably, accumulation of A} and
hyperphosphorylated tau also occur in brains of rat
models of spontaneous diabetes, particularly of type 2
diabetes [93]. All these results indicate that AP
formation and tau phosphorylation are also features of
type 2 diabetes.

It is noteworthy that islet amyloid amylin is also
observed in other organs than the pancreas, including
the gut and kidney. Seventy-two of 149 patients with
diabetic nephropathy showed amylin deposition in the
kidney [94]. Amylin deposition in human brain and
high affinity amylin binding sites in rat brains were also
documented [95, 96].

<Bacigium,,

Local inflammation in type 2 diabetes

Systemic, rather than pancreatic inflammation, has been
associated with type 2 diabetes since 1997 [97, 98].
Circulating markers of inflammation, acute-phase
reactants and interleukin (IL)-6, the major cytokine
mediator of acute-phase responses, are strong predictors
of the development of type 2 diabetes [99-102]. Recent
prospective studies have strengthened the association
between type 2 diabetes and markers of systemic
inflammation [103-110].

Only recently have studies focused on the possibility
that, similarly to AD, local inflammatory processes
might play an important role in type 2 diabetes. On
haematoxylin and eosin-stained sections, discrete or
moderate lymphocytic infiltrates were present in 2 of §
diabetic cases analysed. Despite the apparent lack of
lymphocytic infiltration in the remaining 6 diabetic cases,
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Figure 2. Evasion of bacteria from destruction by the host immune systems. Bacteria by
suppressing, subverting or escaping host defenses will survive, proliferate and cause persistent
chronic infection, sustained inflammation and slowly progressive host cell destruction.
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use of more sensitive markers revealed significant
numbers of CD4 and CD 8 positive T lymphocytes in
affected Langerhans islets [27]. Clumps of HLA-DR
positive reactive macrophages accumulate around the
islet amyloid deposits. Inflammatory cells expressing
complement 3 receptor are also present in association
with islet amyloid deposits and in the wall of some
affected blood vessels [27]. This finding, together with
abundant immunoreactivity to complement proteins
C3d, C4d and C5b9 in association with islet lesions,
indicates that the classical complement pathway is
strongly activated in type 2 diabetes [27]. Recent
observations demonstrate that both AP and amylin
activate complement pathways [76]. These results show
that, as in AD, local immune responses play an
important role in the pathogenesis of type 2 diabetes
[27]. In support of the importance of local inflammation
in type 2 diabetes, an elevated number of immune cells
are detected in the pancreatic islets in conjunction with
increased levels of cytokines, chemokines, and IL-1
[111-114]. Animal models of type 2 diabetes
investigated also display islet immune cell infiltration
[114, 115].

Pathogens and type 2 diabetes

The onset of diabetes often occurs during or after an
acute infection. Infections that lead to pancreatitis may
produce diabetes [116]. Circulating LPS is higher in
diabetic subjects compared to non-diabetics [117-119].
The association of diabetes with tuberculosis, syphilis
and leprosy is well known [89, 90, 120-127]. It is
noteworthy that various bacterial and viral infections,
including H. pylori, enteroviruses, rubella, mumps,
rotavirus, parvovirus and cytomegalovirus (CMV) have
been proposed as potential etiological factors in type 1
diabetes [128-130].

An increased prevalence of C. pneumoniae IgA was
observed in type 2 diabetes [131] and C. pneumoniae
reinfection accelerated the development of insulin
resistance and diabetes in obese C57BL/6 mice [132].
KKAy diabetic mice showed a significant increase in
blood glucose, serum tumor necrosis factor-alpha
(TNFa) and IL-6 levels after inoculation with the
periodontal pathogen Porphyromonas gingivalis [133].
A high prevalence of H. pylori infection is observed in
type 2 diabetes by many authors [134-145], with some
exceptions [146-148]. A significantly higher percentage
of positive fluorescent treponemal antibody reaction is
observed among diabetic patients compared with non-
diabetics [78, 149]. Diabetes mellitus is more prevalent
among Borrelia-infected patients [150].

Periodontal disorders are risk factors for type 2 diabetes
[151-157] and are highly prevalent, affecting up to 90%
of the worldwide population [153]. Both type 1 and type
2 diabetic patients show a three- to four-fold increased
risk of periodontitis [158-161]. Type 2 diabetic patients
have significantly more severe periodontitis, a higher
plaque index and a higher prevalence and magnitude of
root surface caries than non-diabetic subjects.
Periodontitis is predominantly caused by Gram-negative
anaerobic bacteria [151-154] and several spirochetes are
also demonstrated to be periodontal pathogens.
Checkerboard DNA-DNA hybridization showed that
significantly more diabetic subjects have higher levels
of T. denticola compared to controls [162]. Treatment
of periodontal infections improves glycemic control in
diabetic patients [151-154, 163].

The association of periodontitis and diabetes suggests
that microorganisms are pathogenic in type 2 diabetes
[27, 152-154]. The presence of various bacteria
associated with islet lesions in patients with type 2
diabetes is demonstrated pathologically [27]. Anti-core-
LPS J5, anti-Lipid A and anti-BPG antibodies reveal
positive LPS and BPG immune-reactions in association
with islet amyloid deposits in the pancreas of 8 patients
with clinically and pathologically confirmed type 2
diabetes [27]. On doubly immune-stained sections, LPS
and BPG were immuno-co-localized with amylin, and
LPS-positive and BPG-positive helically shaped, round,
and fusiform bacteria are observed in the affected islets.
Intracellularly located immune-reactive C. pneumoniae
was observed in the affected Langerhans islets in 5 of 6
diabetic cases tested, and extracellularly located,
slightly coiled H. pylori bacteria are demonstrated in 3
of these same diabetic patients. Spirochetes are also
observed in the affected islets, explaining the high
frequency of fluorescent Treponemal antibodies found
in diabetes [27]. These bacterial structures are immuno-
reactive for C5b-9, the complement membrane attack
complex (MAC) intended to lyse bacteria. As MAC
assembles on cell membranes in vivo, the possibility is
eliminated that C5b-9 immuno-reactive bacterial
structures may correspond to post mortem bacterial
growth. Moderate LPS and BPG immuno-reactivity was
also observed in the pancreas of three controls in
association with mild islet amyloid deposition,
corresponding to pre-clinical stages of type 2 diabetes in
these cases. The remaining 9 controls were negative
[27].

In agreement with epidemiological studies, the presence
of bacteria, including C. pneumoniae, H. pylori and
various types spirochetes in pancreatic islets supports a
pathogenic role of bacterial infection in type 2 diabetes.
Simultaneous occurrence of various types of bacteria in
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the pancreatic islets of the same diabetic patient
suggests that concurrent infection by several pathogens
occurs in type 2 diabetes, as observed in atherosclerosis
[21, 22] and AD [28, 29, 60-62, 64]. C. pneumoniae
[15, 16], H. pylori [17, 18], several periodontal
pathogens, including invasive oral spirochetes [19, 20]
and herpes viruses, have also been demonstrated in
human atherosclerotic lesions. Some microorganisms
were shown to enhance atherosclerosis in experimental
animals [20, 21].

Improvement of glycaemic control was observed after
eradication of H. pylori infection in diabetic patients,
suggesting that early antibiotic and anti-inflammatory
treatment may be an effective way to prevent or slow
down the disease process [164].

Host pathogen interaction through toll-like receptors

Whole bacteria and specific microbial components
(LPS, BPG) are demonstrated in islet lesions in type 2
diabetes [27, 118, 165]. Such conserved microbial
motifs (LPS, BPG, various bacterial lipoproteins,
bacterial DNA etc.) are called pathogen-associated
molecular patterns (PAMPs). PAMPs are sensed by
pattern recognition receptors (PRRs) [166], which
trigger an immediate response against invading
pathogens. The major forms of PRRs are Toll-like
receptors (TLRs) and some nucleotide-binding
oligomerization domain (NOD) receptors called Nod-
like receptors (NLRs) [167]. Once TLRs and NLRs are
activated by PAMPs through signaling pathways, they
induce innate and adaptive immune responses [167,
168]. Thus signaling by TLRs and NLRs is a key
component of immune responses to microbial infection
[169].

CD14, which is part of the LPS receptor complex,
together with the functionally linked TLR2 and TLR4,
and the associated molecule MD-2, are all expressed in
the endocrine cells of human pancreatic islets. SV40-
transformed islet cells (HP62) synthesize and secrete
CD14 in response to LPS in a time- and dose-dependent
manner. In vitro experiments using rat islets, which also
express CD14, as well as HP62 cells, showed that LPS
influences glucose-dependent insulin secretion and
induces formation of inflammatory cytokines such as
IL-1a, IL-6 and TNFa [170]. LPS also induces
increased APP and tau levels in neuronal and non-
neuronal cells in vitro [82].

TLRs are involved in a variety of diseases including
atherosclerosis, type 2 diabetes, liver disease,
inflammatory bowel diseases and AD [165]. NLRs
together with TLRs induce IL-1f and IL-18, which are

important mediators in most inflammatory disorders
[168]. Expression of various PAMPs and PRRs,
including CD14 and TLRs, together with local immune
responses in association with the lesions in both AD and
type 2 diabetes, indicates that microorganisms and
PAMPs induce and sustain chronic infection and
inflammation in these chronic amyloidogenic disorders.
The role of bacteria as sources of PAMPs via TLR2 and
TLR4 stimulation, in atherosclerosis, type 2 diabetes,
AD suggests a common pathogenic process in these
diseases.

Antimicrobial peptides (AMPs) are another important
group of molecules of the innate immune system, which
combat invading microorganisms. Recent observations
reveal that AP, the most important biological marker of
AD, is an innate immune molecule, and shares
properties with AMPs [39]. Soluble AP 1-42 oligomers
form channels on lipid cell membranes and cause
Ca(2+) influx and cell destruction [171]. AP at high
doses exerts antimicrobial activity in vivo against eight
common and clinically relevant microorganisms of the
12 tested. Antimicrobial activity of brain homogenates
was attenuated by immune-depletion of A [38]. CT105
peptide, a C terminal fragment of APP also forms ion
channels or pores [172] and the microtubule binding
sites of tau have been shown to harbor somewhat
similar properties [173].

The level of human serum amyloid A (SAA), an acute
phase protein, which rises during infection, also forms
channels on lipid bilayer membranes with resulting
Ca(2+) influx. Expression of a recombinant acute phase
isoform variant of human SAA 1.1 (SAAp) induces
bacteriolysis, suggesting an important role in host
defenses [174]. It is noteworthy that amylin also forms
ion channels on lipid bilayers with consequent Ca(2+)
influx and cell lysis [40, 175]. Recent observations
show that amylin is an antimicrobial peptide, which can
augment host defenses against on-going infection, as
also observed for AP [39] and SAA.

Permeabilization of lipid bilayers is a common
conformation-dependent activity of soluble amyloid
oligomers in various neurodegenerative disorders [176].
Blockade of an amyloid peptide channel by zinc, and
inhibition by Congo red, has been recently reported
[177].

It has been hypothesized that amyloid pores may in fact
be beta-sheet barrels similar to pore forming bacterial
toxins [178]. Pore-forming toxins are the most common
class of bacterial protein toxins and are often important
virulence factors. These toxins are typically oligomers
of soluble, monomeric proteins or peptides, which form
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transmembrane channels. Channel formation in the
membrane of targeted cells triggering cellular ion
imbalance is a frequent form of bacterial attack [179,
180]. These pore-forming bacterial toxins generate
calcium-dependent and lipid-mediated signaling on host
cell surfaces, leading to a variety of events such as
tyrosine phosphorylation [181], actin rearrangement
[182], NF-kB activation [183] and regulation of gene
expression through histone modification [184].

It is noteworthy that amyloid proteins constitute a
previously overlooked integral part of the cellular
envelope of many bacteria [185-189]. Amyloid fibril
formation not only results in toxic aggregates, but also
provides biologically functional molecules [186, 187,
190], which play a role in virulence, invasion and host
cell destruction. Recent observations show that the
amyloid oligomers associated with human diseases,
perforin from cytotoxic T lymphocytes and pore-
forming bacterial toxins, share structural homology and
the same mechanism of membrane permeabilization
[191].

The amyloidogenic properties of perforin and the
bacterial pore-forming toxin alpha-hemolysin were
demonstrated spectroscopically and morphologically
[191].

The observations on amyloidogenesis suggest that host
cells and bacteria, during host-pathogen interactions,
use similar molecular mechanisms to induce host cell
lysis and bacteriolysis. Further studies will be required
to determine whether host cell destruction predominates
over bacteriolysis in chronic sustained infections and
inflammations.

In addition, genetic predisposition of the host, the
virulence and biology of the invading pathogens, and
environmental  factors, including nutrition and
demographic conditions, are also key determinants of
disease expression.

Establishment of chronic infection, inflammation
and progressive cell damage

During infection, pathogens employ a broad range of
strategies to overcome antigenic  recognition,
phagocytosis and complement lysis. Blockade of the
complement cascade allows their survival even in
immune competent hosts. If pathogens are not
recognized by the immune system, and in the absence of
cell-mediated immune responses, the microorganism
can spread freely and accumulate in affected host
tissues [192]. Under such conditions, microorganisms
will establish chronic infection, inflammation and

progressive tissue damage. Host responses to bacterial
infections are genetically controlled. Polymorphisms of
proinflammatory cytokine genes are associated with
susceptibility to infection [193]. TNF-a and Class II
major histocompatibility genes are critical mediators of
host defences against infection by influencing host
immune responses to bacterial and viral infections.
Polymorphisms in the gene encoding TNF-o may
determine a strong cell-mediated immune response or a
weak or absent cellular response [193, 194]. Human
leukocyte antigen (HLA) also controls cell-mediated
responses [195]. HLA-DR isotypes are associated with
a protective response, whereas HLA-DQ isotypes have
a more limited cellular response but with a higher
number of microorganisms. Accordingly, a polarity in
host reactions can be observed in various infections. In
tuberculoid or paucibacillary leprosy, inflammatory cell
infiltration is strong and the number of microorganisms
is low. However in lepromatous or bacillary leprosy, the
poor or absent inflammatory cell infiltrates are
accompanied by a high number of Mycobacterium
leprae bacilli. A similar polarity in host reactions also
occurs in neurosyphilis. Strong cell-mediated immune
responses and a low number of spirochetes characterize
the infiltrative form of general paresis. In the atrophic
form of general paresis, the lymphoplasmocytic
infiltrates are poor or absent, but the number of
spirochetes is high [196-199].

If infectious agents are involved in diabetes, one may
expect that such polarities in host reactions might also
be present. According to this view, type 1 diabetes is
characterized by strong cell mediated immune response
with a low number of microorganisms and type 2
diabetes is characterized by poor or absent
lymphoplasmocytic infiltrates with high number of
microorganisms. Further studies are needed to support
this suggestion.

DISCUSSION

Common cellular and molecular mechanisms are
implicated in the pathogenesis of AD and type 2
diabetes. In addition to amylin, AP and hyper-
phosphorylated tau accumulations are also features of
islet lesions in type 2 diabetes. Ubiquitin, Apo-E,
Apo(a), IB1/JIP-1 and JNK-1 are all associated with
brain lesions in AD and islet lesions in type 2 diabetes.
As in AD, both cellular and humoral components of
local immune responses are involved in the
pathogenesis of type 2 diabetes, as indicated by the
presence of PAMPs and PRRs in the affected
Langerhans islets. The classical complement pathway is
activated in both AD and type 2 diabetes. Using
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sensitive immuno-markers of B and T lymphocytes,
increased numbers of CD4, and particularly of CD 8
positive T cells, are demonstrated in both AD and type
2 diabetes, indicating a minimal involvement of the
adaptive immune system.

Epidemiological and pathological evidence demonstrate
the prevalence of pathogens in several chronic
inflammatory diseases, including atherosclerosis, AD and
type 2 diabetes. An increased prevalence of C.
pneumoniae IgA, H. pylori infection, and a significantly
higher percentage of positive fluorescent treponemal
antibody levels are observed among diabetic patients
compared to controls, indicating the involvement of
spirochetes in diabetes. These observations indicate that
various types of spirochetes are also involved in diabetes.
As AD, atherosclerosis and diabetes are all associated
with periodontal disorders, to consider periodontal
pathogens, including Porphyromonas gingivalis and
various periodontal pathogen spirochetes and various
intestinal bacteria, including intestinal spirochetes, in the
etiology of these chronic inflammatory disorders is
important. Borrelia burgdorferi and other Borrelias
might also be candidate spirochetes in some cases with
type 2 diabetes. The observation of several of these
bacteria in association with islet lesions suggests that
chronic bacterial infection could be directly involved in
the pathogenesis of type 2 diabetes. Similarly to
periodontitis, simultaneous infection with multiple
pathogens also occurs in type 2 diabetes. Invading
pathogens, and their persisting toxic PAMPs sensed by
PRRs through TLRs signaling, induce innate and
adaptive immune responses. In the affected pancreas,
pathogenic bacteria and their toxic components can be
observed, along with a host immunological reaction,
which is characteristic of a localized inflammatory
process associated with the sites of tissue damage, similar
to the inflammatory process observed in AD [58, 59, 200,
201].

Conclusion

Increasing evidence supports the hypothesis that bacteria
or their slowly degradable remnants, may initiate a
cascade of events leading to persistent chronic infection,
B-cell loss and amyloid deposition in type 2 diabetes.
Increased AP and amylin accumulation, and the resulting
AD and islet pathology, may be mediated by a response
of the innate immune system to infection. An infectious
origin may give an explanation of the common
pathogenic mechanisms and inflammatory gene
polymorphisms involved in both AD and type 2 diabetes.
This interpretation may have important implications for
current and future treatment strategies, opening the

possibility of preventing infection, inflammation and
amyloidosis in both AD and type 2 diabetes.
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