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Abstract: Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged
cells, such as those resulting from DNA damage or during development. Apoptosis can be triggered by signals from within
the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors.
Deregulation in apoptotic cell death machinery is an hallmark of cancer. Apoptosis alteration is responsible not only for
tumor development and progression but also for tumor resistance to therapies. Most anticancer drugs currently used in
clinical oncology exploit the intact apoptotic signaling pathways to trigger cancer cell death. Thus, defects in the death
pathways may result in drug resistance so limiting the efficacy of therapies. Therefore, a better understanding of the
apoptotic cell death signaling pathways may improve the efficacy of cancer therapy and bypass resistance. This review will
highlight the role of the fundamental regulators of apoptosis and how their deregulation, including activation of anti-
apoptotic factors (i.e., Bcl-2, Bcl-xL, etc) or inactivation of pro-apoptotic factors (i.e., p53 pathway) ends up in cancer cell
resistance to therapies. In addition, therapeutic strategies aimed at modulating apoptotic activity are briefly discussed.

INTRODUCTION critical key point to determine if a cell undergoes

apoptosis. The induction of apoptosis as result of DNA
Apoptosis, the programmed cell death, is finely damage in precancerous lesions can remove potentially
regulated at gene level resulting in the orderly and harmful cells, thereby blocking tumor growth.
efficient removal of damaged cells such as those Deregulation of this death process is associated with
occurring following DNA damage or during unchecked cell proliferation, development and
development [1]. The machinery of apoptosis is progression of cancer and cancer resistance to drug
complex and involves many signaling pathways. therapies [3.4]. For that reason, deregulation of
Apoptosis can be triggered in a cell through either the apoptosis is considered one of the hallmarks of cancer
caspase-mediated extrinsic or intrinsic pathways. Both [5]. Therapeutic strategies targeting molecules involved
pathways converge to activate the effector apoptotic in apoptotic resistance therefore represent a valid
caspases resulting ultimately in morphological and approach to be pursued in order to restore cancer cells
biochemical cellular alterations, characteristics of sensitivity to apoptosis and overcome the ineffectiveness
apoptosis [2]. Usually, the balance between the pro- of the treatments [6,7]. This article focuses on the
apoptotic and anti-apoptotic protein regulators is a mechanisms of apoptosis, how defects along the
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apoptotic pathway contribute to cancer development and
drug resistance and, briefly, how apoptosis can be used as
a vehicle of targeted treatment in cancer.

Morphological and biochemical changes in apoptosis

From the morphological point of view apoptotic cells
show a characteristic cytoplasmic cell shrinkage, budding
of plasma membrane, membrane exposure of
phosphatidylserine (PS) on extracellular side, chromatin
condensation and DNA fragmentation [8,9]. The plasma
membrane is intact throughout the total process. The
expression of PS in the outer layers of the cell membrane
allows early recognition of dead cells by macrophages,
resulting in phagocytosis without the release of
proinflammatory cellular components [10]. At the later
stage of apoptosis some of the morphological features
include membrane blebbing, ultrastructural modification
of cytoplasmic organelles and loss of membrane integrity
[11]. Usually phagocytic cells engulf apoptotic cells
before apoptotic bodies occur [12]. Apoptosis is
primarily executed by a family of proteases known as the
caspases (cysteinyl, aspartate-specific proteases) [13].
Caspases are central to the mechanism of apoptosis as
they are both the initiators (caspase-2, -8, -9 and -10,
primarily responsible for the beginning of the apoptotic
pathway) and the executors (caspase-3, -6 and -7,
responsible for the definite cleavage of cellular
components) of cell death [14]. After being produced as
inactive proteins (zymogens or pro-caspases), the initiator
caspases auto-activate through auto-proteolysis, a process
that is facilitated by their interaction with specific adapter
molecules [15]. Once activated, the initiator caspases
cleave off the executors caspases that perform critical
cleavage of specific cellular substrates resulting in the
final apoptotic cell death [16]. This caspases activity is
responsible of the apoptotic hallmarks, such as chromatin
condensation, plasma membrane asymmetry and cellular
blebbing. The extensive and irreversible proteolytic
activity mediated by executor caspases represents the
ultimate outcome of both the extrinsic and the intrinsic
apoptotic pathways (see below). Thus, both pathways
converge on caspases-3, 6, or -7 that allow disruption of
DNA and cellular components inducing the typical
morphological changes in apoptosis [17]. Of note,
caspases activity has been also extended to non-apoptotic
functions such as cell differentiation/maturation
suggesting that the caspase cascade may become
activated independently of— or without inducing- an
apoptotic cascade [18-20].

Extrinsic apoptotic pathway

The extrinsic apoptotic pathway (death receptor-
dependent) is initiated by the interaction of cell surface

exposed death receptors, belonging to the superfamily
of tumor necrosis factor receptor (TNFR), with their
respective protein TNF family ligands [21]. Death
receptors are structurally defined by an intracellular
protein-protein interaction domain, called the death
domain (DD), which is critically involved in apoptosis-
inducing  signalling [22]. The more broadly
characterized signaling systems of death receptor-
ligands include TNFR1-TNFa, FAS (CD95, APO-1)-
FasL, TRAILR1 (DR4)-TRAIL, TRAILR2 (DRS5)-
TRAIL. Upon death receptor stimulation by its
corresponding ligand, the same receptor undergoes
oligomerization and a conformational change to reveal
its cytoplasmic DD to support homotypic interactions
with other DD-containing proteins [21]. The role of
adapter proteins (FADD/TRADD) is to sequester, at
level of this protein complex, the initiator pro-caspase-8
and/or -10 resulting in the formation of the so-called
death-inducing signaling complex (DISC), increasing
the local concentration of pro-caspase and promoting
the mutual auto-activation [23]. The activation of
initiator caspases results in the processing of the
downstream effector caspases-3, -6 and -7 whose
activation leads to the cleavage of essential substrates
for cell viability, inducing cell death (Figure 1) [17].
Some cells do not die in response to the extrinsic
pathway alone and require an amplification step that is
induced by caspase-8. In this situation, capase-8 targets
the BH3-only protein Bid (BH3-interacting-domain
death agonist) for cleavage and generate the activated
fragment t-Bid; t-Bid then directly activates pro-
apoptotic ~ multi-domain  proteins  to  induce
mitochondrial outer membrane permeability (MOMP),
so this co-engages the intrinsic pathway [3] (Figure 1)
(see below).

Intrinsic apoptotic pathway

The intrinsic apoptotic pathway (mitochondria-
dependent) is mediated by intracellular signals that
converge at the mitochondrial level in response to
different stress conditions (i..e, irradiation, treatment
with chemotherapeutic agents, etc.) [24]. Internal
stimuli such as irreparable genetic damage, hypoxia,
extremely high concentrations of cytosolic Ca’ and
severe oxidative stress are some triggers of the initiation
of the intrinsic mitochondrial pathway [25]. Subsequent
activation of pro-apoptotic BH3-only members of the
Bcl-2 family (Bax, Bak) neutralizes the antiapoptotic
proteins Bcl-2, Bel-xL, and Mcl-1, leading to disruption
of mitochondrial membrane outer membrane
permeability (MOMP) so that proteins normally
confined in the intermembrane space spread into the
cytosol. These proteins include the so-called apopto-
genic factors, such as cytochrome-c, which plays a
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crucial role in activating the mitochondrial-dependent
death in the cytosol [26]. Cytochrome-c binds to the
cytosolic Apaf-1 (apoptosis protease activating factor-1)
and triggers the formation of a complex named
apoptosome, which recruits initiator pro-caspase-9 to its
caspase recruitment domain (CARD), allowing auto-
activation and then proteolysis. The process in turn
activates downstream executor caspases-3, -6 and -7 for
cleavage of cellular substrates leading to apoptotic cell
death (Figure 1) [27,28].

The B-cell lymphoma 2 (Bcl-2) family proteins

The intrinsic pathway is closely regulated by the B-cell
lymphoma 2 (Bcl-2) family of intracellular proteins.
This proteins family regulates both pro-apoptotic and
anti-apoptotic  intrinsic pathways controlling the
alteration of MOMP [29]. Therefore, by mediating per-

Intrinsic pathway
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meabilization of the mitochondrial membrane, the Bcl-2
proteins serve as an “apoptotic switch” [30]. The Bcl-2
proteins are classified into three subgroups, one group
with anti-apoptotic and two with pro-apoptotic function,
depending on the composition of typical BH (Bcl-2
Homology) domains, listed from BH1 to BH4 [31,32]
(Figure 2). Whereas the BH1 and BH2 domains of bel-2
are required for dimerization with pro-apoptotic
proteins, BH3 domain is crucially important to the
interaction between pro-apoptotic and anti-apoptotic
proteins and is contained by all family members. The
amino-terminal BH4 domain is mainly found in the bcl-
2 family members with death-repressing activity, but is
also present in some pro-apoptotic molecules. The anti-
apoptotic multi-domain group includes Bcl-2, Bcel-xL,
Bcl-W, Mcl-1, Al, and Bcl-B, containing from three to
four BH domains; the pro-apoptotic multi-domain group
includes Bax, Bak and Bok proteins, containing three
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Figure 1. Intrinsic and extrinsic apoptotic pathways. The intrinsic
(mitochondrial) and the extrinsic (ligands/death receptors) cell death pathways
and their convergence through t-Bid are depicted (see text for details).
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BH-domains (BH1, BH2 and BH3); and the pro-
apoptotic BH3-only proteins group includes Bid (BH3
interacting-domain death agonist), Bim (Bcl-2-like
protein 11), Bad (Bcl-2-associated death promoter),
Puma (p53 upregulated modulator of apoptosis),
Noxa, BMF, HRK and BIK (Figure 3) [33]. While the
anti-apoptotic proteins regulate apoptosis by blocking
the mitochondrial release of cytochrome-c, the pro-
apoptotic proteins act by promoting such release.

Interaction with and/or regulation of
several proteins invoved in apopiosis

The balance and protein-protein interactions between
Bcl-2 family members is required to determine whether
a cell undergoes cell survival or apoptosis. The
activation of Bax (cytosolic protein that translocates
into mitochondria during induction of apoptosis), and
Bak (integral membrane protein located in the
mitochondria and endoplasmic reticulum) involves
conformational changes that trigger the formation of
homo-oligomeric protein complexes that end up altering
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Figure 2. Bcl-2 family members domain composition and function. Typical BH (Bcl-2
Homology) domains, listed from BH1 to BH4, are shown. TM: transmembrane domain.
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Figure 3. Bcl-2 protein subgroups. The Bcl-2 proteins are classified into three subgroups, one
group with anti-apoptotic and two with pro-apoptotic function, depending on the composition of the
typical BH domains, listed from BH1 to BH4. Representative members of each subfamily are shown.
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the mitochondrial membrane permeability [34,35]. The
pro-apoptotic BH3-only proteins act upstream of this
event binding with high affinity to anti-apoptotic Bcl-2
family members thereby allowing Bax/Bak to elicit
MOMP and activation of the caspase cascade [36,37].
Anti-apoptotic multidomain members of the Bcl-2
protein family not only counteract the pore-forming
activity of Bax and Bak by engaging in direct inhibitory
interactions, but also prevent the generation of pro-
apoptotic cytosolic Ca®" waves either by reducing
capacity of endoplasmic reticulum (ER) Ca®" storage,
an effect that is antagonized by Bax and Bak or by
interacting with inositol 1,4,5- trisphosphate (IP3)
receptor [38,39]. Other apoptotic factors that are
released from the mitochondrial intermembrane space
into the cytoplasm include apoptosis inducing factor
(AIF), second mitochondria-derived activator of caspase
(Smac), direct IAP Binding protein with Low pl
(DIABLO) and Omi/high temperature requirement
protein A (HtrA2) [40].
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Figure 4. Function of inhibitors of apoptosis
proteins (IAPs). 1APs are often overexpressed in
cancer and they have the ability to bind and inactivate
caspases 9 and 3. The activities of IAPs, on the other
hand, may be suppressed by mitochondrial proteins,
such as Omi/HtrA2 and Smac/DIABLO, released into
the cytosol during apoptosis.

The inhibitors of apoptosis proteins (IAPs)

Considering that proteolysis is an irreversible process,
strict control of caspases-mediated proteolytic cleavage
is imperative to prevent inappropriate cell destruction
[41]. Negative regulation of caspases function is
achieved by IAP proteins family whose principal
members in humans are NAIP (BIRCI), cIAPI
(BIRC2), cIAP2 (BIRC3), X-linked IAP (XIAP,
BIRC4), Survivin (BIRCS), Apollon (BRUCE, BIRC6),
Livin/ML-IAP (BIRC7), and TAP-like protein 2 (ILP2 —
BIRCS) [42]. Their characteristic BIR (baculovirus IAP
repeat) domain mediates the interaction with various
proteins and gives them the ability to bind and
inactivate caspases [43]. The activities of IAPs,
however, may be suppressed by mitochondrial proteins,
such as Omi/HtrA2 and Smac/DIABLO, released into
the cytosol during apoptosis (Figure 4). These
endogenous IAPs antagonists are able to bind to the
BIR domain of IAPs reducing their ability to interact
with caspase-3 or -9 thereby restoring their activity
[44]. XIAP is the best characterized IAP so far and is
generally recognized as the most potent endogenous
caspase inhibitor. XIAP anti-apoptotic activity involves
inhibition of active executor capsases as well as
prevention of initiator caspase-9 activation [45].

Alterations of the apoptotic pathways

There are many ways through which both the extrinsic
and the intrinsic apoptotic pathways may be altered,
resulting in reduction of apoptosis or acquisition of
apoptosis resistance. They include impaired death
receptor signaling, disrupted balance between pro-
apoptotic and anti-apoptotic proteins, reduced caspase
function and impaired p53 function (Figure 5).
Alteration of extrinsic apoptotic signaling has been
associated with different types of human tumors,
underscoring how the loss of activity of Fas-FasL
system [46] or the aberrant expression of cytosolic
components of this death receptor apoptotic pathway
(i.e., FADD) [47] can contribute to the tumor
transformation. Several genetic defects have been
proven to contribute to the resistance of tumor cells to
Fas-mediated apoptosis. Fas transcriptional silencing is
a common oncogenic event in the epithelial
transformation, while its mutation has been often
associated with B-cell germinal center-derived
lymphomas [48]. In acute myelogenous leukemia
(AML) reduced or absent expression of FADD has been
frequently observed, resulting in resistance to
chemotherapy and poor patient prognosis [47,49].
Moreover, in several cancers including neuroblastoma,
medulloblastoma, and small cell lung cancer (SCLC),
absent or reduced expression of caspase-8 was reported
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[50-52]. Another resistance mechanism reported in a
variety of human tumors is the overexpression of anti-
apoptotic protein c-Flip, recruited at the DISC level,
that prevents the pro-caspase-8 auto-activation thereby
rendering cell resistant to death receptor-mediated
apoptosis [53-55].

As for the extrinsic pathway, alteration of some
components of the intrinsic apoptotic pathway can play a
fundamental role in the development of resistance to
chemotherapy in different types of tumors. Disruption in
the balance of anti-apoptotic and pro-apoptotic members
of the Bcel-2 family results in deregulated apoptosis in the
affected cells. This can be due to overexpression of one
or more anti-apoptotic proteins or downregulation of one
or more pro-apoptotic proteins or a combination of both.
Anti-apoptotic Bcl-2 over-expression has been reported
in several human cancers, including prostate cancer,
diffuse large B-cell lymphoma (DLBCL), melanoma, etc.
[56-58], resulting in protection of cancer cells from
apoptosis or inhibition of TRAIL-induced apoptosis
[59,60]. Overexpression of Bcl-xL has also been reported
in colorectal cancer and Kaposi's sarcoma [61,62]. Such

overexpression confers a multi-drug resistance phenotype
in tumor cells and prevents them from undergoing
apoptosis [63]. Thus, high expression levels of anti-
apoptotic proteins Bcl-2 and Bcel-xL have been reported
to correlate with cisplatin resistance and tumor recurrence
in different cancers including non-small cell lung cancer
(NSCLC), head and neck, ovarian, and breast [64-68].
On the other hand, mutations in the pro-apoptotic Bax
gene have been reported in colorectal cancers and
contribute to resistance to anticancer treatments [69].
Increased Bcl-2/Bax ratio has been reported in chronic
lymphocytic leukaemia (CLL) patients. [70]. Other
examples of alteration of the intrinsic pathway include
reduced expression of the basic component of the
apoptosome, Apaf-1, in melanomas [71,72], as result of
promoter aberrant methylation. In addition, tumor cells
resistance to apoptosis also occurs as a result of alteration
of mediators that control the intrinsic apoptotic pathway
downstream from the apoptosome formation, i.e. acting
on caspase activity. In this regard, high level of IAPs
expression has been found in different types of cancers,
and this evidence is considered a marker of poor
prognosis for patients [73,74].
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Figure 5. Mechanisms leading to deregulation of apoptosis. Schematic representation
of the different ways through which both the extrinsic and the intrinsic apoptotic pathways
may be altered, resulting in reduction of apoptosis or acquisition of apoptosis resistance.
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Pharmacological targeting of the apoptotic pathways

Based on this evidence, restoration of apoptotic
pathway by drugs targeting both apoptotic pathways
constitutes a promising anticancer therapeutic approach.
Regarding the extrinsic pathway, the down-regulation
of c-Flip by metabolic inhibitors and the promotion of
caspase-8 activation by interferon, are some examples
of strategies aimed at making tumors responsive to
death receptor-induced apoptosis, and more generally,
to chemotherapy-induced apoptosis [55,75,76]. The
therapeutic importance of inducing apoptosis through
the extrinsic pathway also extends to cancer cells that
do not show defects in components of that pathway.
Indeed, inducing the apoptosis by stimulating the
extrinsic pathway can overcome the resistance to
therapeutic agents that act by causing DNA damage, as
death  receptor-dependent apoptosis may occur
regardless of the stress response. An example of such
therapeutic strategy is represented by the ligand TRAIL
known to induce apoptosis in different tumor cell lines
[77]. The preferential destructive effect against tumor
cells and the apparent absence of systemic toxicity
through TRAIL-induced apoptosis, led to the
development of antibodies with agonistic activity
against the TRAIL death receptors (DR4 and DRS) or
soluble recombinant derivatives of TRAIL (sTRAIL) as
promising chemotherapeutic agents [78]. An attractive
strategy to sensitize resistant malignancies to TRAIL-
induced cell death is the design of small molecules that
target and promote caspase-8 activation. Through an in
silico screening some authors successfully found a
small molecule activator of caspase-8 [79].
Experimental validation performed in multiple cell
lines, such as leukemic and prostate cells, revealed that
CaspPro small molecule promotes caspase-8 activation,
caspase-3 activation and PARP cleavage, in the
presence of TRAIL, leading to cell death [79]. Owing to
its different toxicity for transformed as opposed to
normal cells, Apo2/TRAIL shows promise as potential
cancer therapy agent [80,81].

As in the extrinsic pathway, mediators of the intrinsic
pathway involved both in tumorigenesis and chemo-
resistance, are targeted for therapeutic approaches.
These anticancer strategies attempt to develop drug-
designed inhibitors of anti-apoptotic proteins typically
overexpressed in cancer cells, such as Bcl-2, Bel-xL and
IAPs [82]. Efforts to target Bcl-2 proteins involve the
development of agents that disrupt Bcl-2 complexes.
BH3 mimetics bind to the hydrophobic groove of
antiapoptotic proteins mimicking the action of BH3-
only proteins in binding to pro-survival proteins,
leading to the release of BH3-only proteins from
complexes and activation of BAX and BAK. So far,

nearly a dozen BH3 mimetics are under investigation as
Bcl-2 inhibitors in different phases of human clinical
trials such as AT-101 (R-(-)-gossypol) [83,84], ABT-
199 (venetoclax) [85], ABT-737 [86], ABT-263
(navitoclax, orally available derivative of ABT-737)
[87,88], GX15-070 (obatoclax) [89,90] and TW37 [91].
The field of inhibitors of Bcl-2 family members is in
continuous development [92,93], underscoring the
importance of these molecules as potent anticancer
agents. Moreover, targeting the specific BH4 domain of
Bcl-2 is also emerging as a novel strategy for anticancer
therapy [94]. Thus, Bcl-2, via its BH4 domain,
cooperates with numerous proteins regulating different
cellular pathways involved in tumor progression and
chemoresistance such as hypoxia and angiogenesis [95-
97]. Recently, a small molecule namely BDA-366 was
discovered as a potent and effective BH4 domain
antagonist, displaying remarkable anticancer activity in
vitro and in vivo, thus providing the proof-of-concept of
this approach [98]. Another innovative approach to
inhibit Bcl-2 comes from the evidence that human bcl-2
gene contains a GC-rich sequence located in its
promoter with the potential to form G-quadruplex
structures [99] and functions as a transcriptional
repressor element. Therefore, G-quadruplex-specific
ligands can regulate the transcription of bel-2 through
stabilization of quadruplex structure [100,101].

Interestingly, it has been shown that the tumor
suppressor p53, at least in part by transcription
independent mechanisms, contributes to cell death
induction by BH3 mimetic inhibitors of BCL-xL. In
addition to mildly facilitating the ability of compounds
to derepress BAX from BCL-xL, p53 also provides a
death signal downstream of anti-apoptotic proteins
inhibition that is independent from PUMA, as enhanced
p53 can substitute for PUMA to promote BAX
activation in response to BH3 mimetics [102]. It is thus
of particular relevance that p53, even when expressed
constitutively under conditions where it does not
influence the expression of its pro-apoptotic
transcription targets, enhances cell death induced by
BCL-xL inhibition [102]. Such results suggest on one
hand that BH3 mimetics may not totally substitute for
the lack of an active p53 tumor suppressor in cancer
cells; on the other hand, they imply that healthy tissues
may be more harmed than anticipated when BCL-xL
inhibitors are combined with chemotherapeutic agents
that even mildly affect p53.

Among the therapeutic strategies targeting IAPs two
approaches have being developed, that is the use of
antisense oligonucleotides and of small-molecule
inhibitors. The XIAP down-regulation through
administration of antisense agents carried by an
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adenoviral vector has been proven effective in inducing
apoptosis in chemoresistant ovarian cancer cells [103]
and sensitizing lung cancer cells to the radiation
treatment [104]. Similarly, the inhibition of XIAP
expression with specific oligomers has been shown to
induce caspase-3 activity, boosting the apoptotic effect
of cisplatin and TRAIL in human prostate androgen-
insensitive cancer cells [105]. Moreover, preclinical
studies have shown that Smac mimetics can directly
trigger cancer cell death or sensitize tumor cells to
various cytotoxic therapies, including conventional
chemotherapy, radiotherapy, or novel agents. They
promote activation of caspases by neutralizing XIAP-
mediated caspase inhibition [106]. Therefore, the
success of each therapeutic strategy depends mainly on
the ability of the therapeutic tool to induce apoptosis
either by targeting the overexpressed anti-apoptotic
proteins or by stimulating the expression of the pro-
apoptotic molecules.

However, it is worth to mention that the cancer genetic
background may induce failure of apoptosis by drugs.
In this regard, KRAS and the PI3K/AKT/mTOR
pathway are frequently dysregulated in cancer and, for
such reason, are the most critical targets in clinical
oncology. Thus, direct targeting of KRAS has not been
successful so far and, similarly, inhibition of the
PI3K/AKT/mTOR pathway often results in apoptosis
resistance. Using a panel of 20 human KRAS-mutant
NSCLC (non-small cell lung cancer) cell lines Hata and
collaborators show that most human KRAS-mutant cell
lines fail to undergo marked apoptosis in response to
AZD6244 (Selumetinib, a potent, selective, and ATP-
uncompetitive inhibitor of MEK1/2 kinases) [107] in
combination with GDC-0941 (an orally bioavailable
inhibitor of class I PI3K) [108], thus suggesting that
failure to induce apoptosis may limit the efficacy of
combined MEK and PI3K inhibition for KRAS-mutant
NSCLCs. This differential apoptotic response induced
by MEKIi/PI3Ki is not simply explained by variable
inhibition of RAS effector pathways but results from
differential ability of the MEK and PI3K pathways to
modulate the BCL-2 family of apoptotic regulatory
proteins [109]. Another recent study reveals that Bel-xL
upregulation is an important mechanism of apoptosis
resistance in mutant KRAS cells. Concurrent induction
of pro-apoptotic Noxa/Bik and antagonism of Bcl-xL
have been shown to synergistically interact to overcome
KRAS-mediated apoptosis resistance [110]. These
findings highlight a promising therapeutic strategy to
overcome apoptosis resistance in KRAS-mutant
colorectal cancer cells. Moreover, Corcoran and
collaborators identified, by a pooled shRNA-drug
screen, a synthetic, lethal interaction of combined Bcl-
xL and MEK inhibition to promote tumor regressions in

KRAS mutant cancer models [111]. Therefore, a dual-
targeted or multitargeted strategy may be more efficient
to overcome the resistance due to cancer genetic
background.

Oncosuppressor p53 and apoptosis

The tumor suppressor p53 is a transcription factor that,
upon DNA damage, is activated to induce sequence-
specific target genes involved in either cancer cell
growth arrest or apoptosis [112]. Activation of wild-
type (wt) pS3 occurs in response to genotoxic stress
essentially through posttranslational modifications, such
as acetylation and phosphorylation, resulting in protein
stabilization (by escape from proteasome-mediated
degradation) and nuclear localization leading to binding
to sequence-specific promoters of target genes as final
outcome of its function as transcription factor [113].
The induction of apoptosis by p53 in response to
cellular stress is its most conserved function and is
crucial for p53 tumor suppression [114]. The apoptotic
activation of p53 is central not only for preventing
tumor transformation but also for efficient response to
therapies aiming at tumor eradication. In response to
cellular stress p53 regulates molecules involved in both
the death receptor (extrinsic) and mitochondria-
dependent (intrinsic) apoptotic pathways [115]. In
response to multiple chemotherapeutic drugs two pro-
apoptotic members of the TNFR superfamily, Fas/Apol
and Killer/DRS5, are regulated in a p53-dependent
manner [116,117]. In addition to stimulating Fas
transcription, activated p53 may enhance levels of Fas
at the cell surface promoting trafficking of the Fas
receptor from the Golgi [118]. Another membrane-
bound protein that was identified as a p53 target gene is
p53 apoptosis effector related PMP-22 (PERP),
although the precise mechanism by which its induction
occurs has not being fully elucidated [119] (Figure 6).
Regarding the apoptotic function of the intrinsic
pathway, p53 seems to play a pivotal role because it
modulates both pro-survival and pro-apoptotic Bcl-2
family members. Indeed, a key subset of the Bcl-2
family genes are p53 targets, including Bax, Noxa,
PUMA and Bid [120-122] (Figure 6). PUMA gene is
extremely effective in inducing apoptotic cell death
within few hours and, more importantly, knockout
experiments in human colorectal cancer cells showed
that PUMA is required for p53-induced apoptosis [123].
Moreover, p53 appears to promote the convergence of
the intrinsic and extrinsic pathways through Bid
regulation. Indeed, Bid gene has been found to be
transcriptionally induced by p53 in response to v-
irradiation [124]. Interestingly, cellular chemo-
sensitivity to the DNA-damaging agents doxorubicin
and 5-fluorouracil appears to be critically dependent on
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Figure 6. p53-mediated apoptosis. Role of p53 in both the extrinsic and
the intrinsic pathway and their convergence through t-Bid.

the presence of wtp53 and Bid. Therefore, the induction
of Bid by p53 helps to sensitize the cells to the toxic
effects of chemotherapeutic drugs [124]. While the
induction of some p53 target genes appears to be
sufficient to initiate apoptosis, another class of p53
target genes (i.e., Apaf-1, caspase-6, and Bid) does not
efficiently induce apoptosis per se but rather sensitizes
cancer cells to the effects of chemotherapeutic agents,
improving the apoptotic outcome [124-127]. Moreover,
pS3 also participates in apoptosis induction in a
transcription-independent way by acting directly at
mitochondria [128]; mechanistically, pS3 interacts with
anti-apoptotic Bcl-xL as well as pro-apoptotic Bcl-2
family proteins resulting in releasing of the pro-
apoptotic effectors Bax/Bak that elicit cytochrome-c
release and procaspase-3 activation [129].

Waking up the guardian: p53 as a druggable target

Because of its critical antitumor function, p53 is
frequently targeted for inactivation and suffers disabling
mutations or deletions in about 50% of all malignant
tumors. The other half of human cancers express wild-
type p53 protein that, however, can be inactivated by
deregulation of regulatory proteins [130]. Stimulation of
disabled p53 pathways has been suggested as a valuable
anticancer strategy and, interestingly, activated wtp53
may target cancer cells though sparing the normal ones
[131] which is an important concern in clinical studies.
The p53 oncosuppressor protein is normally kept at low
level because subject to negative regulation by MDM2-
dependent proteasome degradation [132]; in response to
genotoxic stress, however, p53 undergoes post-
translational modifications that allow the protein to
escape MDM2 control, accumulate, and become active

[133]. The mdm2 gene is amplified in a significant
proportion of human tumor types, thereby contributing
to tumor development by efficiently reducing the
availability of a functional p53 protein [134]. The
MDM2-negative regulation of p53 protein can be
neutralized by specific protein modifications such as
serine 46 (Ser46) phosphorylation [135], a key
determinant in shifting the p53 pro-apoptotic
transcription in response, for instance, to UV irradiation
and chemotherapy [136,137]. In particular, p53-Ser46
phosphorylation by kinase HIPK?2 is able to neutralize
MDM2-mediated p53 inhibition rescuing p53
transcriptional activity of pro-apoptotic factors such as
p33A4IP1, PIG3, Bax, Noxa, Puma and Killer/DR5 [138-
142]. The interaction between p53 and MDM2 is a
promising target in anticancer therapy [143]. To this
aim, various peptidomimetic small molecules have been
developed as protein-protein interaction blockers [144].
Among these is Nutlin-3, an imidazoline-based MDM?2
antagonist that potentially inhibits the p53/MDM?2
interaction though maintaining MDM2 E3 ligase
activity [145]. The pharmacological action of Nutlin-3
is through both the transcription-dependent and -
independent p53 apoptotic pathways [128,146,147].
MDM2 can also trigger, in response to low genotoxic
damage, the downregulation of p53 apoptotic activator
HIPK2 [148]. In agreement, the use of Nutlin-3 has
been shown to mainly induce mitotic arrest rather than
apoptosis [149]. Interestingly, co-treatment of cancer
cells with zinc ion in the presence of Nutlin-3 can
interfere with the interplay between HIPK2, p53 and
MDM2 favoring HIPK?2 stabilization and induction of
p53 apoptotic activity through inhibition of MDM2
ligase activity [150]. In addition, p53 apoptotic
activation can be achieved by zinc combination with
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low-dose doxorubicin (ADR) that used alone does not
achieve such effect; mechanistically, zinc
supplementation reduces the p53 binding to MDM2,
improving the low-dose drug-induced cytotoxic effect
and cancer cell apoptosis [151]. Additionally, zinc ion
restores the HIPK2/p53 apoptotic pathway that is
inhibited by hypoxia [152]. Co-treatment with Nutlin-3
and Bcl-2 inhibitor ABT-737 has been shown to greatly
enhance the sensitivity to apoptosis of cancer cells with
high MDM2 levels [153], suggesting that the combined
inhibition of MDM2 and Bcl-2 could be a multi-target-
based anticancer strategy to trigger tumor death [154].
Some p53 activators as small-molecules MDM2
antagonist are in clinical trials [155]
(https://clinicaltrials.gov). In contrast with the majority
of the approaches that target the interaction between
p53 and MDM2, a new method has been developed
aimed at inhibiting the activity of the MDM2/MDM4
complexes by interfering with their heterodimerization
[156]. The binding of the peptide mimicking the MDM4
C-terminus tail to MDM2 impairs MDM2-mediated p53
ubiquitination and activates p53-dependent transcription
and oncosuppressive activities [156]. MDM4 (also
known as HDM4, MDMX or HDMX) is a cytoplasmic
protein with p53-activating function under DNA
damage conditions. Particularly, MDM4 promotes
mitochondrial localization of p53 phosphorylated at
Ser46  through MDM4/HIPK2/p53  cytoplasmic
assembly, uncovering coordinated repression of
molecules with anti-apoptotic activity such as Bcl-2,
release of cytochrome-c and apoptosis [157,158]. The
existence of nuclear and cytoplasmic complexes able to
stimulate the same p53 modification, that is Ser46',
may indicate the presence of overlapping pathways to
ensure the proper realization of a crucial process as the
apoptosis. These findings highlight the potential
therapeutic value of targeting the MDM2/MDM4
heterodimers for p53 apoptotic function.

Pharmacological reactivation of mutant (mut) p53 is an
interesting field of research under continuous
development aimed at designing new drugs. Some of
them exploit the intrinsically unstable nature of mutp53
and therefore the possibility to stabilize the wild-type
conformation thus restoring wild-type function and
tumor response to therapies. Numerous findings about
this subject have been shown and summarized in
different reviews [159-161].

MicroRNA and apoptosis

MicroRNAs (miRNAs) are highly conserved, small
noncoding RNA molecules, which post-
transcriptionally regulate gene expression via inhibition
of mRNA translation or inducing degradation of target

mRNAs [162]. They are key regulators of many cell
processes often deregulated in cancer, including
apoptosis. Indeed, it is becoming clear that miRNAs
might act as both anti-apoptotic and pro-apoptotic by
directly targeting, respectively, pro- or anti-apoptotic
mRNAs or their positive regulators [163]. The currently
known apoptosis-regulating miRNAs list is expected to
expand quickly and hopefully also their therapeutic use;

therefore, we just highlight here some miRNAs
involved in apoptosis regulation. Among the
microRNAs involved in regulating the extrinsic

apoptotic pathway, miR-20a, miR-21, miR-196b and
miR-590 were reported as potential modulator of
Fas/FasL system in different cancer types [164-167],
while MiR-34a, miR-181c and miR-187 were shown to
directly target TNF-o mRNA [168-170]. Among the
microRNAs involved in regulating the intrinsic pathway
there are the let-7 family, miR-15a, miR-16-1, miR-204,
and miR-608, just to mention a few. The Let-7 family is
highly conserved in sequence across animal species and
is one of the first identified miRNA families. Let-7
miRNAs have been shown to negatively regulate Bcl-
xL expression in human hepatocellular carcinomas and
induce apoptosis in cooperation with anti-cancer drug
targeting Mcl-1 [171]. Bcl-2 mRNA may be targeted by
miR-204  with consequent increase in cells
responsiveness to both 5-fluorouracil and oxaliplatin
treatments and therefore to apoptotic cell death [172].
MiR-608 has been reported to target Bcl-xL in
chordoma malignancy and lung cancer [173]. Notably,
numerous miRNAs are also transcriptionally modulated
by wtp53 [174] and among them is miR-34a [175,176],
a member of the MiR-34 family implicated in cell
death/survival signaling. MiR-34a is associated with G1
cell cycle arrest, senescence and apoptosis, thereby
possessing a tumor suppressor activity. Deregulation of
MiR-34a has been reported in several types of cancers
[175,176]. Mutant (mut) p53 was also found to play a
role in the regulation of miRNA processing. Garibaldi
and collaborators demonstrate that mutp53 proteins
modulate the biogenesis of several miRNAs in cancer
cells directly interfering with Drosha-p72 association
and promoting cell survival and cell migration [177].
They demonstrate a global impact of mutp53 on
miRNA biogenesis and suggest that miRNAs are
downregulated by mutp53 in order to inactivate tumor
suppressive pathways. Of note they found that the
endogenous wtp53 has an opposite effect on the
expression of mutp53 repressed miRNAs on colon
cancer cell lines confirming the contribution of mutp53
gain of oncogenic function (GOF) on miRNA
repression [177]. Additional studies on a large scale
would help in identifying the entire repertoire of
miRNAs negatively downregulated by different mutp53
in different tumor models. According to the authors, the
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characterization of the entire gene-regulatory networks
governed by mutp53-miRNA cross-talks will offer a
molecular basis for diagnostic and therapeutic strategies
based on miRNA biology. In the meanwhile,
developing strategies to block mutp53 GOF may have
clinical impact in cancer treatment.

Delivery of miRNAs as synthetic miRNA mimics or
antagomirs has emerged as a promising approach to
treat cancer. Although different miRNAs are currently
in the preclinical stage and ready to enter Phase 1
clinical trials, to date, only two miRNA therapeutics are
registered  for  the  treatment of  cancers
[https://clinicaltrials.gov]. The first therapeutic trial
began in 2013 and is a Phase I, open-label, multicenter,
dose-escalation study to investigate the safety,
pharmacokinetics and pharmacodynamics of MRX34 in
patients with unresectable primary liver cancer or
advanced/metastatic cancer with or without liver
involvement or in patients with hematologic
malignancies (Mirna Therapeutics). MRX34 is based on
the formulation of miR-34 mimic and the liposomal
delivery technology SMARTICLES (Marina Biotech).
The second one, began in early 2015, and is an early
stage clinical trial of a new therapeutical approach for
selected patients with malignant pleural mesothelioma
or non-small cell lung cancer. The trial aims to test
optimal dose of TargomiRs, an experimental medication
consisting of three components, that is, miR-16-based
microRNA mimic, a nanoparticle drug delivery system
using nonliving bacterial minicells, and an anti-
epidermal growth factor receptor antibody as a targeting
moiety. The trial is being carried out in three different
hospitals in Australia and the study is expected to be
completed in mid 2016.

Concluding remarks

Intensive investigation in the last decades on the
molecular mechanisms of apoptosis in cancer cells has
led to the identification of the several molecules
involved in both the intrinsic and the extrinsic apoptotic
pathways. This is underscored by the extensive
literature that those studies have produced in the last
years. Those findings also reported how the many
different alterations of key players of the apoptotic
mechanisms are responsible of evasion from apoptosis
and therefore of tumor development and resistance to
therapies. For that reason, evasion from apoptosis is an
hallmark of cancer and apoptotic proteins are interesting
therapeutic targets. Therefore, this insight into the
deregulation of apoptosis has focused the research
attention towards the development of apoptosis-
reactivating strategies, to be used in the treatment of
various types of cancer, that hold great promise for the

benefit of patients, although the mechanisms defining
their mode of action still need to be unveiled, as
recently highlighted [178]. Some molecules or
therapeutic strategies are in preclinical trial, others are
already in clinical trials, though underscoring the
usefulness of such discoveries.

However, the study of apoptosis still presents
challenges that should be addressed in future studies.
They include, for instance, the study of 3-D cellular
models, since most of the findings have been so far
produced in 2-D cell culture systems. Knowing that the
tumor is a three-dimensional entity and that the
environment plays a big role in the cross-talk with
cancer cells, it is likely that more physiological studying
approach for the manipulation of the apoptotic
machinery might give us novel insight into the
mechanisms of tumor development and response to
therapies. Moreover, additional studies on the
development of drugs aiming at targeting, for instance,
IAP proteins or mutp53 should take in consideration
also the in vivo toxicity and the fact that they should
selectively induce apoptosis in malignant and not in
normal cells. In conclusion, there is little doubt that
drugs that target the deregulated apoptotic pathways
could have wide application in the treatment of cancer.
The intense effort devoted lately to target the apoptotic
pathway is encouraging and supportive for the
development of new approaches to drug discovery and
therapy.
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