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Abstract: Connectivity in a gene-gene network declines with age, typically within gene clusters. We explored the effect
of short-term (3 months) graded calorie restriction (CR) (up to 40 %) on network structure of aging-associated genes in the
murine hypothalamus by using conditional mutual information. The networks showed a topological rearrangement when
exposed to graded CR with a higher relative within cluster connectivity at 40CR. We observed changes in gene centrality
concordant with changes in CR level, with Ppargcla, and Pptl having increased centrality and Etfdh, Traf3 and Abccl
decreased centrality as CR increased. This change in gene centrality in a graded manner with CR, occurred in the absence of
parallel changes in gene expression levels. This study emphasizes the importance of augmenting traditional differential
gene expression analyses to better understand structural changes in the transcriptome. Overall our results suggested that
CR induced changes in centrality of biological relevant genes that play an important role in preventing the age-associated
loss of network integrity irrespective of their gene expression levels.

INTRODUCTION

response and increased oxidative stress [2,3]. These
transcriptomic patterns associated with aging may be

Brain aging has an impact on cognitive function and
forms a major risk for the development of neuro-
degenerative  disorders such as  Parkinson’s,
Huntington's and Alzheimer’s disease [1]. In murine
brain tissue, aging is associated with transcriptional
changes in genes that induce an elevated inflammatory

established in the brain early in adolescent [2]. Aging
and aging-related diseases are thought to be centrally
programmed by the hypothalamus [4,5]. Much evidence
suggests that calorie restriction (CR), a non-invasive
method to increase lifespan, has anti-inflammatory
properties and reduces age-related oxidative stress [6-
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10]. A recent study suggests that CR leads to a
neuroprotective transcriptomic profile in rodent brain
and protects against aging related decline in memory
function [11]. A large number of interacting genes,
forming an interaction network, alter their transcription
in response to aging and CR. However, understanding
the complex interactions between genes is a challenge
that cannot be addressed by looking at gene expression
alone [12]. Network analyses of interactions between
genes could further elaborate the complex mechanisms
underlying both aging and CR. We can define
interaction networks in several ways. Most often, we
have represented gene interaction networks using
correlations in gene expression. We can also derive
from the same observations a measure of information
shared between gene expressions [13] (reviewed in
[14]). This flow of information between genes in a
network therefore gives rise to new measurable
characteristics (i.e. network behavior) which are absent
in isolated components such as the expression levels of
single genes (Alm 2003). Soltow et al. (2010) proposed
that aging of a system can be generalized to four
characteristics: (1) decline in capacity and utilization of
energy, (2) decline in structure or metabolic
organization, (3) decline in barrier functions and (4)
decline in transfer of information [16]. The decline in
structure and information flow during aging can be
assessed by evaluating quantitative changes in network

topology.

The structure of a gene network is subject to a few
simple principles and allows for the comparison and
characterization of different complex networks.
Empirical studies show that many cellular networks are
scale-free which means that the degree distribution (or
connectivity of nodes) follows a negative power law
[17]. In yeast exposed to CR, gene-regulatory networks
were also found to be scale-free [18]. Many scale-free
networks also have a hierarchical structure with high
clustering coefficients of the nodes following a negative
relationship with the degree distribution. These
networks are found to divide naturally into highly
connected clusters, which generally correspond to
specific  biological functions [19]. Biologically
important genes play key topological roles in network
function and structure, and influence network dynamic
processes [20] enabling us to identify these central
genes (network nodes) using network metrics such as
node centrality. Central genes have different structural
features such as having more connections, influencing
more genes in the network through intermediary genes
and playing a disproportionate role in information flow
[21]. Eigenvector centrality captures the relative
importance of each gene for the overall network
structure, by reflecting the contribution of the variance

in interaction of each gene to the overall interaction
heterogeneity over the entire network [21].

Age-associated changes in network structure have been
identified which can help us pinpoint the potential
genome wide mechanisms involved in aging [16,22,23].
Network system failure is often associated with
information flow disruptions and therefore central
genes, in a gene interaction network, are expected to be
particular foci for negative effects during the aging
process [16]. Functionally-related genes should in
principle co-express with each other and therefore gene
co-expression networks, estimated using correlation in
gene expression across individuals, should change with
age. A key change in gene co-expression network
structure associated with aging in mice was a loss in
connectivity (26% decrease) over the entire network
and a decrease in strength of correlations between genes
within functional gene clusters [22]. Biologically-
related genes clustered together forming highly
connected functional gene clusters. Within these
functional gene clusters there were gene groups
involved in aging-related pathways [22]. Associations
between interacting metabolites are also significantly
altered under CR compared to ad libitum (AL) feeding
in Drosophila melanogaster suggesting that network
structure is modified under CR [23]. Laye et al. (2015)
postulated that these changes in network structure under
CR are protective against the age-associated decline in
metabolic ~ homeostasis.  Aging  protein-protein
interaction networks of D. melanogaster showed that
the relationship between identified protein clusters
could be modified by CR [24]. These results suggest
that aging-associated proteins might be key to
maintaining stability in a network [24]. Southworth et
al. (2009) identified the transcription factor nuclear
factor-kappa B (NF-xB) as a central gene involved in
the loss of network connectivity with aging in mice.
Under CR, it would be anticipated that the network
should be protected against the aging-associated decline
in interdependencies, and should result in a less
fragmented network [16].

Correlations between gene expression levels as a
measure of gene interdependencies has been widely
used to construct gene co-expression networks [25].
However, this method is limited in what can be inferred
from these networks, as well as difficulties in
identifying spurious correlations. Further, gene co-
expression networks cannot separate direct interactions
from transcriptional interactions that correlate with
expression levels of many non-interacting genes.
Therefore correlations cannot be used to reconstruct
gene-gene interaction networks without additional and
restrictive assumptions [26] and are heavily dependent
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on the associations being linear. In contrast, Mutual
Information (MI) provides a measure of general
dependence which is not necessarily assumed to be
linear in form. MI provides an estimate of the
information emanating from gene expression which is
shared between any two given genes. This provides a
mean to make inferences about interaction between
genes in large networks [27,28]. The dependency found
between two genes by MI-based methods represents a
possible functional dependency, although -causality
cannot be inferred. Furthermore, MI is limited to only
detect dependency between two genes. Conditional MI
(CMI) estimates were developed, analogous to partial
correlation coefficients for correlation measures, to
discount the effects of the expression of other genes
when estimating the MI for any gene pairs, hence
accounting for false positives [29]. CMI is able to detect
joint regulations of more than two genes by exploiting
the conditional dependency between genes of interest.
Therefore, CMI better captures functional relationships
between genes and allows us to asses network-wide
functional changes under, in our case, different CR
levels [27,30,31]. Changes in a CMI network therefore
represent changes in functions in response to aging. We
can therefore capture overall functional changes
concurrently, allowing us to detect central genes
involved with these changes.

Based on the prior knowledge that aged brains have
increased oxidative stress and inflammation [2,3], we
tested whether the network structure of genes associated
with aging, oxidative stress response and inflammation
changed when individuals were exposed to different
levels of CR. We postulated that the gene-gene CMI of
these aging-associated genes would alter under CR,
representing changes in functionality and regulation.
We predicted that the network structure, specifically its
connectivity would be increased by CR, which should
protect against the loss of network connectivity.
Furthermore, we expected that the changes in
connectivity would be found in gene clusters, as
demonstrated by Southworth et al. (2009), where aging-
associated decline was typically found in connections
between genes within functional gene clusters. We
expected to see a change in central genes in the
networks according to CR level, reflecting a potential
protection against aging. Lastly, we also used classic
Spearman’s rank correlation coefficients to measure
associations, and compared these results to those found
using CMI. To test these predictions, we used the
hypothalamic transcriptome of mice (20 weeks of age at
the beginning of the experiment) exposed to three
months graded CR (at levels up to 40% in 10%
increments) [10,32-34] and constructed gene CMI

interaction networks and gene co-expression networks
of aging-associated genes for each CR level. This study
complements previous work estimating the change in
gene expression with CR for the hypothalamic
transcriptome [34].

RESULTS

The effect of graded CR on the transcriptomic
profile of aging-associated genes

We initially used an orthogonal signal correction partial
least squares discriminant analysis (O-PLS-DA) to
classify 12 and 24 hr AL fed groups (12AL, 24AL) and
CR groups based on the expression levels of genes
involved in aging, inflammation and oxidative stress (n
= 408) obtained from a priori defined gene lists curated
by Ingenuity Pathway Analysis (IPA) (‘inflammation of
the nervous system’ and ‘oxidative stress response’) and
GenAge database (‘aging-associated genes’ in Mus
musculus). Individuals were clustered according to CR
level, indicating that gene expression levels could
predict CR level (Fig 1). Indeed model validation
indicated that 41.8% of the variance in gene expression
levels was explained by the different treatment groups
(n=06) (Xvar =41.8 £ 18.5, p-value < 0.001). Of these
408 genes, expression analysis identified 16 genes
differentially expressed at 24AL, 10 genes at 10CR, 14
genes at 20CR, 14 genes at 30CR and 59 genes at 40CR
relative to 12AL (Table S1).

The effect of graded CR on network structure and
connectivity

We estimated CMI based networks of these aging-
associated genes and also standard gene co-expression
networks based on correlations. CMI networks were
characterized as having either a hierarchical or scale-
free structure. Theory predicts that hierarchical
networks should display a negative relationship between
the degree to which genes cluster together (estimated as
a cluster coefficient) and the number of neighbors of a
given gene (node degree) (Fig 2A and 2B) [12]. The
cluster coefficient did not decrease as node degree
increased (Fig 2C), indicating that the networks were
not hierarchical. Furthermore, node strength, a
cumulative measure of node degree and the CMI of
each gene, is predicted to follow a power distribution in
scale-free networks (Fig 3A and 3B) [12]. However, in
all networks node strength was not power law
distributed (Fig 3C). In addition, visualizing the node
strength on a log-log scale did not result in a linear
relationship (Fig S1).
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Figure 1. Orthogonal signal correction partial least squares discriminant analysis (O-PLS-DA) demonstrating the
effect of graded CR on gene expression levels of aging-associated genes. 24AL, 12AL, 10CR, 20CR, 30CR and 40CR
refer respectively to 24h ad libitum feeding per day, 12h ad libitum feeding per day, 10 %, 20 %, 30 % and 40 % restriction.
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Figure 2. Node strength plotted against clustering coefficient to assess hierarchical topology. (A) Visualization of a
hierarchical network obtained from [12]. (B) Hierarchical network following a negative relationship between cluster coefficient and
node strength. (C) Plots to assess hierarchical topology of aging-associated genes networks. 24AL, 12AL, 10CR, 20CR, 30CR and
40CR refer respectively to 24h ad libitum feeding per day, 12h ad libitum feeding per day, 10 %, 20 %, 30 % and 40 % restriction.
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Another characterization of a network is the natural
occurrence of gene clusters and the degree of
connectivity of those clusters. This was estimated by
modularity-based clusters of gene interactions and by
assessing the strength of those interactions within these
clusters. Modularity-based clusters of gene interactions
changed and genes clustered differently at each CR level
(Fig4A) (Table S2). The modularity of the network,

which represented the number of clusters, was also
different at each CR level. The connectivity between
genes in a cluster relative to the connections between
clusters was measured by determining the modularity
coefficient (Fig 4B). The highest modularity coefficient
was observed at 10CR and 40CR, indicating that 10CR
and 40CR had a higher connectivity between genes
within clusters than between clusters (Fig 4C) (Table S2).
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Figure 3. Node strength frequency distribution. (A) Visualization of a scale free network obtained from [12]. (B) Node
strength in scale free network follow a power law distribution [12]. (C) Plots to asses scale free topology of the aging-associated
genes networks. 24AL, 12AL, 10CR, 20CR, 30CR and 40CR refer respectively to 24h ad libitum feeding per day, 12h ad libitum

feeding per day, 10 %, 20 %, 30 % and 40 % restriction.

Table 1. Comparison between gene co-expression networks and CMI networks

Treatment Gene co-expression network CMI network
Modularity coefficient Clusters Modularity coefficient Clusters
24AL 0.751 21 0.390 10
12AL 0.729 21 0.397 10
10CR 0.749 31 0.412 13
20CR 0.774 13 0.367 9
30CR 0.732 14 0.364 7
40CR 0.727 21 0.441 12
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Figure 4. Modularity coefficients per conditional mutual information network at each treatment level were
calculated and genes were assigned to clusters according to their mutual information. (A) Changes of clusters across
CR level and colored for clusters found at 12AL. (B) Modularity coefficient for each CMI network at each CR level. (C) CMI
networks colored according to clusters identified at each CR level. Edges between genes with strong CMI are colored in black,
those with weak CMI in light grey. 24AL, 12AL, 10CR, 20CR, 30CR and 40CR refer respectively to 24h ad libitum feeding per day,
12h ad libitum feeding per day, 10 %, 20 %, 30 % and 40 % restriction.

The effects of graded CR on gene centrality

We identified gene centrality, which are genes playing a
central role in connectivity, by estimating gene
eigenvector centrality in each CMI network. The
variance in eigenvector centrality was reduced for 20CR
and 30CR (Table S2) and we observed well-defined
groups of genes with disproportionally large
eigenvector centrality at 24AL, 12AL, 10CR and 40CR
(Fig 5A) [35]. Central genes were identified based on
the absolute maximum eigenvector centrality value
(Table S2). At 24AL four genes were identified as
central genes in the CMI network: excision repair cross-
complementing rodent repair deficiency, complemen-
tation group 4 (Ercc4), electron transferring
flavoprotein, dehydrogenase (Etfdh), integrin alpha 9
(Itga9) and mastermind like 1 (Drosophila) (Mamlli).
One gene, ATP-binding cassette, sub-family C
(CFTR/MRP), member 1 (Abccl) was identified at
12AL, 10CR, and 30CR as a central gene. At 20CR
three genes were identified as central genes: tumor
necrosis factor (ligand) superfamily, member 10
(Tnfsf10), topoisomerase I binding, arginine/serine-rich
(Topors), tripeptidyl peptidase I (7pp2) and TNF recep-

tor-associated factor 3 (7raf3). At 40CR the genes
peroxisome proliferative activated receptor, gamma,
coactivator 1 alpha (Ppargcla) and palmitoyl-protein
thioesterase 1 (Pptl) were identified as central genes in
the network. Ppargcla and Pptl showed a clear graded
increase in centrality, and Etfdh, Abbcl and Traf3 a de-
crease in centrality relative to CR level, but all genes did
not show any simultaneous significant changes in gene
expression levels relative to 12AL (Fig 5B). Furthermore
at all levels of CR, genes with the highest eigenvector
values were found in the same clusters (Fig 5C).

Comparison of networks based on CMI and
correlation coefficients

We estimated Spearman’s rank correlation coefficient
between genes and constructed gene co-expression
networks based on these correlations. The networks
showed the same average number of edges between
genes but their modularity and eigenvector centrality
differed compared to CMI networks. Overall the gene
co-expression network contained substantially more
clusters compared to the CMI network with a higher
modularity coefficient across CR. In contrast to the
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CMI based network, the modularity coefficient was the
highest at 20CR (Table 1). The genes with the highest
eigenvector centrality at 24AL, 20CR, 30CR and
40CR in the gene co-expression networks differed to
CMI networks but were identical at 12AL and 10CR
(Abccl). Similar to the CMI networks, these genes
were not significantly differentially expressed relative
to 12AL. At 24AL angiotensinogen (serpin peptidase
inhibitor, clade A, member 8) (4gf) was identified as
central gene. In addition to Abccl, four other genes
were identified as central genes at 10CR: Agt,
calcium/calmodulin-dependent  protein  kinase II
gamma (Camk2g), CD200 antigen (Cd200), nuclear
factor of activated T cells, cytoplasmic, calcineurin
dependent 2 (Nfatc2) and transformation related
protein 53 (7rp53). At 20 and 30CR the central gene
was c-abl oncogene 1, non-receptor tyrosine kinase
(4blI). At 40CR the central gene was amyloid beta
(A4) precursor protein (4pp).
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DISCUSSION

Previous studies of gene expression networks in aging
have mostly used gene co-expression networks to assess
changes in network structure of individuals in relation
to age and CR [16,22,23,36]. Here we used CMI
because this measure provides a way to make inference
about the amount of information shared between two
genes when they are expressed. This is important for
age-related studies for which we have a biological
understanding that information flow at different cellular
levels is disrupted by age. To our knowledge, CMI is
used here for the first time to assess the changes in
network topology associated with aging. We predicted
that CR would result in a less fragmented regulatory
network of aging associated genes compared to AL. We
show that CR explained a significant proportion of the
variability observed in the expression levels of aging-
associated genes. Our CMI networks based on these

12AL

30CR

40cr 8

Figure 5. Node centrality was identified by calculating the eigenvector value for each gene in each conditional
mutual information (CMI) network. (A) Eigenvector distribution visualized in a violin plot per CR level. (B) Changes of
eigenvector values and gene expression levels relative to 12h ad libitum feeding of key genes visualized in a heat map. (C) CMI
networks at each CR level with node sizes and color proportional to eigenvector values. Edges between genes with strong CMI
are colored in black, those with weak CMI in light grey. 24AL, 12AL, 10CR, 20CR, 30CR and 40CR refer respectively to 24h ad
libitum feeding per day, 12h ad libitum feeding per day, 10 %, 20 %, 30 % and 40 % restriction.
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genes suggest that (1) our networks were modular but
did not have a hierarchical or scale-free topology; (2)
the CMI network changed most at 40CR compared to
12AL with a higher connectivity between genes within
clusters than between clusters; and (3) central genes for
the regulatory network architecture showed a graded
response to changing CR levels, with changes most
pronounced at 40CR. This is consistent with previous
studies at other biological levels for this experiment
which showed a physiological state shift in mice
exposed to 40CR [10,32-34,37]. Although the
expression level of individual genes Ppargcla, Pptl,
Etfdh, Abbcl and Traf3 did not change [34], these genes
were identified as ‘central genes’ indicating a network-
wide role of these genes. We also showed that the
networks exhibited a topological arrangement when
exposed to graded CR.. It might be argued that when the
networks are exposed to CR and close to a state shift,
more non-monotonic relationships are formed which
cannot be inferred using correlation methods.

By comparing differences in network topology we can
make inferences about changes in the functional
interaction between genes that would not have been
identified using a gene-by-gene traditional expression
analysis.

Regulatory networks of aging-associated genes
exposed to graded CR have a modular topology

Many biological networks have a scale-free topology
displaying a high degree of clustering which is
suggested to be a consequence of a hierarchical
organization of that network [17]. The CMI networks of
our mice were not scale-free and did not display a
hierarchical topology. Instead we had a modular
network characterized by highly interlinked modules (or
clusters) which were connected to each other with
relatively few links [38]. Both the number of clusters
and the gene composition of clusters changed in
response to CR. These changes in gene cluster
membership would suggest changes in functional
interactions between genes in response to CR [18]. In
agreement with our results, a study with Caenorhabditis
elegans found a structural reorganization of the
transcriptomic network when glucose metabolism was
impaired, and specifically in aging-relevant signaling
pathways including the mammalian target of rapamycin
mTOR pathway [39]. We also found that as CR levels
increased the number of connections between genes was
higher within gene clusters compared to those between
clusters. The changes in connectivity observed here
indicate that at 10CR and 40CR the networks have a
higher connectivity in these functional gene groups
compared to the two AL groups. The differences

observed in network behavior at 20CR and 30CR could
be a representation of a phase transition resulting in a
topological state shift occurring at 40CR [40]. This
would be in agreement with phenomic state shifts
observed for these mice [33,37,86]. Prolonged “network
stress” was found to induce a topological phase
transition in cellular networks with an entirely different
switch in cellular function (reviewed in [41]). Exposing
mice to CR imposes a “network stress” and structural
reorganization is necessary as an adaptive response. The
adaptive response to CR is well established to increase
longevity in many taxa and induce other beneficial anti-
aging effects (reviewed in [42]). A “network stress”
induced shift includes an initial decrease in average link
density which might help the network to prevent
propagation of damage [43]. During prolonged
“network stress”, the network undergoes a segregation
between less important genes and more important genes
(central genes) which results in these central genes
displaying more and stronger links to their neighbors.
This would lead to more highly connected clusters of
genes and less connections between genes outside these
clusters which was observed at 40CR. As the level of
CR increased the level of “network stress” increased
and segregation occurred resulting in a reorganization
and higher connectivity within clusters at 40CR. The
network reorganization and increased connectivity at
40CR suggests the network would be more protected
against the aging-observed decline in connectivity [22].

Changes in gene centrality irrespective of gene
expression levels

Topologically central genes have a disproportionate
influence on the overall integrity of gene regulatory
networks [20]. Here, we identified central genes that
played a central role in network structure and found a
change in the connectivity of these genes in relation to
the CR level. The central gene in the CMI networks at
12AL, 10CR and 30CR was Abccl or also known as
MRP1. The importance of this gene in the network
structure deceased in a graded manner with increasing
CR level. Gene expression analysis of this gene showed
no significant difference of this gene under CR
compared to 12AL. This is in agreement with Laye et
al. (2015) who demonstrated that the changes in
correlation coefficient with age between metabolites in
a co-expression network were independent of their
mean levels [23]. Although first identified as a drug
transporter, MRP1 is also involved in inflammation and
oxidative stress [44]. MRP1 can also flux small peptides
such as N-acetyl-leu-leu-norleucina (ANLL) which
inhibits the 6S-proteasome activity which activates NF-
kB [45]. Furthermore TNF-a has been associated with
MRP1 [46]. We previously found that circulating TNF-
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o levels were reduced under CR [10] and that the
transcription factor NF-kB in the hypothalamus was
inhibited at all CR levels compared to AL, suggesting a
reduced state of inflammation [34]. Furthermore micro-
inflammation in the hypothalamus involving elevated
NF-xB was recently suggested to mediate whole body-
aging [5] and therefore a reduced state of inflammation
under CR would have a protective role against whole-
body aging.

At 20CR four genes were identified as central genes in
network structure: Tnfsf10, Traf3, Tpp2 and Topors. The
genes Tnfsf10 and Traf3 are associated with TNF-a and
we established previously that Tnfsf10 correlated
positively with circulating TNF-a levels [10,34].
Interestingly in human centenarians dementia is
associated with high levels of circulating TNF-o levels
and suggests a role of TNF-o in age-associated brain
pathology [47]. Our results may indicate that reduced
TNF-a signaling via Trfsf10 and Traf3 plays a key role in
network structure at 20CR. The other key gene, Tpp2,
was shown to have a pro-longevity effect based on a
mouse knockout study [48]. Tpp2 knockout mice over 1
year old exhibited elevated mortality associated with an
aged appearance. Furthermore, alterations were observed
in p53 expression and NF-kB activation but no direct
molecular link was found with Tpp2 [48]. Tnfsf10 has
also been found to mediate p53 dependent cell death [49].
Similar to Tpp2, Topors was also identified as having a
pro-longevity effect [50] and also found to act as a tumor
suppressor [S1]. Topors knockout mice exhibited a
significant reduction in mean and maximum lifespan and
several mice had signs of premature aging [50].

The connectivity of the 40CR network differed
substantially from the 12AL network. If our assertions
are right, the 40CR network represents a network which
receives the benefits of CR. Ppargcla and Pptl were
key topological central genes at 40CR which were
involved in this overall difference in connectivity. They
are important to protect the network from aging-
associated loss in structure and fragmentation. A key
change associated with aging was a loss in connectivity
over the entire network and a decrease between genes
within functional gene clusters [22]. Central genes are
therefore expected to be particular foci for negative
effects during the aging process [16]. Ppargcla encodes
PGClo which is a major transcription factor
contributing to gluconeogenesis, energy metabolism,
lipid metabolism and functioning of the mitochondria
[52]. PGCla was shown to be upregulated in the brain
when exposed to long term CR [53] but not in the
hypothalamus when fasted for 60h [54]. Here, we did
not find a significant regulation of Ppargcla under CR

compared to 12AL after 3 months of study. Brain aging
was associated with a downregulation of the PGCla
mediated transcriptional pathway [55] and neuro-
degenerative disorders such as Parkinson’s disease are
associated with lower levels of the target genes of
PGCla [56]. In Alzheimer’s patients PGCla expression
is reduced [57]. Interestingly PGCla overexpression in
transgenic mice models for Alzheimer diseases
exacerbates the neuropathological and behavioral
deficits [58]. PGCla null mice are lean and are resistant
to diet-induced obesity. These mice exhibit profound
hyperactivity associated with lesions in the brain region
that controls movement [59]. When PGCla was
blocked locally within the central nervous system,
fasted rats exhibited lower 24h food intake compared to
those treated with a vehicle. Similar results were found
for non-fasted high-fat induced obese rats but not for
non-fasted low fat chow fed rats suggesting a greater
role for neural PGCla during fasting and obesity [60].
Fasted neural PGClo null mice show diminished
hypothalamic expression levels of the neuropeptides
agouti-related neuropeptide (AgRP) and neuropeptide Y
(NPY) which would suggest a role of PGCla in
regulating energy metabolism via regulation of
hypothalamic neuropeptides [61]. The neuropeptides
AgRP and NPY both increase hunger signaling and
were upregulated in our transcriptomic dataset [34].
Although shown in diet induced obese mice, PGCla is
also associated with the control of reactive oxygen
species (ROS) by hypothalamic pro-opiomelanocortin
(POMC) neurons and hypothalamic ROS levels are
positively correlated with circulating leptin levels [62].
Diano et al. (2011) postulated that the leptin resistance
observed in these mice might be controlled by ROS
manifested by reduced POMC and increased NPY/
AgRP neuronal firing [62]. Interestingly during CR,
leptin levels are reduced and correlated positively with
reduced expression levels of POMC and negatively with
increased expression levels of NPY/AgRP in our dataset
[10,34] which suggests an improved leptin sensitivity
and reduced levels of ROS. However, because of a lack
of tissue we were unable to measure hypothalamic ROS
levels in this study but we can conclude that our mice
exhibited an increased ‘hunger profile’ [34]. Upon re-
feeding, after a period of short-term (100 days) CR, the
hyperphagic response suggests that hunger remained
even after energy balance was re-established [63]. This
elevated hunger profile might be a major factor
contributing to the beneficial effect of CR [64]. A recent
study has shown an abrogated effect on longevity when
NPY”" mice were exposed to 30% CR compared to the
AL fed mice, key role for NPY to link CR to increased
lifespan [65].
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We and others have previously postulated that
hypothalamic nutrient sensing signaling might mediate
the observed increase in lifespan under CR treatment
[34,66-68]. Mice lacking PGCla have abnormal
diurnal rhythms of activity and metabolic rate and this
was related to abnormalities in expression of clock
genes and energy metabolism associate genes [69].
PGClo also induces circadian clock resetting in
restricted feeding and stimulates the clock gene aryl
hydrocarbon  receptor  nuclear translocator-like
(ARNTL) expression [69]. transcriptomic analysis and
others indeed suggests that under CR mice are protected
against aging-associated desynchronization of the
circadian clock [34,36,70,71]. Although Ppargcla gene
expression levels were not significantly correlated with
the extent of restriction, its downstream effects were.
Here we were able to elucidate the importance of this
gene in metabolic regulation via network analysis which
would have remained unidentified with simple gene by
gene expression based approaches. Interestingly mice
with Pptl deficiency, the other key gene that changed in
relation to the degree of CR, exhibited disruption of
adaptive energy metabolism and downregulation of
PGCla [72]. Due to their key roles in network structure
as central genes, Ppargcla and Pptl play a major role
in protecting the network from age-observed decline in
connectivity [22,23].

Comparison of CMI and correlation coefficient
based networks

Gene co-expression networks based on correlation
coefficients have been widely used, for example in
aging/CR research [16,23,36,73], to assess topological
changes to networks in response to diseases [74—79], as
characterization of a cellular state [80] and to
understand plant cellular processes [81,82]. In contrast,
CMI based networks have rarely been used despite
recent theoretical advances in their application and
interpretation and additional insight they can provide.
Correlations assess ‘co-expression’ as the sum of the
product of two random variables, while CMI
specifically calculates the sum of the joint probabilities
of two random variables from which inferences of
causality can be made. Crucially, correlation assumes
linear associations, or associations that change at the
same rate with rank/order for non-parametric measures.
CMI however, will detect associations whether they are
monotonic or not. These measures are not antagonistic,
they are complementary [83]. However, a major hurdle
arises when we try to address the issue that in a many-
body system the association between any given pair of
objects can be influenced by their own associations with
other objects. In our case this represents our attempt to
detect whether the co-expression of two genes is real or

caused by their mutual co-expression with a third gene.
CMI estimates are more robust than partial correlation
estimates because we have a better understanding of
how to define joint probability distributions. Therefore,
CMI can be more advantageous, particularly for large
networks [84]. Finally correlation and CMI capture the
shared information/covariance between two different
measures of gene expression. For correlation, we try to
understand the shared variance in gene expression. With
CMI we try to estimate the joint information emanating
from genes and thereby assuming causality. These two
methods have previously been compared and an almost
one-to-one correspondence between the two methods
was found, the authors concluding that non-linear
relationships did not play an important role in their gene
networks [83,85]. The fundamental difference however
lies in what can be inferred from these two methods.
We indeed found similarities between our CMI and
gene co-expression networks with respect to
eigenvector centrality at 12AL and 10CR but we also
found fundamental differences in modularity. In the
CMI network the intermediate groups had fewer
clusters but the amount of clusters at 40CR was more
similar to 12AL while modularity differed. This was
clearly shown by the modularity coefficient of the CMI
based analysis while this was not the case for the
correlation coefficient based networks. We can
conclude from these results that gene co-expression
based modularity coefficient estimates were relatively
insensitive to CR whereas the CMI estimates were able
to discriminate between 20CR and 30CR. It might be
argued that when the networks are exposed to CR and
close to a state shift, more non-monotonic
relationships are formed which cannot be inferred
using correlation methods. Hence CMI provides a
measure for which we can directly test biologically
relevant co-expression and given the particular focus
we can measure changes in information flow and
regulation with aging and CR.

In this study we found a structural reorganization of the
gene regulatory network under graded levels of CR.
Using the CMI network analysis approach we identified
Ppargcla, Ppargcla, Pptl, Etfdh, Traf3 and Abccl as
key regulatory genes in network structure with changes
in their centrality as the level of CR increased. Since
expression levels of these genes did not change with
CR, this study emphasizes the importance to move
beyond gene by gene level analyses to better understand
regulatory changes of the transcriptome when it is
challenged (in our case by CR). Our results suggest that
the network structure of aging-associated genes under
graded CR was altered and might play an important role
in preventing the loss of network structure observed
with age.
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MATERIALS AND METHODS

To create a systems level description of graded CR
responses, we performed a three month graded CR
study on male C57BL/6 mice commencing at age 5
months  [10,32,33,37,86]. Full details of the
experimental protocol and rationale for the experiment
are given in [32] and are elaborated briefly below. In
this study, transcriptome sequencing or RNA-seq of the
hypothalamus (see also [34]) was used to assess
changes in network structure of aging-associated genes.

Animals and  experimental manipulations. All
procedures were approved by the University of
Aberdeen ethical approval committee and carried out
under the Animals (Scientific Procedures) Act 1986
Home Office license (PPL 60/4366 held by JRS). Forty
nine male C57BL/6 mice (Mus musculus), purchased
from Charles River (Ormiston, UK) were individually
housed and free access to water was provided. Mice
were exposed to 12 hour dark/light cycle (lights on at
0630h) and body mass and food intake were recorded
daily, immediately prior to nocturnal feeding. At 20
weeks of age (resembling early adulthood in humans),
mice had their food intake monitored for 2 weeks of
baseline and were then randomly allocated into 6
different treatment groups: 24h ad [libitum intake
(24AL) (n=8), 12AL intake which had access to ad
libitum food but for only for the 12 hours of darkness
per day, sometimes also called ‘time restricted feeding’
(n=8), 10 CR (n=8), 20CR (n=8), 30CR (n=8) and
40CR (n=9). Mice exposed to 40CR indicates 40%
fewer calories were provided than the individual intake
measured over a baseline period of 14 days prior to
introducing CR. This is a CR protocol rather than a
caloric dilution experiment [87].

Animals fed completely AL (i.e., having 24 hours
access to food) may potentially over feed, become
obese and CR associated changes compared to 24AL
would therefore most likely reflect the anti-obesity
effect of CR [42,88]. To address this issue, 12AL was
set as a reference and graded levels of CR were
introduced to investigate a potential graded response
mirroring the graded lifespan response to CR
manipulation [87,89]. Detailed information on overall
study design, diet composition and detailed rationale are
described elsewhere [32].

RNA isolation, RNA-sequencing, alignment and
analytical procedure. After culling by a terminal CO,

overdose, brains were removed, weighed and frozen in
isopentane over dry ice and stored at -80 °C for RNA
isolation. The hypothalamus was carefully dissected at a
later stage and RNA was isolated by homogenizing in

Trizol  (Sigma  Aldrich, UK) according to
manufacturer’s  instructions.  Prior to = RNA
quantification, using the Agilent RNA 6000 Nano Kit,
samples were denatured at 65 °C.

Due to the very small size of the hypothalamus, some
samples did not contain sufficient quantity of high
quality RNA. In total, the RNA of 37 individual mice
(12 h AL n=6, 24 h AL n=6, 10 % CR n=7, 20 % CR
n=5, 30 % CR n=5, 40 % CR n=8) was successfully
isolated and sent to Beijing Genomic Institute (BGI,
Hong Kong) for RNA sequencing. Library preparation
was done using a standard protocol of BGI and the
library products were sequenced using an Illumina Hi-
seq 2000, resulting in 50 bp single end reads. Standard
primers and barcodes developed by BGI were used.
Detailed information on library preparation for these
samples and the bio-informatic pipeline has been
described previously [34].

Network construction and biological interpretation.
Based on the prior knowledge that aged brains have
increased oxidative stress and inflammation [2,3], we
curated a data set based on a prior defined gene lists
from Ingenuity pathway analysis (IPA) (Ingenuity®

Systems, http://www.ingenuity.com/products/ipa,
version 2000-2015): ‘inflammation of the nervous
system’ (n=196) and ‘oxidative stress response’

(n=155); and genes associated with aging derived from
the online database GenAge (build 18, version
11/10/2015) (n=99) [48]. Normalized read counts (for
method see [34]) of these a priori identified gene were
initially analyzed by an O-PLS-DA. The Devium
package remove the first package with PLS and OPLS
R command functions were used (https://github.com/
dgrapov/ devium.git) to validate the model in the
statistical environment R (version 3.1.2) [90].

The Bioconductor package minet [91] was used to infer
large transcriptomic networks using CMI. The package
returns a network where the nodes are genes and the
edges are statistical dependencies between genes (CMI
matrix). Four different entropy estimators and four
different inference methods are available of which we
used the Miller-Madow asymptotic bias corrected
empirical estimator [92] and the ARACNE method [26].
CMI between genes was inferred in two steps: (1) Ml is
estimated between all pairs of genes and (2) the
ARACNE inference algorithm applies a filter to
remove estimated spurious links. ARACNE initially
assigns to each pair of genes (i.e. nodes) a weight
equal to MI and then removes any indirect interaction
[26]. A network based on Spearman correlation
coefficients between gene expression levels were also
estimated with minet.
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Gene centrality measures were estimated for each
network based on eigenvector values. Eigenvector
centrality captures the relative importance of each gene
for the overall interaction network structure by
estimating the contribution of the variance in interaction
of each gene to the overall interaction heterogeneity in
the entire network [21]. Gene eigenvector centrality was
estimated by Eigen-decomposing each CMI network
and using the elements of the eigenvector corresponding
to the dominant eigenvalue from these decompositions.
Gene strength per gene was calculated by the sum of the
CMI between that gene and other genes in the network
(row sums of the CMI matrix).

Weighted clustering coefficient estimates were used as
described in [93]. Clusters of genes were identified
based on defining a parsimonious division of a network
[94,95]. This approach maximizes the number of
connections (edges) within a cluster and minimizes the
number of connections between clusters. The
modularity coefficient quantifies the modularity
technique and is a sum of associations for all genes
belonging to the same clusters minus its expected value
if genes were associated at random, based on the
strength of each gene (method based on [93]).
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SUPPLEMENTARTY DATA

Please browse Full Text version to see Table SlI.
Expression levels of aging-associated genes relative to
12h ad libitum intake.
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Figure S1. Node strength frequency distribution on a log-log scale. Plots assess scale free topology of the aging-
associated genes networks on a log-log scale. 24AL, 12AL, 10CR, 20CR, 30CR and 40CR refer respectively to 24h ad libitum
feeding per day, 12h ad libitum feeding per day, 10 %, 20 %, 30 % and 40 % restriction.

Table S2. Metrics of network topology measurements

Clusters Modularity Eigenvector value Eigenvector
coefficient (mean + sd) centrality
24AL 10 0.390 0.041 £0.027 0.100
12AL 10 0.397 0.035+0.035 0.117
10CR 13 0.412 0.035+0.035 0.128
20CR 9 0.367 0.048 £0.012 0.069
30CR 7 0.364 0.045 +0.020 0.076
40CR 12 0.441 0.030 = 0.039 0.127
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