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Abstract: Excessive deposition of extracellular matrix proteins in renal tissues causes renal fibrosis and renal function
failure. Mammalian cells primarily use the autophagy-lysosome system to degrade misfolded/aggregated proteins and
dysfunctional organelles. MAP1S is an autophagy activator and promotes the biogenesis and degradation of
autophagosomes. Previously, we reported that MAP1S suppresses hepatocellular carcinogenesis in a mouse model and
predicts a better prognosis in patients suffering from clear cell renal cell carcinomas. Furthermore, we have characterized
that MAP1S enhances the turnover of fibronectin, and mice overexpressing LC3 but with MAP1S deleted accumulate
fibronectin and develop liver fibrosis because of the synergistic impact of LC3-induced over-synthesis of fibronectin and
MAP1S depletion-caused impairment of fibronectin degradation. Here we show that a suppression of MAP1S in renal cells
caused an impairment of autophagy clearance of fibronectin and an activation of pyroptosis. Depletion of MAP1S in mice
leads to an accumulation of fibrosis-related proteins and the development of renal fibrosis in aged mice. The levels of
MAP1S were dramatically reduced and levels of fibronectin were greatly elevated in renal fibrotic tissues from patients
diagnosed as renal atrophy and renal failure. Therefore, MAP1S deficiency may cause the accumulation of fibronectin and
the development of renal fibrosis.

INTRODUCTION

Mammalian cells primarily use the autophagy-lysosome
pathway to degrade dysfunctional organelles,
misfolded/aggregated proteins and other macro-
molecules [1]. After being translated and exported to the

surface of plasma membrane through exocytosis [2],
fibronectin initiates the assembly of fibronectin
extracellular matrix and other extracellular matrix
proteins such as collagen [3]. Following endocytosis,
fibronectin is packaged into early endosome, matured to
late endosome and directly degraded in lysosomes [4,
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5]. Autophagy defects lead to impairment of fibro-
nectin degradation and excessive deposition of
fibronectin as extracellular matrix, which leads to renal
fibrosis [6]. On the other hand, autophagy defects lead
to enhancement of oxidative stresses [1, 7]. Oxidative
stress in turn activate NLRP3 inflammasome that result
in a direct activation of caspase-1 and generation of P10
form of caspase 1 [8]. The activation of caspase-1
subsequently induces secretion of potent pro-
inflammatory cytokines interleukin-1p (IL-1B) and IL-
18, mitochondrial dysfunction, production of excess
reactive  oxygen species, and eventually an
inflammatory form of cell death referred as pyroptosis
[9-14].  Pyroptotic cells release pro-inflammatory
signals to promote the mortality and impair the survival
of host structural, hematopoietic and immune-
competent cells [8, 11, 14, 15]. Inflammation-induced
renal tissue remodeling promotes the production of
fibronectin to boost renal fibrosis [16, 17].

MAPI1S, previously named as C190RFS, is a member of
the microtubule-associated protein family 1. Similar to its
homologues MAP1A and MAPIB, MAPIS interacts
with both LC3-I and LC3-II isoforms [18-22]. We
identified MAPI1S as a positive regulator of autophagy
and its depletion led to autophagy defects under nutritive
stress and an accumulation of dysfunctional mitochondria
[22]. The general MAPIS knockout mice exhibit
impaired degradation of fibronectin, increased intensities
of sinusoidal dilatation and increased levels of oxidative
stress in liver, and reduced lifespans. Overexpression of
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fibronectin generates a stress so that the knockout mice
develop liver fibrosis and live further shortened lifespans
[5]. In addition to other types of cancers such as ovarian
cancer [23], hepatocellular carcinomas [24], human
prostatic adenocarcinomas [25] and pancreatic ductal
adenocarcinomas [26], we found that MAP1S-mediated
autophagy facilitates turnover of lipid droplets to
suppress the development of clear cell renal cell
carcinomas (ccRCC) and similarly promotes the survival
of cancer patients [27]. Because of the involvement of
MAPI1S in both liver fibrosis and c¢ccRCC, we were
triggered to investigate the roles of MAPIS in renal
fibrosis. In our current study, we found that MAP1S-
mediated autophagy promoted the turnover of fibronectin
and suppressed pyroptosis in normal renal cells. MAP1S
deficiency led to accumulation of fibronectin and
development of renal fibrosis in both mice and human
beings.

RESULTS

Levels of fibronectin are elevated and levels of
MAPIS are decreased in renal tissues from patients
suffering from renal fibrosis

Six patients diagnosed as renal atrophy and renal failure
and six normal controls were subjected to analyses of
renal fibrosis by H&E staining. We found that the areas
containing a glomerulus or distal and proximal
convoluted tubules exhibited disorganized renal
structures and were filled with fibrotic tissues (Fig. 1A).

Figure 1. Levels of MAP1S are decreased and levels
of fibronectin are elevated in renal tissues from
patients suffering from renal fibrosis. (A)
Representative images showing the H&E staining of renal
tissues collected from patients suffering from renal fibrosis
and healthy control. The area containing a glomerulus or
distal and proximal convoluted tubules is amplified (200X)
to show the detail structures. (B) Representative images
showing the immuno-florescent staining of MAP1S
(green), fibronectin (red) and nuclear DNA (blue) in the
normal and renal fibrotic tissues. Scale Bar: 100 pm.
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We further conducted immuno-fluorescent staining and
revealed that levels of fibronectin were dramatically
elevated while the levels of MAP1S were dramatically
reduced (Fig. 1B). Therefore, high levels of fibronectin
are associated with low levels of MAPIS in patients
suffering from renal fibrosis.

MAPI1S reduces levels
autophagy

of fibronectin through

We have shown that MAP1S facilitates the turnover of
fibronectin through lysosomes in liver tissues and
suppresses liver fibrosis in mouse models [5]. We
altered the expression of MAPIS in HK2 cells, a
proximal tubular cell (PTC) line derived from normal
kidney and immortalized by transduction with human
papillomavirus 16 (HPV-16), to test its impact on the
levels of fibronectin. Suppression of MAPI1S with
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MAPI1S-specific siRNA caused the accumulation of
fibronectin in the absence of lysosomal inhibitor
bafilomycin Al (BAF) (Fig. 2A,B), suggesting an
inhibition of lysosomal degradation. Overexpression of
MAPIS with a plasmid carrying MAPIS caused a
reduction in levels of fibronectin in the absence of BAF
(Fig. 2C,D), suggesting either a reduction of fibronectin
synthesis or an activation of lysosomal degradation.
Accumulation of high levels of fibronectin in the
presence of BAF indicated that it was more likely an
activation of lysosomal degradation (Fig. 2C,D).
Interestingly, the levels of fibronectin in cells with
either MAPIS suppressed or MAP1S overexpressed
were higher than those in the controls (Fig. 2),
suggesting an BAF plays an additional unknown role on
fibronectin in addition to its inhibition of lysosomal
activity.  Thus, MAPIS promotes the turnover of
fibronectin through lysosomes.
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Figure 2. The impact of MAP1S on the levels of fibronectin in HK2 cells.
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(A-D) Representative

immunoblot images (A,C) and plots (B,D) showing the impact of MAP1S suppression (A,B) or overexpression
(C,D) on the levels of fibronectin in the absence (None) or presence of bafilomycin A1 (BAF). Bars in panels
(B,D) represent mean + standard deviation of fibronectin levels between different groups. The significance is
estimated by Student’s T Test with two-tailed distribution and unequal variances. *, p < 0.05; ** and p < 0.01.
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Figure 3. Depletion of MAP1S causes accumulation of fibronectin and renal fibrosis in aged mice. (A) Immunostaining
analyses of fibronectin (green) in sections from renal tissues renal tissues collected from wild-type and MAP1S” mice at different ages
using anti-fibronectin antibody. Nuclear DNA is counter-stained as red. Bar: 50 um. (B-E) Representative immunoblot images (B) and
plots (C-E) showing the impacts of MAP1S on the levels of fibronectin (C), TGF-B (D) and a-SMA (E) in renal tissues described in panel
(A). The initial intensity of each protein in the 12-month-old wild-type was set to be 1. Data shown in plots above were the averages
and standard deviations of three repeats. Plots were the means + S.D. of three repeats and the significance of the differences was
compared as described above. (F) Comparative Sirius Red staining of renal tissues described in panel (A). Bar = 100 um.

Depletion of MAPIS causes accumulation of
fibronectin and renal fibrosis in aged mice

To further compare the impact of MAP1S on the levels
of fibronectin, we collected the renal tissue samples
from 12, 18 and 24 month-old wild-type and MAP1S
knockout mice. Based on immunostaining analyses of

fibronectin, we observed no obvious difference between
wild-type and MAPIS” mice at the age of 12 months
but dramatic differences between wild-type and
MAP1S” mice at the age of 16 and 24 months (Fig.
3A). Such differences in the levels of fibronectin were
further confirmed by immunoblot analyses (Fig. 3B,C).
Further examination of fibronectin staining in detail
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revealed that some signals displayed in fibrillary
structures appeared in the 24 month-old MAP1S™™ mice
(Fig. 3A). The suggested renal fibrosis in aged MAP1S
" mice by the fibronectin staining was further confirmed
by immunoblot analyses of the levels of fibrosis-related
proteins TGF-B and a-SMA (Fig. 3B,D,E) and Sirius
Red staining (Fig. 3F). Therefore, MAP1S depletion
causes renal fibrosis in aged mice.

Autophagy defects triggered by MAP1S deficiency
cause accumulation of fibronectin in mouse renal
tissues

We reported that overexpression of GFP-LC3 leads to
over-synthesis of fibronectin in hepatocytes [5]. In
contrast, we observed no much difference in fibronectin
between wild-type mice expressing and not expressing
GFP-LC3 (Fig. 4A). However, levels of fibronectin

Fibronectin DNA

Merge

A

were elevated in the renal tissues from MAP1S™ mice,
and such elevation of fibronectin levels was enhanced in
MAPIS” mice expressing GFP-LC3 (Fig. 4A-C).
Although no renal fibrosis was observed in such young
mice, levels of fibrosis-related proteins TGF-f and o-
SMA were increased due to MAPIS depletion (Fig.
4B,D,E).

MAPI1S suppresses pyroptosis in HK2 cells

To further understand the mechanism by which MAP1S
affects renal fibrosis, we tested the impact of MAPIS
on the levels of pyroptosis. Suppression of MAP1S with
siRNA caused an increase and overexpression of
MAPI1S caused a suppression of caspase 1 P10 in HK2
cells although the impacts of MAP1S suppression and
overexpression on caspase 1 P45 were not dramatic
(Fig. 5). Thus, MAP1S suppresses pyroptosis.
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Figure 4. Autophagy defects triggered by MAP1S deficiency cause accumulation of fibronectin in mouse renal tissues.

(A) Immunostaining analyses of fibronectin (green) in renal tissues collected from 6-month-old wild-type (MAP1S
), GFP-LC3 transgenic (MAP1S”*:GFP-LC3"°) and MAP1S”:GFP-LC3"° mice using anti-fibronectin

knockout (MAP1S”:GFP-LC3%°

+/+

:GFP-LC3%?),

antibody. Nuclear DNA is counter-stained as red. Bar: 50 um. (B-E) Representative immunoblot images (B) and plots (C-E) showing
the impacts of MAP1S on the levels of fibronectin (C), TGF-B (D) and a-SMA (E) in renal tissues described in panel (A). The initial
intensity of each protein in the wild-type was set to be 1. Data shown in plots above were the averages and standard deviations of
three repeats. Plots were the means * S.D. of three repeats and the significance of the differences was compared as described above.
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Figure 5. The impact of MAP1S on the levels of pyroptosis in HK2 cells.

(A-D) Representative immunoblot

images (A,C) and plots (B,D) showing the impact of MAP1S suppression (A,B) or overexpression (C,D) on the levels of

caspase 1 (P10) in the absence (None) or presence of bafilomycin Al (BAF).

Bars in panels (B,D) represent mean +

standard deviation of levels of caspase 1 P10 between different groups. Significance is estimated as described above.

DISCUSSION

Autophagy defect has been implicated in disorders
characterized by fibrosis in various tissues including
renal fibrosis [28]. It can directly lead to excessive
deposition of extracellular matrix such as fibronectin to
initiate renal fibrosis or indirectly activate renal
fibrogenesis by enhancing oxidative stress (Figure 6)
[28]. Oxidative stress triggered by autophagy defects
induces cell death, including apoptosis, necrosis and
pyroptosis  [29, 30]. Pyroptosis is specifically
characterized by the activation of caspase-1 and release
of pro-inflammatory cytokines to stimulate sterile
inflammation and cause death of other cells in the
environment [31]. Consequently, renal regeneration is
activated to compensate the cellular loss. MAPI1S is an
activator of autophagy flux [22]. It not only activates
general autophagy to suppress oxidative stress but also
specifically promotes the lysosomal turnover of fibro-
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Figure 6. MAP1S-activated autophagy suppresses tissue
fibrosis. A diagram showing MAP1S activates autophagy to directly
suppress fibrosis by promoting the turnover of fibronectin and
indirectly impact fibrosis by suppressing pyroptosis and inflammation.
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nectin [5, 22]. We have already reported that MAPI1S
knockout mice develop liver fibrosis and sinusoidal
dilation in liver tissues when mice are under the stress
of excessive production of fibronectin induced by LC3
[5]. Similarly, we observed similar consequence of
MAPIS depletion in renal tissues. We reported that
MAPIS enhances the clearance of lipid droplets
through autophagy, which leads to suppression of
ccRCC [27]. Here we also show that MAP1S enhances
the lysosomal turnover of fibronectin and suppresses
pyroptosis in renal cells and tissues. MAP1S depletion
eventually causes renal fibrosis in aged mice.
Therefore, MAP1S promotes autophagy and suppresses
renal fibrosis.

In response to renal tissues injury, a temporary
fibronectin scaffold containing plasma fibronectin
originated from hepatocytes and cellular fibronectin
produced locally will be formed to initiate renal tissue
regeneration [32]. GFP-LC3-induced overexpression of
fibronectin leads to accumulation of high levels of
fibronectin in liver tissues from both wild-type and
MAP1S™ mice [5]. However, the levels of fibronectin
in renal tissues from wild-type mice expressing GFP-
LC3 were actually lower than those from MAP1S™
mice not expressing GFP-LC3 (Fig. 4B,C), suggesting
that MAP1S-mediated autophagy flux facilitated the
efficient degradation of fibronectin in renal tissues so
that no fibronectin accumulated. Defective autophagy
flux in MAP1S” mice lead to accumulation of more
fibronectin in MAP1S™ mice either expressing GFP-
LC3 or not. Therefore, MAP1S-mediated autophagy
helps renal tissues to maintain low levels of fibronectin
and suppress the development of renal fibrosis.

There is a significant levels of fibronectin in normal
human renal tissues. Previously, we found that levels of
MAPIS are dramatically reduced in renal tissues from
patients suffering with ccRCC and established that the
impairment of MAP1S-mediated autophagy turnover of
lipid droplets leads to the development of ccRCC [27].
Here, we observed that the levels of MAPIS in renal
tissues from patients with renal atrophy and renal failure
are dramatically reduced. Interestingly, the levels of
fibronectin are dramatically elevated in renal tissues
exhibiting obvious renal fibrosis. Combining the data
from culture cells and mouse models, we conclude that
MAPI1S-mediated autophagy facilitates the degradation
of fibronectin and MAPIS deficiency causes renal
fibrosis in patients. We recently reported that the
stability of MAPIS is directly regulated by HDAC4, a
lysine deacetylase [33]. HDAC4 inhibition has
demonstrated significant effects to increase the stability
of MAPIS, MAPIS-mediated autophagy flux and
degradation of mutant Huntingtin aggregates that are

directly impact Huntington’s disease [33]. Similar
approaches to restore MAP1S-mediated autophagy flux
in patients to reverse renal fibrosis should be feasible
and promising.

MATERIALS AND METHODS

Antibodies, plasmids and other reagents. Monoclonal
antibody against MAP1S (Cat# AG10006) was a gift
from Precision Antibody™, A&G Pharmaceutical, Inc..
Primary antibodies against f-actin (SC-47778) and GFP
(SC-8334) were purchased from Santa Cruz
Biotechnology, Inc.. Antibodies against fibronectin
(ab2413), TGF-B (ab66043) and a-SMA (ab-5694) were
from abcam. Horseradish peroxidase-conjugated
secondary antibodies against mouse (#172-1011) and
rabbit (#172-1019) were from Bio-Rad. Rhodamine
Red-X goat anti-mouse IgG (R6393) and FITC rabbit
anti-mouse IgG (A21202) were from Invitrogen. RFP-
LC3 was a gift from Dr. Mizushima [34]. Antibody
against caspase 1 (PRS3459), bafilomycin Al and
Sirius Red (Direct Red 80, 365548) were from Sigma.

Enrollment of patients and collection of human renal
tissue samples from patients with renal fibrosis and
renal failure. This study was approved by the
institutional review boards of all participating sites, and
these sites provided the necessary institutional data and
shared agreements before study initiation. Six patients
enrolled in Department of Urology, The Fifth Affiliated
Hospital of Guangzhou Medical University from
February 2010 to June 2015, were diagnosed as renal
atrophy by ultrasound or CT examination and their renal
function was further confirmed by radionuclide renal
scan. Patients with glomerular filtration rate less than
10% were considered renal failure. Renal tissues were
resected from the patients diagnosed as renal atrophy
and renal failure. Six control samples were the normal
tissues distant from tumor foci from six randomly
selected patients who were enrolled in the same
department during the same period and diagnosed as
clear cell renal cell carcinomas. To pathologically
confirm the diagnosis of renal fibrosis, the collected
renal tissues were fixed in 10% formalin, embedded in
paraffin, sectioned consecutively at 5 um, and stained
by hematoxylin and eosin by two independent clinical
pathologists in a double-blinded manner. Additionally,
the tissue sections were immuno-fluorescently stained
to detect the levels of fibronectin and MAP1S following
similar protocols as we previously described [5, 27].

Culture of renal cells for immunoblot analyses. HK-2
(ATCC® CRL-2190™) is a human papillomavirus 16
(HPV-16) transformed proximal tubular cell line
derived from a normal kidney. Cells were cultured

www.impactaging.com

AGING, May 2016, Vol. 8 No.5



using standard techniques and harvested for
immunoblot analyses as previously described [27,
35].

Collection of murine renal tissues for analyses of renal
fibrosis. Animal protocols were approved by the
Institutional Animal Care and Use Committee, Institute
of Biosciences and Technology, Texas A&M Health
Science Center. All animals received humane care
according to the criteria outlined in the “Guide for the
Care and Use of Laboratory Animals” prepared by the
National Academy of Sciences and published by the
National Institutes of Health (NIH publication 86-23
revised 1985). Wild-type (MAP1S™") and MAPIS
knockout (MAP1S™) mice expressing a single copy of
GFP-LC3 or not were generated and amplified in a
C57BL/6 background as described in detail in our
previous publication [5, 22]. Male mouse littermates at
different ages were sacrificed to collect renal tissues for
immunofluorescent  analysis with a  confocal
microscopy, immunoblot analyses, or Sirius Red
staining as we previously described [5, 27, 35].
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