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Abstract: Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive
impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However,
how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global,
metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult
lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energy
metabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was
characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation)
and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy
metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged
brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity
and thus in neuronal function and communication.

INTRODUCTION

Recent findings from evolutionary genomic studies
have stimulated a rethinking of brain energy
metabolism and the role it plays in brain function [1].
These findings indicate a significant enrichment in the
expression of genes involved in energy metabolism in
the human brain when compared to other (nonhuman)

primates [2, 3]. The high metabolic cost of the human
brain, reaching 20% of the whole body energy
consumption, is related to the emergence of higher
cognitive functions [4, 5].

Several functional neuroimaging surveys provide
evidence that the brain is particularly vulnerable to
alterations in energy homeostasis, a trait derived from

www.impactaging.com

AGING, May 2016, Vol. 8 No.5



its oxidative, high-energy demanding metabolism [1, 6,
7]. In vivo monitoring of brain metabolism, using PET
(Positron Emission Tomography) and MRS (Magnetic
Resonance Spectroscopy), have reported an energy
deficit determined by abnormally low glucose
metabolism (uptake and oxidation) coupled to
mitochondrial dysfunction as one of the main, early
indicators of age-related changes toward cognitive
impairment in the healthy aging brain and
neurodegenerative diseases [8-10].

Glucose is the primary source of energy for brain cells
where it is almost fully oxidized via oxidative
phosphorylation in the mitochondria to produce ATP
[11]. Although glucose is a key energetic substrate for
the brain, the alternative substrates such as lactate and
ketone bodies are used when glucose is in short supply
[12, 13]. While neurons require extensive amounts of
energy for signaling processes the astrocytes play an
essential role in the regulation of brain energy
metabolism [1]. Energy metabolism is coordinated
through the mitochondria-cytosol link, and the observed
cerebral  glucose  hypometabolism  driven by
mitochondrial regulatory dysfunction seems to be an
early event in the progression of brain aging that
hinders the maintenance of cellular homeostasis.
Disrupted ion homeostasis, inability to maintain the
integrity of  cellular  compartments, synaptic
communication and neuro-transmission directly affects
neural function [14, 15]. Although the impairment of
mitochondrial energy-transducing capacity leading to
loss of cellular homeostasis is an evolutionary
conserved phenomenon considered a hallmark of aging,
it is still largely unknown why and how the homeostasis
is disrupted [16, 17]. Brain aging is a particularly
challenging problem to assess and it is not clear whether
the mechanisms that have been identified in different
animal models (including rodents, flies, molluscs and
worms) at the organism level also play a role in central
nervous system (CNS) aging.

With the ‘omic technology improvements we are
getting closer to understanding the causes and effects of
aging at the molecular level. Genome- and proteome-
wide views of age-associated changes in the epigenome,
in gene and protein expression, have been described in
the aging brain in animal models and across human
populations [18-23]. However, metabolome-wide
studies are scarce and mainly focused on biofluid
screening (e.g. blood plasma, cerebrospinal fluid) for
biomarker discovery associated with neurodegenerative
diseases that implicate accelerated disease-induced
aging. Molecular phenotyping at the metabolite level
during the aging process has been limited to a small
subset of known highly abundant metabolites (e.g.

glucose, lactate, N-acetyl aspartate (NAA), myo-
Inositol, creatine, choline, glutamate and glutamine)
that can be assessed in vivo, using PET and MRS [8,
24]. Low sensitivity of MRS and PET provide limited
information concerning low abundant and labile
metabolites. Global tissue metabolomics could
markedly upgrade our understanding of the molecular
bases of brain aging by direct and unbiased monitoring
of tissue activity across a broad range of small
molecules, including low abundant and trace
metabolites, from the whole-organ level down to the
regional, cellular and sub-cellular level [25, 26].
Specific types of cells (e.g. cell culture) and/or fractions
enriched in specific organelles (e.g. mitochondria) can
be routinely analyzed due to considerable advancements
in instrument sensitivity.

Here we examine brain energy metabolism in order to
characterize the role it plays in central nervous system
function during the healthy aging process. In mice, as in
humans, aged individuals have shown a variety of
cognitive and behavioral changes, including deficits in
learning and memory [27, 28]. While most studies have
addressed changes in energy metabolism of the aging
brain in pathological conditions, in the current study we
have applied cutting-edge, mass spectrometry-based
‘omic technologies to reveal metabolic changes that are
taking place during the normal brain aging. The
proteome and metabolome wide profiling of mouse
brain at different stages of the life cycle (12, 18 and 24
months) and across different anatomical regions
provided insight into a new phenomenon we define as
metabolic drift in the aging brain. The intrinsic changes
in cellular activity of a healthy aging brain were mainly
defined by altered oxidative phosphorylation and
nucleotide biosynthesis and degradation, with some
parallels to metabolic reprogramming in cancer.
Characterization of the aging brain phenotype at the
metabolite level is an essential step toward
understanding how metabostasis is changing and thus
deducing the mechanisms to limit the effects of aging.

RESULTS
Quenching brain energy metabolism

Prior to global metabolomic and proteomic analyses,
and to allow for sensitive, brain energy metabolism
investigation, focused beam microwave irradiation
(FBMI) was applied to the mice to induce instant
euthanasia, simultaneously halting enzymes and
quenching the metabolic activity in the brain tissue (see
Supplemental Experimental Procedures for detailed
explanation). FBMI allowed for the preservation of
brain tissue, facilitating brain tissue isolation and
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dissection. The effectiveness of FBMI has been
validated with characterized 'H-MRS metabolite
relationships (low lactate, high NAA) from postmortem
tissue followed by proteomic and metabolomic analyses
(Figure S1) [29]. Thus, the brain proteome and
metabolome was preserved from degradation and/or
transformation during the post-mortem delay.
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Figure 1. Experimental design of comprehensive regional
and temporal profiling of murine brain proteome and
metabolome. Prior to brain sample collection the Focused Beam
Microwave Irradiation (FBMI) was applied as a metabolism
quenching technique to inactivate the enzymes and prevent the
metabolite degradation during the post-mortem delay (See also
Figure S1). Initially the hippocampus was dissected and extracted
for proteome profiling using nano SWATH-MS — nano flow data
independent tandem mass spectrometry acquisition mode with
variable windows to facilitate protein quantification. As the
altered hippocampal proteome implied the changes in metabolic
processes, the metabolome profiling was performed on three
different brain regions using micro HILIC-DDA-MS — capillary flow
hydrophilic interaction chromatography coupled with data
dependent tandem mass spectrometry acquisition mode to
facilitate metabolite identification.
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Untargeted proteomic analysis was performed first at
two ages, 12 months old (middle aged) and 24 months
old (aged) mice. Following the indications from
hippocampal proteome analysis the comprehensive
metabolomic profiling of central carbon metabolism
was performed in the hippocampus and two additional
brain regions at these two ages as well as at an
intermediate time point, 18 months of age (Figure 1).
Water soluble, central carbon metabolites, including
energy currency metabolites, were examined by
untargeted profiling using hydrophilic interaction
chromatography in basic conditions coupled to negative
electrospray ionization tandem mass spectrometry
(HILIC —ESI-MS/MS).

Quantitative analysis of the aging hippocampal
proteom e implicates metabolic dysfunction

Initially, the proteome wide study of the hippocampus
was performed due to its known importance in learning
and memory, functions that can decrease with age.
SWATH-MS proteomics was used to examine the
hippocampal proteome. In total, 1,925 proteins were
quantified in all specimens (six independent biological
replicates where each hemisphere was analyzed
separately) from 12 and 24 month old groups. Overall
the majority of the 1,925 proteins were not altered with
age in the hippocampus. The distribution of the log,
(24-/12-month) protein expression values revealed that
16.4 % of the total proteome experienced a change
greater than 1.4 fold (2°°°) with 112 and 204 proteins
showing decreased or increased expression with age,
respectively (Figure 2A and 2B, Table S1). Of the 1,925
proteins, 6.5% of proteins (126) were determined to be
significantly differentially expressed (PPDE > 0.95 and
BH < 0.05) between 12- and 24-months of age using a
Bayes-regularized t-test and multiple hypothesis testing
corrections (Table S2).

The functional assessment of the 126 hippocampal
proteins exhibiting altered expression with age using the
PANTHER Classification System revealed that the
largest group of differentially regulated proteins (24)
identified enrichment of the Gene Ontology (GO)
biological  process term  nucleobase-containing
compound metabolic process, encompassing cyclic
nucleotide, purine, pyrimidine, DNA and RNA
metabolic processes (Table S2). Further interrogation of
the metabolic pathways representative of these 126
proteins using Ingenuity Pathway Analysis (IPA)
revealed that energy currency metabolites and the
subunits of biological molecules such as nucleic acids
and proteins may be altered with age, thus implying the
differences in relative utilization of amino acids,
purines, and pyrimidines with aging in the hippocampus
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(Figure 2C, Figure S2). Overall the proteomic changes
in the hippocampus with aging highlighted alterations in
mechanisms that have direct impact on the regulation of
metabolic processes, particularly nucleobase-containing
metabolites.

Untargeted metabolomics reveals energy metabolic
drift in aged mouse brain

To characterize the metabolic changes of the healthy
aging brain, untargeted metabolomic profiling of
hippocampal tissue as well as two additional regions,
frontal cortex and caudoputamen was performed at three
different stages (12, 18 and 24 months, approximately
equivalent to 42, 55 and 69 years in human [46]) of adult
mouse lifespan. Using untargeted metabolomics, 818
dysregulated metabolite features (p < 0.01, q < 0.001, Int
>10,000 ion counts) were observed (Figure 3A) when
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comparing these three different life stages (6 specimens x
3 brain regions at each time point). After removing the
chemical and bioinformatic noise, and redundant isotope,
adduct, and ion-source fragment features the majority of
the putatively identified altered metabolites were
associated with the following groups of central core,
water soluble metabolites: purines and pyrimidines,
amino acids, nucleosides, nucleoside phosphates and
redox-electron carriers (see cloud plot in Figure 3A).
Among brain lipids, three different sulfatides (from C18
to C24), a major lipid components of myelin sheath,
showed a progressive decrease pattern with age (Figure
S4). Depletion of myelin-associated glycosphingolipids
has been observed to occur upon aging and can be ex-
plained by the anatomical changes in neurons including a
segmental demyelination. These changes have a negative
impact on neuronal plasticity, specifically the information
processing and transmission by axons [30].
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Figure 2. Hippocampal proteomic changes from 12 to 24 months. The histogram distribution of the log, (24-/12-month) protein
ratios for the (A) total 1,925 quantified proteins and (B) 126 significantly differentially expressed proteins. (C): Bar graph of overrepresented
pathways (p < 0.05) based on the protein list of differentially expressed proteins (from 12 to 24 months, 126 proteins from the Bayes-
regularized t-test and multiple hypothesis testing corrections). The upregulated and downregulated refer to the percentage of proteins up
(increased expression in 24 compared to 12 months) or downregulated (decreased expression in 24 compared to 12 months) in each pathway.
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Figure 3. Metabolic changes and associated affected pathways in aged mouse brain using global metabolomic
approach. (A) A cloud plot showing differentially expressed metabolite features (bubbles) across different regions of brain (level of
significance: p < 0.01, Intensity > 20,000 ion counts). Metabolite features are projected depending on their m/z ratio and retention time
along HILIC gradient. The color of the bubble indicates the level of significance (p-value), with darker color (in blue tones) representing
more significant changes (lower p-values). The size of the bubbles is an indicator of ion intensity. A Total lon Chromatogram (HILIC —ESI
MS) is shown in the background. (B) Predicted metabolic activity network in healthy aging brain directly from m/z feature table.
Network is defined by 4 subnetworks or modules represented by glutamate, AMP, NAD and GDP-GTP that show more internal
connections than expected randomly in the whole network. Metabolites are colored according to their p-values and intensities
represented above in the cloud plot. Not significantly altered metabolites are represented by transparent bubbles and were included
for network connectivity. (C) Metabolite set enrichment analysis (MSEA) for mammalian species based on a library containing 88 groups
of biologically meaningful metabolite sets. Pathways are ranked depending on the overlap of identified significantly dysregulated
metabolites (IDs validated by MS/MS analysis) and total metabolites present in the reference pathway (Table S6).
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The disruption of central core metabolism was further
explored via network modelling and pathway
enrichment analysis. Overall 50 discriminating
(significantly altered) central core metabolites were
identified (using retention time and MS/MS matching as
demonstrated in Figure S5) and displayed as readout of
the aging brain phenotype (Figure 3B and 3C). The
affected metabolic network as a function of age, across
all three different brain regions was defined by 4
interacting modules represented by glutamate, AMP,
NAD and GDP-GTP. KEGG pathway mapping and
metabolite set enrichment analysis for mammalian
species highlighted the altered purine and pyrimidine
metabolism, and central energy pathways, including
glycolysis and oxidative phosphorylation, as well as a
few signaling pathways such as adenosine receptor
signaling, neural signaling through HTR and serotonin
and insulin signaling (Figure 3C).

Following the recently discovered phenomenon of
transcriptional drift in several different model organisms
(including C. elegans, mouse and human) [31], the total
dysregulated metabolome data set was further mined. A
trend, consistent with transcriptional drift, was revealed
in our metabolomic data set and named accordingly as a
metabolic drift or significant imbalance in metabolite
levels in the aged brain when compared to the adult
reference stage (Figure 4). Metabolic imbalance in the
aged mouse brain was observed in the increased variance
of fold changes for the total set of dysregulated
metabolites across all three brain regions (hippocampus,
cortex, and caudoputamen), without significant
difference between regions. (Figure 4A). This increased
drift-variance among metabolites within the biological
replicates reflects the observed changes of metabolite
levels in opposing directions, as shown in the heat map in
Figure 4B. Although the deviation away from levels
measured in adult reference stage increases with age the
metabolic drift in not about the amplitude of variation per
metabolite. The metabolic drift has been calculated
across the whole pool of affected metabolites, reflecting
the variations in opposing directions within the entire
metabolite pool and within the same specific pathways. It
describes how far the levels of specific metabolites in the
aged brain (within the same pathway) have been
significantly down-regulated whereas others were
significantly up-regulated. The observed changes in
opposing directions result in loss of biochemical balance
among metabolites within specific functional subsets or
biological pathways leading to their disruption and
functional decline with age. Age-associated changes in
the expression of metabolic enzymes (Figure S2) as well
as oxidative modifications that alter enzyme-kinetics also
contribute to increasing metabolite imbalance.

Metabolic drift mapped onto biological pathways

Metabolic drift was primarily identified with metabolites
involved in central carbon pathways, the changes that
were validated by targeted quantification of identified
altered metabolites and interconnected pathways.
Pathway mapping of the dysregulated metabolites high-
lighted altered energy metabolism, including oxidative
phosphorylation, glycolysis and nucleotide biosynthesis
and degradation. Compromised cellular energy status was
marked by NAD decline, increased AMP/ATP ratio and
significant imbalance in nucleotide biosynthesis and
degradation pathways. This significant drift in nucleotide
metabolism was reflected in the accumulation of purines,
pyrimidines, nucleosides and nucleoside monophosphates
and depletion of nucleoside tri-phosphate levels (Figure
5, Figure S6). Interestingly, the TCA cycle was not
dysregulated and mitochondrial dysfunction appears to be
related mainly to imbalance in oxidative phosphorylation.

DISCUSSION

In this model of brain aging, we have found evidence for
a compromised central energy metabolic state, as well as
changes in nucleotide biosynthesis and degradation. This
was reflected in the significant metabolite variations in
opposing directions, within the entire metabolite pool and
within the specific metabolic pathways. The observed
phenomenon can be characterized by loss of normal
homeostatic mechanisms, and termed drift-variance. In
physiological terms, this drift-variance can be explained
as an increasing deviation as homeostasis control is
diminished, essentially a failure to maintain steady state
levels following a response to external stimuli. These
findings are consistent with the theory of metabolic
stability of regulatory networks, which claims that the
capacity of cells to maintain stable concentrations of
critical metabolites (including reactive oxygen species) is
a prime determinant of life span [32, 33]. According to
this theory and our observations of metabolic drift in the
aged brain, the capacity of cells to respond appropriately
to stimuli of internal or external origin by successfully
moving back to the metabostasis could be a critical factor
in the regulation of longevity of brain function [31, 33].
We also note an increased variability in the metabolite
levels in the oldest mice, consistent with the increased
variability found in a number of physiological parameters
including cognitive processes [34].

It has been demonstrated that the imbalance in oxidative
phosphorylation (NAD decline, increased AMP/ATP
ratio) leads to impaired mitochondrial electron transfer
and active respiration thus causing the decrease in mito-
chondrial energy-transducing capacity.
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Compromised  mitochondrial  energy  metabolism
significantly affects neuronal activity and plasticity.
Functionally, loss of neuronal plasticity or failure to
adapt to decline in energy metabolism is viewed as a
hallmark of age-related neurodegenerative diseases and
directly associated with the age-dependent cognitive
decline. This is one of the main reasons why brain
energy metabolism is revisited in many ongoing
physiology and behavioral studies. A gradual decline in
energy metabolism during aging has been demonstrated
by several functional neuroimaging techniques (Lin and
Rothman 2014, Yin et al. 2014). PET scanning in aging
mice revealed decreases in the cerebral metabolic rate
of glucose, and proton (1H) MR spectroscopy (MRS) in
the same animals revealed decreases in energy
metabolites, correlated with decreases in spatial
working and reference memory [35].

The hippocampal proteomic analysis implicated
alterations in nucleobase-containing metabolites and
revealed potential mechanisms behind such metabolic
alterations. The nucleoside diphosphate kinases that
play a major role in the synthesis of nucleoside
triphosphates other than ATP from nucleoside
diphosphates were determined to be significantly
downregulated (Nme3, log, = -1.2 and Nme4, log, = -
2.6) within the hippocampus of 24- compared to 12-
month old mice, consistent with the observed lower
levels of the triphosphate forms of these purines and
pyrimidines. Further, increased expression of guanylate
cyclase 1, soluble, beta 3 (Gucylb3, log, = 1.9), which
catalyzes the conversion of GTP to ¢cGMP would be
expected to contribute to the decreased levels of GTP.
The proteomics data also revealed decreased expression
of the purine recycling enzyme hypoxanthine
phosphoribosyltransferase 1 (Hprtl, log, = -0.5) with
age within the hippocampus, consistent with altered
purine metabolites. Alterations in AMP, ADP and ATP
may be related to changes in the ATPase components
Atp1b2 (log, = 0.5) and Atp2bl (log; = -0.4), as well as
Adenylate kinase 4 (Ak4, log, = -1.2).

Our proteomics data revealed decreased expression of
Sirt3 in the hippocampus of older animals, which is
consistent with the metabolomics observation of
decreased ATP levels. Studies in Sirt3 knockout animals
revealed reduced ATP levels as well as inhibited complex
I activity [36]. Further, Sirt3 regulates the activity of
acetyl-CoA synthetase 2, an important mitochondrial
enzyme involved in generating acetyl-CoA for the TCA
cycle [37]. Thus, loss of Sirt3 protein may contribute to
the lower acetyl-CoA levels as well. In addition to loss of
Sirt3 protein levels, our metabolomics data suggests that
the activity of Sirt3 would be reduced since NAD, which
was determined to be lower, is required for its activity.

While we examined three different brain regions, there
are multiple cell types present within each region
(neurons, astrocytes, oligodendrocytes, microglia). The
existence of functionally complementary metabolic
profiles in two previously studied cell types, neurons
and astrocytes, has already been identified in early
neurochemical studies in the 1950s and 1960s [38].
Neurons utilize most of the energy in the brain [39, 40]
and express high oxidative capacity [41]. In contrast,
astrocytes, although capable of  oxidative
phosphorylation, predominantly process glucose glycol-
lytically and shuttle energy substrates, lactate and
pyruvate to neurons for use in oxidative
phosphorylation [1, 42]. While this shuttle has
considerable experimental support there are also
experiments indicating that glucose uptake by neurons,
not astrocytes, provides the fuel for neuronal oxidative
phosphorylation [43, 44]. Thus our findings have
parallels to metabolic reprogramming (Figure 5), and
can be interpreted either as occurring within the neuron,
or in light of the astrocyte shuttle model instead of
within a single cell, involving the astrocyte and the
neuron pair within brain tissue, with the astrocyte
supplying increased glycolytic substrates to the neuron
to compensate for disrupted oxidative energy
production  with  age (decreased  oxidative
phosphorylation) and meet the metabolic requirements
of brain. In this model, the balance within individual
cell types, however, can become lost, leading to what
we term metabolic drift or altered relative metabolite
stoichiometry.

Steady state isotopic experiments combined with
metabolomic profiling of different cell types (shift in
population balance between astrocytes vs. neurons) and
sub-cellular fractions (e.g. mitochondrial fraction and/or
synapses) would offer a more complete understanding
of the observed drift phenomenon. These global-
untargeted isotope-assisted experiments would be
especially useful to trace the isotope enrichment across
the broad range of metabolites in order to determine the
directionality of the observed changes and pathway
contribution in the utilization of specific substrates,
such as 13C labeled glucose for example. In addition,
the recently developed global metabolomic approach of
arteriovenous blood analysis [45] could yield direct and
real time insight to the aging brain.

MATERIALS AND METHODS

Sample collection. Male mice (C57BL/6) were obtained
from the National Institute on Aging rodent colonies
according to annotation standards for age classification
[46]. All protocols were implemented in accordance
with NIH guidelines and approved by the Institutional
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Animal Care and Use Committee at the College of
Medicine, University of Nebraska Medical Center. All
animals were housed in a controlled room with a
constant 12- hour light/dark cycle. Animals were fed
NIH31 diet ad libitum while housed at the NIA and one
month before sacrifice were shipped to UNMC where
they were fed Harlan #7912 irradiated rodent chow ad
libitum. Focused beam microwave irradiation (FBMI)
was applied (following brief exposure to 1.5%
isoflurane for anesthetic induction) in mice to deliver
instantaneous euthanasia and quench the metabolism
efficiently prior to brain dissection. As a “quality
control” the 'HRMS spectra were acquired in the central
brain region in order to screen brains for further
analysis. The appearance of a large lactate peak was the
primary criterion for sample exclusion from further
metabolomic and proteomic analysis, as is shown in
Figure S1 (for detailed description of FBMI procedure
please see Supplemental Information).

Metabolite and protein extraction. Dissected brain
regions (hippocampus, caudoputamen, and frontal
cortex) were extracted using a MeOH:H,O (4:1, v/v)
solvent mixture as a best compromise to precipitate
proteins and efficiently extract water-soluble and lipid
metabolites. A volume of 500 pL of cold solvent was
added to 10 mg of tissue, vortexed for 30 s and
incubated in liquid nitrogen for 1 min. The samples
were then allowed to thaw at room temperature and
sonicated for 5 min. This cycle of tissue disruption was
repeated two times for three rounds total. To precipitate
proteins the samples were incubated for 1 hour at -20°
C, followed by 15 min centrifugation at 17,000 x g at 4°
C. The resulting supernatant was removed and
evaporated to dryness in a vacuum concentrator. The
protein pellets were evaporated to dryness in a vacuum
concentrator and lysed in 100 mM Tris-HCI with 4%
(w/v) SDS and 0.1 M DTT, pH 7.6 using brief
sonication and incubation at 95° C for 5 min. The Pierce
660 nm Protein Assay (Thermo Scientific) was used to
determine protein concentration, as a reference for
metabolite reconstitution. The dry metabolome extracts
were reconstituted in ACN:H,O (1:1, v/v) normalized by
the sample’s protein level, sonicated for 30 sec, and
centrifuged 15 min at 13000 rpm and 4° C to remove
insoluble debris. The supernatants were transferred to
HPLC vials and stored at -80° C prior to LC/MS analysis.

Proteome analysis. The protein lysates from the 12- and
24-month old mouse hippocampus were analyzed using
SWATH-MS Data Independent Acquisition (DIA),
following the library generation (for detailed description
of spectral library creation please see Supplemental
Information). Prior to DIA mass spectrometry analysis,
the protein lysates (50 pg) from the mouse hippocampus

were digested with trypsin using the FASP method [47].
The resultant peptides were desalted using Oasis MCX
cartridges and then quantified using the Scopes method
[48]. The unfractionated samples of peptides (2 pg)
from the 12- and 24-month old mouse hippocampal
lysates for each brain hemisphere (right and left) were
analyzed in sextuplet (six biological replicates per age
group) using SWATH-MS DIA. LC-MS/MS was
conducted using an AB SCIEX TTOF mass
spectrometer coupled with an Eksigent NanoLC-Ultra
ID plus and nanoFlex cHiPLC system (Eksigent).
Samples were loaded onto a 75 um x 0.5 mm ChromXP
C18-CL 3 um 120 A trap column (Eksigent), washed
with 98:2 HPLC water with 1% FA for 10 minutes and
then eluted through a 75 um x 15 cm ChromXP C18-
CL 3 um 300 A analytical column (Eksigent) at 300
nL/min with 98:2 HPLC water with 1% FA using a 90
minute linear gradient of 0-60% ACN with 1% FA.
Autocalibration of spectra occurred after acquisition of
every 4 samples using dynamic LC-MS and MS/MS
acquisitions of 25 fmol B-galactosidase. Experimental
samples (hippocampal peptides) were subjected to
cyclic DIA of mass spectra using 25 Da swaths in a
similar manner to previously established methods [49].

Proteome data processing and analysis. All of the
fragment ion chromatograms were extracted and
automatically integrated with PeakView (v.2.1 Beta).
The raw peak areas as reported by PeakView were used
for all the quantification calculations with no data
processing (either de-noising or smoothing) of any kind
applied to the extracted ion chromatograms. To
calibrate  retention  times, synthetic  peptides
(BiognoSYS) were spiked-in the samples in accordance
with previously published work [50], we selected 5
peptides and 5 transitions for quantitative analysis and
targeted data extraction for each peptide was performed.
Briefly, for each peptide the fragment ion
chromatograms were extracted using the SWATH
isolation window set to a width of 10 min and 50 ppm
accuracy for quantification purposes in accordance with
previously established protocols [49, 50]. Samples were
normalized to the median peak ratios using MarkerView
software  (v.1.2.1.). The Pearson’s correlation
coefficient, r, between the right and left hemisphere for
each mouse was calculated revealing strong correlation
at both ages (average r = 0.93 (12 mo) and 0.97 (24
mo)) demonstrating the ability to quantify proteins from
the hippocampus following FBMI with great precision.
For subsequent analyses, the protein values for each
hemisphere were averaged for each mouse. We also
found strong correlation between biological replicates
(average r = 0.97 (12 mo) to 0.98 (24 mo)) further
supporting our use of SWATH-MS for hippocampal
proteome quantification. The data was uploaded to the
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Cyber-T Web server (http://cybert.ics.uci.edu/) [51],
which implements a t-test using a Bayesian
regularization = method for  quantitative  mass
spectrometry analysis and multiple tests corrections
were employed to derive the Posterior Probabilities of
Differential Expression (PPDE) and perform Benjamini
and Hochberg (BH) corrections. Cutoffs for proteins
deemed as significantly differentially expressed were p
values < 0.05, PPDE values > 0.95, and BH corrected ¢
values (FDR) < 0.05. All correlation analysis, linear fits,
and frequency distributions were completed using Prism
(GraphPad Software). The protein annotation through
evolutionary relationship (PANTHER:
http://www.pantherdb.org/) classification system
(version 9.0) functional classification tool was used to
classify lists of proteins according to function via
annotation with the Gene Ontology (GO) term
biological processes (BP). Ingenuity Pathway Analysis
(IPA: Ingenuity Systems; http:/www.ingenuity.com/)
Metabolic Pathways within the Canonical Pathways tool
to determine the likelihood that the association between
a set of focus genes in our experiment and a pathway is
due to random chance (the smaller the right-tailed
Fisher Exact Test p-value, the less likely that the
association is random).

Untargeted metabolome profiling. Samples were
analyzed by HILIC ESI-Q-TOF/MS as previously

described [52], in MS' mode. Tissue extracts from
hippocampus, caudoputamen, and frontal cortex
(individual extracts pooled from both hemispheres)
from 6 individuals at each time point (3 regions x 6
specimen or a total of 18 samples per time point) were
analyzed on 6550 iFunnel QTOF mass spectrometer
(Agilent Technologies) interfaced with 1200 HPLC
system (Agilent Technologies). No differences were
observed between the left and right hemisphere (using
mixed linear effect regression model), thus, due to the
limited sample amount the final analysis (untargeted
and targeted) as reported in results were performed on
individual extracts pooled from both hemispheres.
Samples were analyzed using a Luna Aminopropyl, 3
pum, 150 mm x 1.0 mm L[D. HILIC column
(Phenomenex). The mobile phase was composed of A =
20 mM ammonium acetate and 20 mM ammonium
hydroxide in 95% water and B = 95% acetonitrile [53].
The linear gradient elution from 100% B (0—5 min) to
100% A (45—50 min) was applied (A = 95% H20, B =
95% ACN, with appropriate additives). A 10 min
postrun was applied for HILIC, to ensure the column re-
equilibration and maintain the reproducibility. The flow
rate was 50 pL/min, and the sample injection volume
was 2 uL. ESI source conditions were set as follows:
dry gas temperature 200 °C and flow 11 L/min,
fragmentor 380 V, sheath gas temperature 300 °C and

flow 9 L/min, nozzle voltage 500 V, and capillary
voltage —2500 V in ESI negative mode. The instrument
was set to acquire over the m/z range 50—1000, with the
MS acquisition rate of 2 spectra/s. For the Auto MS/MS
the isolation width was set as narrow (~ 1.3 m/z), with a
MS acquisition rate of 350ms and MS/MS acquisition
rate of 75ms. In each cycle (1.2s), 10 precursor ions
were chosen for fragmentation at collision energy (CE)
of 20 V and 40V. Selected precursor was excluded after
the MS/MS data was acquired 3 times and released after
0.15 minutes. Additional Auto LC/MS/MS analyses
were performed using an HPLC system (1200 series,
Agilent Technologies) coupled to TTOF 5600 (Q-TOF,
AB Sciex), in DDA mode. In each cycle, 15 precursor
ions were chosen for fragmentation at collision energy
(CE) of 30 V (15 MS/MS events with product ion
accumulation time of 50 msec each) [54] ESI source
conditions were set as following: Ion source gas 1 as 15,
Ion source gas 2 as 10, Curtain gas as 10, source
temperature 550 °C, Ion Spray Voltage Floating (ISVF)
5500V or -4500V in positive or negative modes,
respectively. LC conditions (column, mobile phase and
gradient) were the same as described for HILIC
untargeted profiling.

Targeted multiple pathway analysis. Quantitation of
metabolites from multiple central core pathways was
performed by HILIC ESI-QqQ/MS in Dynamic multiple
reaction monitoring mode (MRM) as described in more
details in Supplemental Information.

Metabolome data processing and analysis. Raw LC/MS
data were converted to mzXML files using ProteoWizard
MS Convert version 3.0.7529 [55]. mzXML files were
uploaded to XCMS Online web platform for data
processing (https:/xcmsonline. scripps.edu) including
peak detection, retention time correction, profile
alignment, and isotope annotation [56, 57]. Data were
processed as a multi-group experiment and the parameter
settings were as follows: centWave for feature detection
(A m/z = 15 ppm, minimum peak width = 10 sec and
maximum peak width = 120 sec); obiwarp settings for
retention time correction (profStep = 1); and parameters
for chromatogram alignment, including mzwid = 0.015,
minfrac = 0.5 and bw = 5. The relative quantification of
metabolite features was based on EIC (Extracted Ion
Chromatogram) areas. One-way Analysis of Variance
(ANOVA) and post-HOC Tukey test was used to filter
out the significantly altered metabolite features over time
(12 months - mature adult, 18 months - old and 24
months - aged). The results output, including metabolite
feature table, extracted ion chromatograms and multi-
group cloud plot, were exported directly from XCMS
Online. One extract of hippocampus at 24 months was
excluded from the analysis as an outlier. Mummichog
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computational algorithm based on BioCyc pathway
database (biocyc.org) [58] was used to accelerate
metabolite feature filtering, characterize the biological
activity network and predict metabolite identifications
[59]. After filtering out the isotopes, adducts, multiple
charged species and in-source fragments, only the
corresponding deprotonated monoisotopic features were
used in further analysis. Metabolite identification was
validated using the accurate mass (within 5 ppm),
retention time and MS/MS data. Accurate masses were
searched against databases METLIN and HMDB. The
identifications were made by matching the acquired
MS/MS data for altered metabolites in brain tissue extract
against MS/MS data recorded for standards, assembled in
in-house developed and online available METLIN
database (https://metlin.scripps.edu/index.php) [60, 61].
MS/MS matches are provided in the Supplemental
Information (Figure S5). Mixed linear effect regression
model was used to further test different factors (time,
brain hemisphere, brain region) for the variation of
identified altered metabolites in aged mice. Altered
metabolome variation pattern was further explored using
heat map combined with Hierarchical Cluster Analysis in
R version 3.1.2 (gplots library). A z-transformation was
performed on all peak areas to scale the data.
Hierarchical clustering analysis (HCA) of metabolite
patterns was performed using Euclidean distance matrix
and the complete linkage method. Pathway enrichment
analysis were performed with MetaboAnalyst a web
server designed for comprehensive metabolomics data
analysis [62].

Metabolic drift calculation. We had 6 metabolite
abundance values for each metabolite (6 biological
replicates per brain regions per time point) for each age:
12 months, 18 months and 24 months. A mean
metabolite abundance was calculated for each
individual metabolite for each age group. The metabolic
drift was calculated as a log of metabolite fold change
from old (18 and 24 months) to reference adult stage
(12 months). To calculate the drift-variance value
within the adult reference stage group (12 months) one
biological replicate in that group was used as reference,
the others as experimental samples.
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SUPPLEMENTAL INFORMATION

Supplemental Methods

FBMI ecuthanasia and 'H MRS. Mice were anesthetized
by inhalation of 1-2% isoflurane in oxygen and aligned in
the water-jacketed animal holder for microwave
irradiation in a Muromachi Microwave Fixation System
(10 kW model). The irradiation times varied from 800 to
820 ms at constant 4.9 kW depending on the body weight
(g) of each mouse, as determined previously [1]. The
brain was then isolated and split into hemispheres. Three
regions (hippocampus, caudoputamen, midbrain and
frontal cortex) were dissected following anatomical
boundaries and immediately flash frozen in liquid
nitrogen prior to storage at -80° C. Proton magnetic reso-

A

nance spectroscopy ('H MRS) was performed on post-
mortem, thawed midbrain tissues to validate the degree
of metabolite stability by comparing post-mortem
metabolite levels to those characterized in live animals
done in other studies [1, 2]. Nine millimeter cubic volu-
me, single voxel localized spectra were acquired on brain
tissue placed in perflouropolyether oil (Fomblin, Fisher
Scientific, Pittsburg, PA) to measure metabolite signals
using point resolved spectroscopy (PRESS) sequence.
Spectra were acquired with a repetition time of 4 seconds,
echo time of 50 ms, 64 averages, using a custom built
solenoid coil ona 7 T/16 cm Bruker Pharmascan MRI/
MRS system. Brains with increased lactate signals were
eliminated from further analysis (Figure S1). Six speci-
mens at each time point (12, 18 and 24 months) were se-
lected for further brain proteome and metabolome analysis.
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Figure S1. Representative single voxel 'H MRS spectra of the mouse hippocampus post-
microwave fixation used to validate sample selection for metabolomics. The 'H MRS
spectra demonstrate the effect of adequate (A) and inadequate (B) heat stabilization on lactate (*).
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Figure S2. Heatmaps showing the protein expression changes from 12- to 24-months in the mouse hippocampus
across the metabolic pathways that comprise the generation of precursor metabolites and energy. Legend: 1 —
pyruvate, 2 — oxaloacetate, 3 — citrate, 4 — D-glucose-6P / Glyceraldehyde-3P, 5 — NADH/FADH, Related to Figure 2.

In regards to the anesthesia, mice were placed into an
induction chamber with 1.5% isoflurane in 100%
oxygen for 10 minutes prior to being placed into the
holder for subsequent focused-beam microwave
irradiation (FBMI, to provide instantaneous euthanasia
and metabolism quenching due to the heat inactivation
of enzymes). Within the FBMI holder, mice were free
breathing room air. While we did not measure arterial
PO2, we have had extension experience with isoflurane
during rodent MRI. In our experience, breathing rate is
typically high after induction (50-90 breaths per minute)
and does not slow down until about 15 minutes into the
scanning session during MRI experiments with
continued isoflurane exposure. In addition, parallel
studies of physiology have shown that, with extended

periods of anesthesia, keeping the breathing rate at 50
pbm or greater, there is no deoxygenation of the arterial
blood as measured by pulse oximetry and there is a
normal physiological response to 5% CO2 including
increased breathing rate and increased cerebral
perfusion during scanning periods exceeding three
hours (our unpublished data). While we have not found
studies comparing young and old mice, one study did
indeed find a decrease in pO2, and increase in pCO?2,
after 2-3 hours of isoflurane anesthesia, far longer than
the short induction performed here [3]. Thus increased
anaerobic metabolism is an unlikely consequence of a
short period of isoflurane.
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Figure S3. Principal component analysis of brain metabolome extracts across three different time points.
Scoring plot demonstrates the separation of aged mice group as a function of differences in metabolic profiles.
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Figure S4. Sulfatide level changes in the aged mouse brain. Significant changes in the levels of specific
brain lipids sulfatides (p < 0.01) are represented by Box-Whisker plots where the blue colored boxes imply
significant metabolite depletion. Box and whisker plots display the full range of variation (whiskers:median with
minimum _ maximum and outliers; boxes: interquartile range). Y-axis is represented as a log;, of metabolite

area

Proteome  reference  library  generation.  The
hippocampal protein fractions from both hemispheres of
mice at each age were used to generate the SWATH-
MS reference spectral library that was used to extract
quantitative levels of proteins from the hippocampus of
12- and 24-month old mice. Protein lysates were
prepared from each hemisphere from two mice, 12- and
24-months old, and mixed in equal amounts. This lysate
mixture was ali quoted into 100 pg samples for trypsin

digestion using the filter-aided sample preparation
(FASP) method [4]. The peptides were desalted using
Oasis mixed-mode weak cation-exchange (MCX)
cartridges following the manufacturer’s protocols. The
resulting peptides were quantified by absorbance at 205
nm [5]. Peptides (35 pg) were fractionated into 12
fractions from pH 3 to 10 (low-resolution kit) by
isoelectric focusing using an Agilent 3100 OFFGEL
Fractionator (Agilent Technologies).
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Figure S5. Matching of tandem mass spectrometry data acquired by autonomous IDA (Information Dependent Analysis for
sequential MS1 and MS2 acquisition “on fly”) against the standard METLIN metabolite database, to validate the metabolite
identification in the global-untargeted data analysis.
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Fractionated peptides were cleaned and prepared for
mass spectrometry using Pierce C-18 PepClean Spin
Columns (Thermo Fisher). Samples were dehydrated
with a Savant ISS 110 SpeedVac Concentrator (Thermo
Fisher) and resuspended in 6 pL of 0.1% FA for LC-
MS/MS analysis. In order to generate the SWATH-MS
reference spectral library the prepared fractions were
subjected to traditional Data-Dependent Acquisition
(DDA) as described previously [6]. Briefly, one
precursor scan followed by fragmentation of the 50
most abundant peaks was performed. Precursor peaks
with a minimum signal count of 100 were dynamically
excluded after two selections for 6 seconds within a
range + 25 mDa. Charge states other than 2-5 were
rejected. Rolling collision energy was used. All DDA
LC-MS/MS files were searched in unison using
ProteinPilot as described above [6]. Combined results
yielded a library of 456,807 spectra representing 41,515
peptides and 4,671 proteins identified with high
confidence (greater than 99%) that passed the global
FDR from fit analysis using a critical FDR of 1%.

Targeted validation. Quantitation of metabolites of
interest was performed using an HPLC system (1290
Infinity, Agilent Technologies) coupled to ion-Funnel
Triple quadrupole 6490 (QqQ, Agilent) mass spectome-
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ter. It was operated in Dynamic multiple reaction
monitoring mode (MRM), where the collision energies
and product ions (MS2 or quantifier and qualifier ion
transitions) were pre-optimized for each metabolite of
interest (Table S7). Cycle time was 500 ms, and the
total number of MRM’s was 137. ESI source conditions
were set as following: gas temperature 225 °C, gas flow
15 L/min, nebulizer 35 psi, sheath gas 400 °C, sheath
gas flow 12 L/min, capillary voltage 2500V and nozzle
voltage OV in ESI negative mode. The analyses were
performed on the same type of Phenomenex
aminopropyl column as for untargeted analysis, but the
larger size 150mm x 2mm, with the same mobile
phases, at the 350 pulL/min flow rate. Metabolites were
targeted in a negative ionization mode, using the
gradient from 95 % B (0-2 min) to 10% B (15 min) to
0% B (17-20 min). A 4 min column re-equilibration
was applied at the initial solvent composition, to
ensure the reproducibility. The injection volume was 2
uL for all analyzed tissue extracts. Standard compound
mixtures were used for method optimization,
calibration and as a quality control. The ion response
for each standard solution was determined by
integrating the area of the quantifier transitions listed
in Table S7 for each compound (Agilent QQQ
Quantitative Analysis).
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Figure S6. Additional changes in metabolite levels indirectly related to the changes in core pathways as
presented in Figure 4. Box and whisker plots display the full range of variation (whiskers: median with minimum _ maximum;
boxes: interquartile range). Y-axis is represented as a log,, of metabolite area.

Table S7. List of quantified metabolites with matching precursor ions, optimized transition states
(quantifier and qualifier ions), and collision energies in negative ionization mode. Related to Figure 5

Metabolite Precursor Quantifier ion Qualifier ion Collision
ion (MS1) transition (MS2) transition(s) (MS2) energy (V)
1 Acetvl-CoA 808.1 78.9 408 75/38
2 Acetyl-glutamic acid 188.1 128 102.1 10/14
3 Adenine 134 107 92 18/22
4 Adenosine 266.1 134.1 107 26/40
5 ADP 426 134.1 158.9/78.9 22/30/74
6 alpha-ketoglutarate 145 101 57 6/10
7 Aminoadipic acid 160.1 116.1 142.1 14/10
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8 AMP 346.1 78.9 96.9/134.1 46/26/42
9 Arginine 173.1 131.1 156.1 10/10
10 ATP 505.9 158.9 408/78.9 26/22/75
11 CDP 402 158.9 384/78.9 22/18/66

12 Citric acid 191 111 87 6/18
12 CMP 322 78.9 96.9 34/30
13 CTP 481.9 158.9 384/78.9 38/22/66
14 Cysteine sulfate 199.9 136 80.9/74 10/10/14
15 Cytidine 242.1 109 42 10/26
16 | Fructose-1,6-bisphosphate 338.9 96.9 241/78.9 14/14/74
17 Fructose-6-phosphate 259 78.9 138.9 54/14
18 Fumarate 115 71 27 2/10
19 GDP 442 150 158.9/78.9 26/30/75
20 GDP-mannose 604.1 424 158.9/78.9 26/34/46
21 Glutamate 146 128 102.1 6/10
22 Glutamine 145.1 109 127.1 10/6
23 Glyceraldehyde-3P 168.9 150.9 96.9/78.9 6/2/18
24 Glycerate-3P 184.9 78.9 167.1/96.9 10/10/10
25 GMP 362.1 78.9 211/133 26/14/46
26 GTP 521.9 424 158.9/78.9 22/26/75
27 Guanosine 282.1 150 133 18/30
28 Hypoxanthine 135 92 65 14/30
29 IMP 347 96.9 135/ 78.9 22/38/74
30 Inosine 267.1 135 108 26/46
31 Lactate 89 43 41 10/20
32 Malate 133 115 71 6/14
33 Methionine 148 47 32 14/66
34 NAD+ 662.1 540.1 158.9/78.9 6/50/75
35 NADH 664.1 397 408/ 78.9 30/38/75
36 NADP+ 742.1 620 408 10/35
37 Oxidized glutathione 611.1 306.1 272.1/143 22/30/46
38. Phosphoenol pyruvate 166.9 78.9 62.9 14/75
39 PRPP 388.9 176.9 290.9/78.9 14/10/62
40 Ribose-1-phosphate 229 78.9 138.9/96.9 54/10/10
41 Saccharopine 275.1 257.1 196.1/145.1 10/18/26
42 Succinate 117 73 99 10/22
43 Sulfoacetic acid 138.9 94.9 79.9 10/26
44 Tryptophan 203.1 116.1 142.1 10/14
45 Tyrosine 180.1 163 119.1 10/14
46 UDP 402.9 158.9 111/78.9 26/18/75
47 UDP-galactose 565.1 323 158.9/78.9 22/54/75
48 | UDP-N-acetyl-glucosamine 606.1 78.9 272.9/158.9 70/34/62
49 UMP 323 96.9 111/78.9 22/30/58
51 Uric acid 167 124 96/41.9 14/18/50
52 Uridine 243.1 200 110 6/10
53 UTP 482.9 158.9 384.1/78.9 34/18/74
54 Xanthine 151 108 41.9 18/30
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