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Abstract: One of the major impediments in human aging research is the absence of a comprehensive and actionable set
of biomarkers that may be targeted and measured to track the effectiveness of therapeutic interventions. In this study, we
designed a modular ensemble of 21 deep neural networks (DNNs) of varying depth, structure and optimization to predict
human chronological age using a basic blood test. To train the DNNs, we used over 60,000 samples from common blood
biochemistry and cell count tests from routine health exams performed by a single laboratory and linked to chronological
age and sex. The best performing DNN in the ensemble demonstrated 81.5 % epsilon-accuracy r = 0.90 with R?=0.80 and
MAE = 6.07 years in predicting chronological age within a 10 year frame, while the entire ensemble achieved 83.5%
epsilon-accuracy r = 0.91 with R = 0.82 and MAE = 5.55 years. The ensemble also identified the 5 most important markers
for predicting human chronological age: albumin, glucose, alkaline phosphatase, urea and erythrocytes. To allow for public
testing and evaluate real-life performance of the predictor, we developed an online system available at
http://www.aging.ai. The ensemble approach may facilitate integration of multi-modal data linked to chronological age
and sex that may lead to simple, minimally invasive, and affordable methods of tracking integrated biomarkers of aging in
humans and performing cross-species feature importance analysis.

INTRODUCTION

translation to the clinic [3]. One problem is that the
evaluation of aging changes and possible anti-aging

Aging is a complex process affecting all biological
systems at every level of organization [1, 2]. While
many anti-aging interventions have demonstrated life-
extending or other geroprotective effects in model
organisms, practical limitations continue to hamper

remedies requires a comprehensive set of robust
biomarkers [4] . Large-scale longitudinal programs like
MARK-AGE [5] have been launched to analyze
changes in multiple biomarkers during aging and
correlation between biological and chronological age.
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Several ‘“aging clocks” able to predict human
chronological age using various biomarkers have
already been proposed. Methylation-based markers such
as epigenetic aging clocks (Horvath [6] and Hannum
[7]) are currently the most accurate, while
transcriptomics [8,9] and metabolomics [10] have
shown to be less so. Telomere length is commonly used
to measure senescence but has lower predictive ability
of human chronological age than IgG N-glycans,
immunoglobulin G glycosylated at conservative N-
glycation sites [11]. Recent studies show that
biomarkers of age-related pathologies could be used to
evaluate senescence modifications based on the
connection between age-related pathologies at the
signaling pathway level [12].

However, most of these biomarkers are not
representative of the health state of the entire organism
or individual systems and are not easily measured or
targeted with known interventions. The common blood
biochemistry test is one of the simplest tests used by
physicians to examine the health state of patients. While
being highly variable in nature, some markers from
blood biochemistry are sensitive indicators of various
conditions, such as inflammation and even alcoholism,
and are approved for clinical use [13, 14].

Machine learning (ML) techniques, such as support
vector machines (SVM), are routinely used in
biomarker development [15] and rapid increases in
labeled data are enabling deep neural networks (DNNs).
Methods based on deep architectures have outperformed
classical approaches not only in image analysis, but also
in solving a wide range of genomics, transcriptomics
and proteomics problems [16].

In this study, we apply a deep learning technique for
predicting human chronological age that utilizes
multiple DNNs stacked into an ensemble and trained on
tens of thousands of blood biochemistry samples from
patients undergoing routine physical examinations. We
then use a custom implementation of the permutation
feature importance (PFI) technique [17] to evaluate the
relative importance of each blood biochemistry marker
to ensemble accuracy. We also analyzed the
performance and accuracy of 40 DNN architectures
optimized using a variety of optimizers, identified the
best DNN, and selected 21 DNNs that cumulatively
provided higher accuracy and R?as an ensemble than
the best DNN in the ensemble.

RESULTS

To perform this study, we obtained a dataset of 62,419
anonymized blood biochemistry records, where each

record consists of a person’s age, sex, and 46
standardized blood markers through a collaboration
with one of the largest laboratory networks in Russia,
Invitro Laboratory, Ltd. We aimed to draw data from
a reasonably healthy population. While we did not
have access to patient records, we selected only blood
tests from routine health checks, avoiding obvious
sources of unhealthy patients, such as hospitals, and
through statistical analysis omitted blood tests with
outliers.

The generalized project pipeline is depicted in Figure
1. First, we preprocessed the blood test data set,
excluding highly biased markers from reference
ranges, normalizing them for training the DNNs, and
removing outliers (see Methods for details). The
resulting data set was split into training and test sets
comprised of 56,177 and 6242 samples, respectively.
Then 40 different DNNs were trained on 56,177 blood
test samples.

Since we treated human age prediction as a regression
problem, we used two metrics to estimate the
performance of the method: standard coefficient of
determination (R*) and e-prediction  (epsilon-
prediction) accuracy (see Methods for details). When
using epsilon-prediction accuracy, the sample is
considered correctly recognized if the predicted age is
in the range of [true age -g; true age +€], where &
controls the level of certainty in the prediction. So if € =
0, then it is a simple classification accuracy. In this
study, we considered ¢ = 10. The key advantage of
using epsilon-prediction accuracy is that it allows
cohort analysis without fixed age ranges (e.g. 10-20, 20-
30).

The best single DNN performed with 0.80 of R* and
82% within the 10 year frame of epsilon-prediction
accuracy (Figure 2 A & B). Single DNN outperformed
other ML models such as k-Nearest Neighbors, Support
Vector Machine, Random Forests, Gradient Boosting
Machine, etc (Figure 3 & B).

To further increase the coefficient of determination
and accuracy of predictions, we combined these single
DNNs into an ensemble based on the stacked
generalization (Stacking) technique [18]. Stacking is a
method that fits some ML models on the predictions of
other models, in our case on the predictions of DNNs.
Model selection was performed with 10 fold cross-
validation and with the random search strategy for
finding the best hyperparameters for considered
models. The experiments with Stacking models
showed (Figure 4 A & B) that the best ML model was
ElasticNet.
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The ensemble of 21 different DNNs trained on
56177 samples and validated on 6242 samples
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Figure 1. Project pipeline. Laboratory blood biochemistry data sets were normalized and cleaned of outliers
and some abnormal markers. For biological age prediction, 21 different DNNs with different parameters were
combined in ensemble based on ElasticNet model. For biological sex prediction, single DNN were trained.

To successfully combine the predictions of DNNs into
the Stacking ensemble model, the predictions of DNNs
should closely approximate the target variable and
differ from one another, or be less correlated. To
achieve this, DNNs should be trained with different
hyperparameters, varying in the number of layers,
counts of neurons in each layer, activation functions,
regularization techniques, etc. We investigated 40
DNNs, each unique in terms of hyperparameters.
Pearson correlations of these DNNs are presented in a
heat map on Figure 2 F, showing a high degree of
similarity among many of the networks regarding
predictions (r approaching 1) but also some major
distinctions.

To determine how many of these trained DNNs were
necessary for constructing the Stacking ensemble
model, we performed an iterative process of adding
each DNN’s predictions vector into the ensemble. Two
iterative strategles were employed: addlng predictions
by decreasing R* of each network, i.e. adding better
networks considering R”earliest in the ensemble, and

increasing the correlation between DNNSs, i.e. adding
less correlated networks first. The results of this assay
are presented in Figure S2. Both strategies showed that
no more than 21 DNNs were needed in the ensemble.
The ensemble resulting from distinguishing the
correlations of DNNs and ordering the addition of
DNNs into the ensemble demonstrated R*=0.82 and
83,5% within a 10 year frame of epsilon-prediction
accuracy (Figure 2 D & E).

We compared our deep-learned predictor with several
published epigenetics and transcriptomics markers of
human age. Surprisingly, despite the fact that we used
only blood biochemistry data with 41 values for each
patient, our  biomarker  outperformed  blood
transcriptomics biomarkers presented by Peters et al
with R?=0,6 for the best model [8]. Due to the nature of
the data, epigenetics markers show a stronger
correlation with chronological age, with R2=0,93 for
Horvath's methylation clock and R?=0,89 for the
Hannum et methylation clock [6, 7].
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Marker importance

In order to analyze the importance of blood test markers
via neural networks, some wrapper feature (selection)
importances approaches are required. We used a
modification of the Permutation Feature Importance (PFI)
method (see Methods for details). By applying this
method, one receives a list sorted by the importance of

markers via DNN. This technique has two benefits: 1) it is
native and simple to interpret and 2) as other wrapper
methods it relies on DNN performance, which in this case
is better than other ML models, thus produces more robust
and meaningful features. Marker importance analysis by
PFI method, the results of which are presented in Figure 2
C, reveals the five important markers: albumin, glucose,
alkaline phosphatase, urea, and erythrocytes.
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Figure 2. Analysis of best DNN model in the ensemble and the whole ensemble. (A) Correlation between
actual and predicted age values by the best DNN in the ensemble. (B) Biological age epsilon-prediction accuracy plot
for the best DNN. (C) Biological age marker Importance, performed using FPI method. (D) Correlation between
actual and predicted age values by whole ensemble based on ElasticNet model. (E) Biological age epsilon-prediction
accuracy plot for the ensemble. (F) Heat map for Pearson's correlation coefficients between 40 DNNs. Scale bar
colors indicate the sign and magnitude of Pearson's correlation coefficient between predictions of DNNs.
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Figure 3. DNNs outperform baseline ML approaches in terms of R’ statistics. DNN were compared with 7 ML
techniques: GBM (Gradient Boosting Machine), RF (Random Forests), DT (Decision Trees), LR (Linear Regression), kNN
(k-Nearest Neighbors), ElasticNet, SVM (Support Vector Machines). (A) GBM shows the higher 0,72 R? among ML
models for biological age prediction. (B) All ML models have comparable high R” for biological sex prediction.

Top features

We also performed so-called top features analysis,
which answers how the performance of a single DNN
will decrease as the number of markers used in the
model decreases. To select the smaller number of
markers for training the DNN, the sorted list of all PFI
scores is used. The results of this analysis for both R?
and epsilon-prediction accuracy are presented on Figure
5 A & B. For the top 10 features by PFI, the DNN got
R?=0.63 and 70% of 10 year frame epsilon-accuracy
prediction. In practical terms, the fact that this drop in
performance was so small supports the top 10 markers
received by PFI as robust and reliable features for
predicting age.

Use case

To make this deep network ensemble available to the
public, we placed our system online (www.Aging.Al),
allowing any patient with blood test data to predict their
age and sex. In order to validate our approach, we
collected the blood biochemistry reports that were
uploaded on the site from 25 January to 15 March 2016.

The total number of collected reports with indicated
real age was 1,563 samples. Many users expressed no
desire to specify all 41 parameters of the blood test, so
we added an option to enter only the 10 most
important markers. The average number of missing
values provided by the volunteer testers was 18.5
markers per person. There are several strategies for
filling skipped values, including zero, mean, mode and
median over all values of each marker. Evaluation of
these 4 strategies on the aging.ai data showed that
median filling strategy has the best performance in
terms of both R and epsilon-prediction accuracy
(Figure 4 C & D).

Aging.Al provides a proof of concept for a simple and
inexpensive blood-based predictor of chronological age,
which may be used for speculate on the biological age
of the patient. However, it has many limitations. When
it comes to developing predictors using deep neural
networks, one of the major difficulties is building large
data sets. In this study we were constrained by the
limited number of features available to us in large
numbers of blood test results. Some of the features, for
example globulin fractures, are no longer frequently
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used in diagnostic medicine and are excluded from the
newer standard tests. However, these features were
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Figure 4. Comparison of sub-models for stacking ensemble and evaluation of filling strategies. (A) ElasticNet model
has the higher epsilon-prediction accuracy among the stacking models. (B) ElasticNet is the best model for stacking from the point
of R? statistics. (C) Median filling strategy has higher epsilon-prediction accuracy than other strategies. Median filling strategy
shows 64,5 % epsilon accuracy within 10 years frame. (D) Median filling strategy is better from the point of R? statistics.
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Figure 5. Top features analysis. (A) Dependence of the epsilon-prediction accuracy from the number of features.

(B) Dependence of R? statistics from the number of features.

DISCUSSION

Aging is a complex process and occurs at different rates
and to different extents in the various organ systems,
including respiratory, renal, hepatic, and metabolic [19,
20]. The analysis of relative feature importance within
the DNNs helped deduce the most important features
that may shed light on the contribution of these systems
to the aging process, ranked in the following order:
metabolic, liver, renal system and respiratory function.
The five markers related to these functions were
previously associated with aging and used to predict
human biological age [21, 22]. Another interesting
finding was the extraordinarily high importance of
albumin, which primarily controls the oncotic pressure
of blood. Albumin declines during aging and is
associated with sarcopenia [23]. The second marker by
relative importance is glucose, which is directly linked
to metabolic health. Cardiovascular diseases associated
with diabetes mellitus are major causes of death within
the general population [24].

Our approach of using an ensemble of DNNs
outperformed other ML models in terms of R® and
epsilon-prediction accuracy (Figure 3 A & B).

Application of DNNs uncovered complex nonlinear
interactions between markers resulting in robust
ensemble performance. This ensemble may also be
expanded with DNNs trained on different sources and
types of biological data allowing for complex multi-
modal markers to be created and relative contributions
of each input analyzed.

Current and future directions of this work include
adding other sources of features including
transcriptomic and metabolomics markers from blood,
urine, individual organ biopsies and even imaging data
as well as testing the system using data from patients
with accelerated aging syndromes, multiple diseases
and performing gender-specific analysis. Similar tests
may be performed by research teams working on rare
diseases or working with athletic groups by using
http://www.Aging.Al system or contacting the authors
to perform a high-throughput analysis. Developing
similar systems for model organisms and performing
PFI analysis may help perform cross-species analysis
and of the relative importance of individual markers and
organ systems in predicting chronological and
biological age.
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MATERIALS AND METHODS

Data. Anonymized statistical data of human blood tests
was kindly provided by an independent laboratory,
Invitro (www.Invitro.ru). No patient records were used
in the study. In total, the data contains 62419 records
where each record consists of person’s age and 46
standardized blood markers, such as Glucose,
Cholesterol, Alpha-1-globulins, etc. (Table S1)
Histograms of human age for training sets and
descriptive statistics of top 10 blood markers used in the
research are depicted in the Figure S1 A.

One can see from the Figure S1 B that minimum and
maximum values of each marker are far distributed
from their normal range values. This distribution
reflects patients’ tendencies to self-report symptoms and
test their health with professional health-care services
only in complex cases, which affects their health
condition and thus test results [25]. Moreover, we found
that there were no patients that could be considered as
healthy and who have blood test values within a
reference range. The most frequently abnormal markers
in the distribution were white blood cell count markers:
basophils, abs., eosinophils, abs., lymphocytes abs.
monocytes, abs, neutrophils, abs. These types of test
provide the total number (absolute number, abs.) of
white blood cells in blood microliter. Here, this routine
analysis was conducted using a hematology automated
analyzer, which counts cells precisely with low error
rate [26]. In this case, these aberrant values of markers
are more likely linked to the major function of white
blood cells; immune function, infections, allergies,
smoking [27] or even sleep duration [28] could affect
the rate of white blood cells. Additionally, recent
studies show a connection between metabolic diseases
such as diabetes and range of white blood cells [29, 30].
For this reason, levels of basophils, eosinophils,
lymphocytes, monocytes and neutrophils are extremely
variable in the general population. To prevent DNN
predictions from being highly biased with respect to
abnormal ranges of blood markers, we excluded these 5
markers. Processed data was presented in a tabular
format of 62419 rows and 42 columns (age and sex + 41
markers).

Then, specifically for training deep neural network, we
normalized all blood markers to 0-1 range by using the
formula:

where X is the origin values of each blood marker, X,,;,,
and X, are its minimum and maximum, respectively
and X,,_; is the marker within 0-1 range.

We split the data to the training and test sets with 90/10
ratio. Thus, the size of training and test sets were 56177
and 6242 samples, respectively. The DNN was built by
adjusting its hyperparameters (such as a number of
layers, activation function, etc.) on the training set and
measuring the performance of the trained neural
network on the test set. The comparison of
performances of 6 best DNNs with different values of
hyperparameters is depicted on Table S1. All
experiments were conducted on Nvidia Tesla K80
graphics processing unit.

There are two reasons why in the study we treated the
prediction of human age as a regression problem: 1) age
has natural order, so it is an order variable and 2) one
may be interested in the difference in values of the
markers with difference in ages, which is the natural
way to perform the analysis of marker influence. In this
case, it was better to use regression instead of
classification methods.

So, in all evaluations 4 metrics were measured:

1. r, which is a Pearson’s correlation coefficient
S XD i=Y)
i [ 02
real value and X is the mean of x, y; is predicted value

and y is the mean of y, and N is number of samples.

2. R?, which is a standard coefficient of

R2 = T2,
o, 0i-9?’

the real value, f; is the predicted value and ¥y is the

mean of y.

3. Mean absolute error (MAE), which is defined

as MAE =% N Ifi — yil; where f; is a prediction of

defined as: r = ; where  x;is

determination defined as: where y; is

the model, y; is a true value and N is a number of
samples.

4. e-prediction accuracy defined as: &-—
. T 1,00 .
prediction = ==—4=—; where A is [y; —&y; +¢l;

y;is the real value, f;is the predicted value and ¢is a
parameter that controls the range of correctness of
predictions. So for example if € is 10 and the true value
of age is 45 the deep neural network correctly
recognized sample if it is in the [35, 55] range.

Feature importance method. The idea behind the
algorithm stemmed from the feature randomization
technique used in Random Forest (RF) [31]. PFI
computes significance scores for all features by
determining the accuracy of a model to random
permutations of the values of those feature variables.
The main underlying assumption is that permuting the
values of important features results in a more significant
reduction in a model's performance compared to the
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effect of less important ones. But when cross-validation
is not performed, one should improve the robustness of
the method.

To do this, we shuffled each feature k times and then
computed the average PFI score for the feature,
concretely the PFI score for one feature is defined as
follows:

— p2 1N p2 . 2 :
PF]feature - Rtotal _NZL':l Rshuffle’ where Rtotal 1S
a total R? for the model without any permutations and
R?hufﬂe is a R? for the model with permutated feature

permutated feature and K is a parameter that controls
how many times the feature is permutated.

Note that PFI is a wrapper method, so it would
significantly depend on applying ML model, but
because DNNs show better performance than other ML
models, it was suitable for the problem.

Architecture of DNN. We used simple feed-forward
neural networks trained with the standard
backpropagation algorithm as our deep (more than 3
layers) learning models. For each DNN in the resulting
ensemble, multiple hyperparameters were adjusted,
including the number of hidden layers, the number of
neurons in each layer, choice of activation function,
choice of optimization method, and regularization
techniques. The table with experiments of different
hyperparameters for the DNNs are presented in Table
S1.

The best DNN in the ensemble had 5 hidden layers with
2000, 1500, 1000, 500, and 1 neurons in each,
respectively. The last layer, with one neuron,
corresponds to regression output. The optimization loss
function was simple mean squared error (MSE) with
regularization terms. The DNN used PReLU activation
function [32] in each layer, AdaGrad [33] as optimizer
of the loss function, Dropout [34] with probability of
0.2 after each layer, and 12 weight decay [35]. To
further cope with over fitting and make more stable
convergence of models, we used Batch normalization
technique [36] after the first 2 layers.
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SUPPLEMENTARY DATA

A B
istogram of Age
Descriptive statistics for top 10 markers by PFI method
Test name Mean |Std | Q25% | Q50% | Q75% | Min | Max
Albumin 43.57 |4.03 |41.61 |43.96 [46.14 |1.00|59.25
Erythrocytes 476 (051 (4.44 |475 |5.09 |(0.79]9.25
Glucose 557 |1.26 [499 |536 |5.80 |0.35(32.24
5 Alkaline phosphatase |85.96 | 78.52 | 56.00 | 70.00 |89.00 |1.00 |4337.00
:g Hematocrit 40.89 (4.43 |38.20 (40.90 [43.90 |8.00|66.00
l Urea 517 |2.21 [390 |4.90 |(6.00 |0.70|84.10
RDW 13.71|1.97 [12.70 |13.20 (13.90 |1.00 [44.20
Cholesterol 5.48 |1.27 (458 |5.38 |6.26 |1.00(20.19
Alpha-2-globulins 7.06 |1.31 [6.18 |6.86 |7.70 [1.00(20.17
Lymphocytes 35.48110.07 | 29.00 | 35.00 (41.30 |0.00 |98.00

Figure S1. (A) Histogram of age distribution. (B) Table of descriptive statistic for top 10 markers.

Table S1. Table of hyperparameters. The best DNN in the ensemble has AdaGrad optimizer,
PReLU activation function and 4 hidden layers with 2000, 1500, 1000, 500 neurons respectively
and got 0.803 of R’.

DNN architecture. Hidden Additional parameters. Activation function/Optimizer
units ReLU/AdaDelta ReLU/AdaGrad PReLU/AdaGrad
1000-1000-500 0.742 0.77 0.773
1000-1000-1000-500 0.745 0.782 0.792
1000-1000-1000-1000 0.75 0.784 0.785
1500-1500-1500-1500 0.754 0.791 0.795
2000-1500-1000-500 0.755 0.792 0.805
2500-2500-2500-2500 0.745 0.775 0.781
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A . : B B ElasticNet epsilon accuracy by count of DNNs in the ensemble
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Figure S2. Analysis of the ensemble based on ElasticNet model. (A) Epsilon accuracy plot for
constructing ensemble where DNNs are added with r increasing. (B) Epsilon accuracy plot for constructing
ensemble where DNNs are added with R decreasing. (C) R plot for constructing ensemble where DNNs are
added with r increasing. (D) R’ plot for constructing ensemble where DNNs are added with deecreasing,
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Figure S3. Learning curve of the best DNN in the ensemble. The green line is a training loss; blue is a
validation loss. Training was stopped on 350 epoch because of reaching a plateau. The DNN got 0.803 of R’
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