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Abstract: Aging is reflected by highly reproducible DNA methylation (DNAm) changes that open new perspectives for
estimation of chronological age in legal medicine. DNA can be harvested non-invasively from cells at the inside of a
person’s cheek using buccal swabs — but these specimens resemble heterogeneous mixtures of buccal epithelial cells and
leukocytes with different epigenetic makeup. In this study, we have trained an age predictor based on three age-
associated CpG sites (associated with the genes PDE4C, ASPA, and ITGA2B) for swab samples to reach a mean absolute
deviation (MAD) between predicted and chronological age of 4.3 years in a training set and of 7.03 years in a validation
set. Subsequently, the composition of buccal epithelial cells versus leukocytes was estimated by two additional CpGs
(associated with the genes CD6 and SERPINBS5). Results of this “Buccal-Cell-Signature” correlated with cell counts in
cytological stains (R> = 0.94). Combination of cell type-specific and age-associated CpGs into one multivariate model
enabled age predictions with MADs of 5.09 years and 5.12 years in two independent validation sets. Our results
demonstrate that the cellular composition in buccal swab samples can be determined by DNAm at two cell type-specific
CpGs to improve epigenetic age predictions.

INTRODUCTION minations, however, have irradiation side effects and are

not permissible in all legal systems. Other precise
Estimation of chronological age of persons with methods that can be used, such as the biochemical
(allegedly) unknown age is highly relevant in legal analysis of the aspartic acid racemization of tooth dentin,
medicine — today more than ever. For example, such are not generally applicable for living individuals [1].
estimations are decisive for the legal status of young Molecular parameters, such as telomere shortening [2],
refugees in asylum procedures and for the degree of T-cell DNA-rearrangements [3], or mitochondrial
penalty for young offenders. During childhood and deletions provide only relatively low accuracy. In this
adolescence, sufficiently precise age estimates can be regard, the recently developed approaches of using age-
achieved by the assessment of skeletal and dental associated epigenetic modifications for age estimation
development with radiologic examinations - those exa- appear to be promising [4-6].
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DNA methylation (DNAm) is so far the best understood
epigenetic modification [7]. It has been suggested that
almost one third of CpG dinucleotides reveal age-
associated modifications on the DNAm level [8].
Hypermethylation or hypomethylation are almost
linearly acquired with age at some CpGs — at least in
adult donors - and can therefore be used for age
predictions. For example Hannum et al. used global
DNAm profiles of blood samples of a large cohort to
derive a multivariate linear model based on 71 CpGs
[5]. This approach facilitated age predictions with a
mean error of 4.9 years in independent blood samples,
but it had a clear offset in other tissues. On the other
hand, it has been demonstrated that several age-related
CpGs reflect similar changes across different cell types
and tissues [5, 9, 10]. Cell type-specific effects can
partly be compensated by a higher number of age-
associated CpGs: a multi-tissue predictor based on 353
age-associated CpG sites was developed by Horvath [6]
that enables age-estimations for a wide range of cell
types. However, simultaneous analysis of DNAm in
hundreds of CpGs is only feasible with profiling
technologies, such as Illumina Bead Chip microarrays
or deep sequencing, making it difficult to implement
this approach for efficient high-throughput analysis in
daily routine of legal medicine. We have recently
developed an epigenetic age predictor based on DNAm
levels at just three age-associated CpGs located in the
genes integrin alpha 2b (ITGA2B), aspartoacylase
(ASPA), and phosphodiesterase 4C (PDE4C) [4].
DNAm levels at these CpGs can be analyzed site-
specifically with cost-effective, fast and reliable
pyrosequencing assays to provide age predictions with a
mean absolute deviation (MAD) from chronological age
of less than 5 years in blood samples — so far,
application of the three-CpG signature on other tissues
has not been described.

Buccal swabs are widely used specimens in legal
medicine due to their non-invasive and convenient
harvesting procedure. In principle, Bocklandt and
coworkers have demonstrated that saliva samples can be
used for epigenetic age predictions [11]. The authors
used three CpGs associated with the genes EDAR-
associated death domain (EDARADD), neuronal
pentraxin II (NPTX2), and target of mybl like 1
membrane trafficking protein (TOM1L1) to predict age
with a MAD between predicted and chronological age
of 5.2 years, but the precision was not validated on an
independent set of samples. Saliva as well as mouth
swabs are very heterogeneous in their composition of
buccal epithelial cells and leukocytes [12] and it can be
anticipated that the epigenetic makeup as well as age-
associated changes differ significantly between these
two cell types. In this study, we therefore followed the

hypothesis that the precision of epigenetic age
predictions in buccal swabs can be improved by taking
the cellular composition of buccal epithelial cells versus
leukocytes into account.

RESULTS

Retraining epigenetic age predictors for buccal
swabs

Buccal swab samples were taken from 55 healthy
donors (age range of 1 to 85 years; Figure 1A) and
DNAm levels were analyzed by pyrosequencing at the
three relevant age-associated CpGs of our blood-based
age predictor [4], subsequently referred to as “3-CpG-
blood-model”. The correlation of predicted and
chronological age was R* = 0.91 (Pearson correlation),
and this was even slightly higher than previously
observed in 151 blood samples (R* = 0.81; Figure 1B-
C) [4]. However, there was a clear offset in age
predictions of buccal swabs: in average buccal swab
samples were overestimated by 14.6 years. Therefore,
we retrained the multivariate model on the pyro-
sequencing results of the 55 buccal swab samples as
follows: Predicted age (years) = 32.70 — 8.42 (B-value
of ¢g02228185) — 47.38 (B-value of cg25809905) +
183.25 (B-value of CpG upstream of cgl17861230). The
MAD was only 4.3 years in the training set (R* = 0.93;
Figure 1D) and this model is subsequently referred to as
“3-CpG-swab-model”. We have validated this model on
an independent validation set of 55 swab samples that
were taken and analyzed in other labs and in different
towns — here, the MAD was 7.03 years (R* = 0.92;
Figure 1D). Notably, epigenetic age of the validation set
was systematically over-estimated, which might be
attributed to differences in the harvesting procedure or
slight differences in pyrosequencing measurements in
the different labs.

To gain better insight into tissue-specificity of
individual CpGs, we compared publically available
DNAm profiles of blood, saliva, and mouth swab
samples (GSE41037 [6], GSE28746 [11] and
GSE50586 [13], respectively). In buccal swabs and
saliva samples we hardly observed linear correlation
between B-values and chronological age at the CpGs in
ASPA (cg02228185) and ITGA2B (cg25809905) — they
may therefore not be ideal candidates for age-associated
biomarkers in buccal swabs. In contrast, the CpG site in
PDE4C (cgl17861230) demonstrated even higher
correlation with chronological age in saliva and buccal
swabs as compared to blood (Figure 1 E-G). This was
also confirmed in our pyrosequencing analysis (R* =
0.91; Supplemental figure S1). Therefore, we reasoned
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CpG-swab-model” with a MAD of 5.2 years in the
training set (R =0.91) and 7.6 years in the validation set
(R =0.90; Figure 1H,I).

that the CpG site in PDE4C might be sufficient for
reliable age predictions: linear regression of DNAm
levels in PDE4C was used as a more convenient “1-
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Figure 1. Epigenetic aging model for blood needs to be adjusted for buccal swabs. (A) lllustration of sample collection
with a buccal swab. (B) Epigenetic age predictions of 55 mouth swab samples using an age predictor that was trained on blood
samples as described before [4]. (C) For comparison, we demonstrate the predictions for 151 whole blood samples of our previous
work [4]. (D) The multivariate model for age predictions was then retrained on pyrosequencing results of 55 mouth swab samples
and validated on 55 independent additional samples that were analyzed in a different lab. (E-G) Correlation of B-values of age-
associated CpG sites with chronological age. To this end, we used publically available datasets of blood (GSE41037), saliva
(GSE28746), and mouth swabs (GSE50586). The CpG site cg17861230 corresponds to the neighboring CpG site in PDE4C that was
used in the pyrosequencing models (because, the latter is not represented by lllumina Bead Chips). (H) B-values of the CpG site in
the PDE4C gene in swab samples were determined by pyrosequencing and correlated with chronological age. () Age predictions
based on DNAm levels at the CpG site in PDE4C. The linear regression model is depicted in (H). MAD = mean absolute deviation.
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Analysis of the composition of buccal epithelial cells cell counting in haematoxylin/eosin stained smears

versus leukocytes (Figure 2A): the proportion of leukocytes varied
between 12% - 63% (mean of 35%). This is in line
Mouth swab samples comprise particularly buccal with a previous study based on short tandem repeats
epithelial cells and leukocytes. The proportions of after  allogeneic ~ hematopoietic ~ stem  cell
cell types may vary, e.g. due to harvesting procedures transplantation  that  described  percentages  of
[12]. We determined the fractions of leukocytes and leukocytes between 5% - 60% in buccal swabs and
buccal epithelial cells in 11 mouth swab samples by 16% - 95% in mouthwash samples [12].
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Figure 2. Prediction of the cellular composition in mouth swab samples. (A) Representative mouth swab smears with different
proportions of leukocytes and epithelial cells. Smears of freshly harvested cells were stained with haematoxylin and eosin. (B) Mean B-
values of CpGs on lllumina 27k Bead Chip in datasets of buccal swabs (GSE50586) and blood (GSE39981). Red arrows indicate CpG sites
selected for the “Buccal-Cell-Signature”. (C) As additional criterion for suitable cell type-specific CpGs we used the sum of variances in
both datasets. (D) Mean B-values at cg07380416 (CD6) and cg20837735 (SERPINB5) were compared in whole blood (GSE41037,
GSE39981), hematopoietic subsets (GSE39981), saliva (GSE28746, GSE34035, GSE39560), and buccal swabs (GSE25892, GSE50586).
Error bars represent standard deviation. (E, F) The percentage of buccal epithelial cells versus leukocytes was determined by cell
counting in 11 stained mouth swab smears. DNAm levels at the two cell type-specific CoGs were determined by pyrosequencing and
correlated with cell counts. (G) Linear regressions of both CpGs were combined into the Buccal-Cell-Signature. Predicted percentages of
buccal epithelial cells correlated with cell counts. (H) Percentages of epithelial cells were subsequently estimated using the Buccal-Cell-
Signature for 55 samples of the training set and 26 samples of the validation set. Error bars represent standard deviation.

www.impactaging.com 1037 AGING, May 2016, Vol. 8 No.5



We reasoned that epigenetic characteristics of buccal
epithelial cells and leukocytes might be utilized to
determine the cellular composition in buccal swabs. To
identify suitable CpGs we used DNAm datasets of
swabs (GSE50586) [13] and whole blood samples
(GSE39981) [14] to filter with the following criteria: 1)
high difference in mean DNAm levels in swabs and
blood (Figure 2B), ii) low variance in DNAm levels
within each of these datasets (Figure 2C), and iii) no
correlation with chronological age in blood samples of
656 donors, aged 19 to 101 (GSE40279), [5]; Pearson
correlation < 0.05; Supplemental Figure S2).
Furthermore, we validated our selection on two
independent datasets from buccal swabs GSE25892 [15]
and blood GSE41037 [16] (Supplemental Figure S3).
Based on these parameters, we identified a CpG site
associated with the gene for T-cell differentiation
antigen CD6 (cg07380416) and a CpG site in the gene
for serpin peptidase inhibitor clade B member 5
(SERPINB5; ¢g20837735) as best suited candidates.
The distribution of B-values was further analyzed in
DNAm profiles of various hematopoietic cell types:
cg07380416 was consistently hypomethylated, whereas
cg20837735 was hypermethylated across the different
types of blood cells (Figure 2D). Mean DNAm levels in
saliva, which generally comprise higher numbers of
leukocytes than swabs, were between those of blood
and swabs. Furthermore, neighboring CpGs of
cg07380416 and ¢g20837735 demonstrated similar
differences between the cell types (Supplemental Figure
S4), indicating that the two genomic regions might be
suitable to reliably estimate the cellular composition of
buccal epithelial cells and leukocytes.

Subsequently, we designed pyrosequencing assays for
the two relevant CpGs (Supplemental Figure S5) and
tested the 11 buccal swab samples that were analyzed
by cytological stains as well as two additional blood
samples: in fact, the B-values in ¢g07380416 (CD6) and
cg20837735 (SERPINBS) correlated with the proportion
of counted epithelial cells (R* = 0.93 and R* = 0.92,
respectively; Figure 2E,F), indicating that both CpGs
adequately reflect the cellular composition. The two
CpGs were then combined into a model that is
subsequently referred to as “Buccal-Cell-Signature”:

Percentage of buccal epithelial cells (8) = (99.8 (B-value
of cg07380416) + 1.92) / 2 + (-98.12 (B-value of
cg20837735) + 88.54) / 2.

The predicted fractions of epithelial cells correlated
with the counted cell fractions (R2 = 0.94; Figure 2G).
We then utilized the Buccal-Cell-Signature for analysis
of buccal swab samples of 55 samples of the training set
and 26 samples of the validation set. The predicted

fraction of buccal cells ranged between 24% and 91%
(mean 71%). This analysis was performed in the same
lab for all samples to exclude technical variation in
pyrosequencing analysis. There was no significant
difference between training and validation set (Figure
2H), indicating that the above mentioned moderate
overestimation of age in the validation set is not due to
different harvesting procedures.

The impact of smoking, ethnicity and gender

Confounding factors - such as smoking, ethnicity, and
gender — can impact on DNAm levels at specific sites in
the genome [17-20]. Therefore, we tested if our age-
associated or cell type-associated CpG sites are
systematically influenced by these parameters. The -
values did not differ in blood samples of 22 smokers
and 179 non-smokers (GSE50660, similar age
distribution [21]). In contrast, we could recapitulate
significant changes at previously described smoking-
associated CpG sites (Figure 3A) [20-22]. Furthermore,
there was no effect of smoking on the CpGs of the
Buccal-Cell-Signature in DNAm profiles of nasal
epithelial cells of 6 smokers and 6 non-smokers — but
they clearly reflected the epithelial cell type (GSE28368,
data on chronological age was not available [23]; Figure
3B). Subsequently, we compared the results of our
Buccal-Cell-Signature in 26 known non-smokers and 10
smokers and found no evidence that smoking affected the
composition of buccal epithelial cells versus leukocytes
in buccal swabs (Figure 3C). To estimate if DNAm levels
at our five CpGs differ between ethnical groups we
analyzed DNAm profiles of 8 white, 74 black and 3
Asian children (GSE36054, [24]) and there were no
significant differences (Figure 3D). In analogy, we
compared DNAm levels in male and female samples and
found no gender-associated variation (GSE40279, 40 —
50 year old donors, [S]) (Figure 3E). These results
indicate that smoking, ethnicity, and gender hardly affect
our predictions of epigenetic age or of the cellular
composition.

Combination of cell type-specific and age-associated
CpGs into one model

To test if the precision of epigenetic age predictions is
affected by the cellular composition in buccal swabs,
we compared the estimated fraction of buccal epithelial
cells versus the MAD of predicted and chronological
age. In fact, the offset of age predictions in the training
and validation datasets by the 3-CpG-blood-model was
higher in samples with a higher fraction of epithelial
cells (Figure 4A). These cell type-specific differences
were less pronounced when using the 3-CpG-swab-
model (Figure 4B).
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Figure 3. Smoking, ethnicity and gender do not impact on DNAm at selected CpG sites. (A) DNAm levels at the
three age-associated CpG sites (ITGA2B, ASPA, and PDE4C), and the two cell type associated CpGs (CD6 and SERPINB5) did
not differ in blood samples of current smokers (red) and never-smokers (blue; GSE50660). In contrast, such differences
were validated in three CpG sites, which have previously been described as smoking-associated. (B) DNAm profiles of pure
nasal epithelial cells of smokers (red) and non-smokers (blue) did not demonstrate differences in the two cell type
associated CpGs (GSE28368). (C) Pyrosequencing analysis of the Buccal-Cell-Signature in 36 samples with known smoking
status did not reveal differences in the cellular composition of buccal swabs. (D) DNAm profiles of children (1 to 17 years) did
not reveal significant differences between different ethnic groups (GSE36054; blue: black donor; red: white donor; black lines:
Asian donor). (E) None of the five CpGs revealed gender-associated differences (GSE40279; blood samples of 40 to 50 year
old donors; blue: female; red: male). * P < 0.05; *** P < 0.0005; Whiskers indicate 10% and 90% percentiles, respectively.

Subsequently, we followed the hypothesis that age
predictions can be improved by taking the cellular
composition into account. We combined the age-
associated CpGs and the Buccal-Cell-Signature into one
linear “5-CpG-model”. This adjusted model gave age
predictions with a MAD from chronological age of 4.66
years (R2 = 0.93) in 55 samples from the training set
and of 5.09 years (R* = 0.93; Figure 4C) in the 26
samples of the validation set. These results were more
precise in the validation set than predictions by the 3-
CpG-swab-model (P=2.2x10", Figure 4D). We then

asked whether age prediction accuracy is comparable in
young and elderly donors. Therefore, we divided all
samples into two groups stratified by an age of 30 years.
Overall, the precision of epigenetic age predictions was
even higher in younger donors (Supplemental Figure
S6).

To further evaluate the precision of our models we
analyzed buccal swabs of an additional independent set
of 37 donors between 18 and 35 years. As described
above, the 3-CpG-blood-model would highly over-
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estimate donor age (MAD = 17.3 years), whereas the
epigenetic age-predictions of the 3-CpG-swab-model
(MAD = 4.84 years), the 1-CpG-swab-model (MAD =
5.6 years), and the 5-CpG-model (MAD = 5.12 years)
further substantiated the relatively high precision of our
signatures (Figure 4E). It was however unexpected that
the 5-CpG-swab-model did not outperform the 3-CpG-
swab-model in these samples.

This can be attributed to the fact, that DNAm levels of
PDEAC are anyway quite similar in blood and buccal
swabs at this age range (Figure 1G). When we stratified
samples of the validation groups according to an age of
35 years, it became evident that effects of cell type
adjustment by the Buccal-Cell-Signature are
particularly important at higher ages (P 0.0003;
Figure 4F).
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Figure 4. Buccal-Cell-Signature improves epigenetic age prediction. (A) The differences of chronological age and predictions
by the 3-CpG-blood-model were compared to the predicted percentage of buccal epithelial cells (according to the Buccal-Cell-
Signature). Deviations were higher in samples with more buccal epithelial cells. (B) In analogy, we compared age predictions by the 3-
CpG-swab-model to the estimated percentage of buccal epithelial cells and here the impact of the cellular composition was less clear.
(C) Combination of age-associated CpGs and Buccal-Cell-Signature in a multivariate regression model of five CpGs (5-CpG-model)
facilitated age predictions in the training and validation set. (D) Mean absolute deviations of predicted and chronological age were
significantly smaller in the validation set when using the 5-CpG-model as compared to the 3-CpG-swab-model. (E) The models for age-
prediction were subsequently validated in a second, independent dataset of 37 samples (18 to 35 years). (F) Samples of the validation
group were stratified by an age of 35 years. Comparison of the 3-CpG-swab-model and the 5-CpG-model revealed that the additional
analysis of the Buccal-Cell-Signature was particularly relevant for samples of older donors (*** P < 0.0005).
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DISCUSSION

Age-associated DNAm changes are acquired in a
similar fashion in different cell types and tissues [6, 10,
25], but the difference in the epigenetic makeup of
different cell types undoubtedly affects epigenetic age
predictions. It has been demonstrated that precision of
epigenetic age predictions of blood samples can be
improved by taking blood counts into consideration
[26]. Accordingly, it can easily be assumed that buccal
epithelial cells and blood cells — which greatly differ in
morphology, function, and derivation — have very
pronounced differences in their DNAm patterns. Our
data indicate that some age-associated CpGs are less
affected by the cellular composition than others. To
better identify suitable CpGs it would be valuable to
utilize DNAm profiles of purified buccal epithelial cells
of young and elderly donors — however, such datasets
are so far not available making it difficult to estimate
cell type-specific age-associated modifications.

In this study, we describe a new method to determine
the composition of buccal epithelial cells versus
leukocytes by measuring DNAm levels at two CpG
sites. Both CpGs revealed high correlation with the
leukocyte counts (R* = 0.93 and 0.92). Combination of
one methylated and one non-methylated CpG into one
model enables internal quality control and more robust
measurements. We have recently described a similar
regimen of two CpG-signatures to categorize
pluripotent and non-pluripotent cells [27], to distinguish
between mesenchymal stromal cells (MSCs) and
fibroblasts [28], and to determine if MSCs were isolated
from either adipose tissue or bone marrow [28]. The
Buccal-Cell-Signature could also be used to estimate
the cellular composition in saliva samples, which
usually comprise even higher fractions of leukocytes.
Furthermore, the method might be useful for analysis of
unknown body fluids, or to gain insight into the
harvesting procedure of buccal swabs.

Particularly for application in legal medicine it is
important to better understand how epigenetic age
predictions are affected by additional parameters such
as local infections, diseases affecting growth and
development, or obesity [29-31]. Our exploratory
analysis indicated that smoking, ethical background,
and gender hardly affect DNAm levels at the five
relevant CpG sites. However, further analysis in larger
cohorts and for additional parameters will be necessary
to gain better insight on how these or other clinical
parameters impact on epigenetic age predictions.

Many groups have described epigenetic age predictors
that are based on few or even individual CpGs [32-34]

and some of these have been used for saliva samples
[11] — however, to our knowledge they have so far not
been applied for buccal swab samples. The precision of
epigenetic signatures can generally be increased by
implementing a larger number of CpGs [6, 35]. As
mentioned above, the predictor of Horvath was trained
on 353 CpGs of Illumina Bead Chip data to work
robustly on samples of multiple tissues — thus, larger
models that utilize many more CpGs may not require
specific adaptation to the cellular composition. On the
other hand, even such large aging signatures could be
combined with cell type-specific signatures. The cell
type-specific information may provide quality control
and help to further refine the precision of epigenetic
age-predictions — by using a similar mathematical
regimen as exemplified in our study.

In contrast to analysis of global DNAm profiles, our
signature can be addressed by site-specific assays, such
as pyrosequencing or MassARRAY, which facilitate
more quantitative measurements [35]. These assays are
cost-effective, enable analysis within days and do not
require complicated bioinformatics. For validation, we
have used an independent set of samples that has been
harvested at a different University, at a different time,
and analyzed in a different lab — in this regard we have
used the most stringent validation possible and the
results support the notion of high reproducibility.
However, even after correction for the cellular
composition the age predictions in the validation cohort
were in tendency over-estimated. Thus, there may be a
small systematic bias by pyrosequencing analysis in
different labs that should be taken into account. It has
also been suggested that in childhood most age-
associated changes should rather be modeled as a
function of logarithmic age [24]. Notably, our data
demonstrate that the precision of our aging signatures
was also relatively high in children and young adults.
This is important, as it resembles exactly the age-range
that is particularly relevant in legal medicine. On the
other hand, the advantage of the Epithelial-Cell-
Signature became evident in samples of elderly donors.
In this study, we estimated the parameters for age-
associated changes in the subfraction of buccal
epithelial cells by subtraction of predictions for the
blood subfraction in 55 samples — it is therefore
expected that the 5 CpG model can be further improved
on either a much larger number of samples, or by
measurements of age-associated DNAm changes in
purified buccal epithelial cells.

There is evidence that the epigenetic age rather reflects
biological age than chronological age: the difference
between predicted and chronological age is associated
with cancer onset and overall survival [36-38].
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Epigenetic age predictions may therefore support
identification of relevant parameters for the aging
process and thereupon adaptation of habits that assist
healthy aging. Notably, the neighboring CpG site in the
PDEAC gene was also found to be indicative for life
expectancy in the Lothian Birth Cohort 1921 [35].
However, in legal medicine it is rather important to
estimate chronological age. It is conceivable, that some
age-associated CpGs are more biased by biological age
than others — but this needs to be validated in the future
[35].

In conclusion, buccal swabs resemble a suitable
specimen for epigenetic age predictions — to either
estimate chronological age in legal medicine or to gain
additional insight into biological age. The composition
of buccal epithelial cells and leukocytes can be
estimated based on DNAm at one or two cell type-
specific CpG sites. Such cell type-specific signatures
can improve the precision of epigenetic age predictions
and they might also improve other types of epigenetic
diagnostics based on buccal swabs.

METHODS

Sample collection. All samples were taken after written
consent and according to the guidelines of the local
ethics committees. Blood samples were taken at the
University Hospital in Aachen, Germany (ethics
approval number EK 041/15). Buccal swab samples
were collected at the University Hospital of RWTH
Aachen (85 samples; EK 041/15) using FLOQSwabs
(Copan Flock Technologies, Brescia, Italy) and by the
Institute for Legal Medicine of the Heinrich Heine
University in Diisseldorf, Germany (62 samples; study
number #4939) using Mastaswabs (Mast Group Itd.,
Reinfeld, Germany). Samples were stored for up to 24h
at room temperature and then at -20°C until they were
further processed for DNA isolation (up to 2 weeks).

DNA isolation and pyrosequencing. Genomic DNA was
isolated with the NucleoSpin Tissue (Macherey und
Nagel, Diiren, Germany) and the QIAamp DNA Blood
Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. Subsequently, 500 ng DNA
were bisulfite-converted using the EZ DNA
Methylation Kit (Zymo, Irvine, USA). Pyrosequencing
of the three age-associated CpGs was performed as
described in detail before [4]. Pyrosequencing of the
age-associated CpGs of the training set were taken and
processed at RWTH Aachen University; pyro-
sequencing of age-associated CpGs of the first
validation set (taken at Diisseldorf University) were
processed by Cygenia GmbH (Aachen, Germany;
www.cygenia.com); samples of the second validation

set were taken and analyzed at both locations. The
Buccal-Cell-Signature could not be applied to all
samples of the first validation set as DNA was no more
available. Further information on the pyrosequencing
assays and primer information is provided in
Supplemental Figure S6 and in Supplemental Table S1,
respectively.

DNA methylation datasets used in this study. To
identify cell type-specific CpGs in blood, buccal swabs,
and saliva samples, we utilized the following publically
available DNAm datasets (all generated on the
HumanMethylation27  and  HumanMethylation450
BeadChip platforms): for blood GSE41037 (n =
720)[16], GSE40279 (n = 656) [5] and GSE39981 (n =
27, only whole blood) [14]; for saliva GSE28746 (n =
84) [11], GSE34035 (n=197) [39], GSE39560 (n = 34)
and for buccal swabs GSE25892 (n = 106; three DNAm
profiles from this datasets were not considered as they
resemble technical replica) and GSE50586 (n = 10; only
healthy control samples) [13].

Cytological analysis of cellular compositions in buccal
swab samples. Smears of freshly taken swab samples
were fixed with M-Fix™ spray fixative (Merck,
Darmstadt, Germany) according to the manufacturer’s
instructions. Cells were stained with Hematoxylin &
Eosin (Merck, Darmstadt, Germany) or with Wright-
Giemsa stain (Sigma-Aldrich, St.Louis, USA).
Epithelial cells and leukocytes could easily be discerned
by their morphology. For each sample we analyzed 50
randomly taken microscopic fields (corresponding to
328 £+ 144 cells; cell counting was performed
independent of pyrosequencing results).

Derivation of epigenetic models. We used different
linear models in this study that were all based on -
values determined by pyrosequencing for the following
age-associated CpGs: (a) = ¢g02228185; (B) =
cg25809905, and (y) = a CpG site up-stream of
cg17861230 which revealed better correlation with age
[4]. In addition, we utilized two cell type-specific CpGs:
(8) = cg07380416 and () = 20837735.

3-CpG-blood-model: This multivariate model has been
described in detail in our previous work [4]. It was
based on pyrosequencing results of 82 blood samples:

Predicted age (in years) = 38.0 - 26.4 a - 23.7 § +164.7

Y.

3-CpG-swab-model: In analogy, we trained a similar
multivariate model based on 55 swab samples of the
training set: Predicted age (in years) = 32.69 — 8.42 o —
4738 B+ 183.25y.
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1-CpG-swab-model: Alternatively, we used the linear
regression line as 1-CpG model based on the CpG site
associated with PDEA4C: Predicted age (in years) = (y —
0.0648) / 0.0046.

Buccal-Cell-Signature: We combined the linear
regressions of the individual cell type-specific CpG
sites into one model: Percentage of buccal epithelial
cells () =(99.86+1.9)/2+(-98.1 ¢ + 88.5)/ 2.

5-CpG-swab-model: We assume that the model for
prediction of age in buccal cells can be estimated by an
additive model with predictions by the Buccal-Cell-
Signature, i.e. predicted age blood * (1 - 6 / 100) +
Predicted age buccal epithelial * (8 / 100). By using 6
estimated with the Buccal-Cell-Signature and predicted
age blood corresponds to the 3-CpG-blood-model, we
estimate parameters of age-associated linear models of
buccal epithelial cells based on the 55 swab samples of
the training set using R. This led to the following
model: Predicted age (in years) = (1 - 8 / 100) * (38.0 -
264 o -23.7B +164.7y) + (B/100) * (2.6 —11.0 o —
15.6 B+ 181.7 7).

Statistics. Error bars indicate standard deviations (SD).
The paired two-sided Student’s T-test was adopted to
estimate the probability of differences in age prediction
of different models, between smokers and non-smokers,
and between male and female samples. Differences
between ethnic groups were estmitated by an univariate
ANOVA test. Probability value of P <0.05 denotes
statistical significance.
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SUPPLEMENTAL DATA
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Figure S1. Age-association of individual CpG sites in mouth swab samples. Beta-values of the CpG sites
in the genes ITGA2B, ASPA and PDE4C were determined by pyrosequencing and correlated with chronological
age. Samples from the training and validation datasets are indicated in black and red, respectively.
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Figure S2. Cell type-specific CpGs are not age-associated. DNA-methylation levels at
the CpG sites in (A) CD6 and (B) SERPINB5 were analyzed in blood samples of different chronological
age (GSE40279). There was o clear association with chronological age, indicating that the selected.
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Figure S3. Validation of cell type-specific CpGs using independent datasets. (A)
Mean DNAm levels in samples of buccal swabs (GSE25892) and blood (GSE41037; in analogy to
Figure 2B). (B) The difference of mean s-values of individual CpG sites plotted versus the sum of
variance (in analogy to Figure 2C). The highlighted two CpGs reveal also striking differences in
these independent datasets.
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Figure S4. DNAm patterns of CpGs in CD6 and SERPINBS5. Mean B-values of all CpGs that are represented
on the 450k BeadChip for the respective genes are depicted for blood (red lines; SE40279) and mouth swab
samples (blue lines; GSE50586). Grey bars highlight the selected CpG sites. The neighboring CpGs also reveal cell-
type specific differences. TSS1500: within 1500 bp of the transcription start site; TSS200: within 200 bp of the

transcription start site; UTR: untranslated region.
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CD6

forward primer

TTTGGTTTYGTGATTTTTGGGGTGTAGTTTGGATGGGTGGGTTTTTAGTATAGGTAGTTGGGGTTTTTTTTATTAGTTTTTGTAATAG

TAGTTTAGTTTTTTGTAGAT TAAAATTATAAGTAGAATAAGTAGGYGTGAGATATTTATAGGTTGGGTTTGATYGTATGYGTGTYGGA

__manessn
Cguraous 1o

sequencing primer

GAGGAGAGAGTAGAGAGAGATATAGGAATAAGAATAGTAAAGGGTAGAGTAGATTTGYGTTAGGGGY GTATAAYGGTYGTGTT

reverse primer

SERPINB5

rwar f
AATTTTAGTTTGAATTATTTTTTTTAATTGTGGATAAGTTGTTAAGAGGTTTGAGTAGGAGAGGAGTGTYGTYGAGGYGGGGYGGG
-.-..Sequencingpnmer ___

GYGGGGYGTGGAGTTGGGTTGGTAGTGGGYGTGGYGGTGTTGTTTAGGTGAGTTATYGTTGTTTTTGTTTAGATAYGGTYGTTTT
€g20837735

TATATTTAGGTTTTTGTGTTTITYGTTTGTTTGTTTTTTTTTTAYGTATTTTTT

reverse pnmer

Figure S5. Pyrosequencing assays for the Buccal-Cell-Signature. Bisulfite converted sequence information for the CpG
sites cg07380416 (CD6) and cg20837735 (SERPINBS). Arrows indicate sites for primer annealing and direction of elongation.

Yellow indicates CpG sites after bisulfite conversion.

5-CpG-model
12 4
m
E 8 4 Figure S6. Age prediction accuracy stratified by age.
= To test if age predictions have similar accuracy in young
g donors as in older donors we divided all samples into two
= 4 groups (stratified by an age of 30 years). Mean absolute
deviations (MAD) for the training (black) and validation
® training set dataset (red) were in tendency more precise in younger
0 ® \alidation set donors. Error bars indicate standard deviations.
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Table S1. Primer sequences for pyrosequencing assays

CpG site Location Sequence
Forward Biotin-TAATTTTTTTTGGGTGATG
cg25809905
Reverse ACCAAAAATAAACAATATACTCAAT
(ITGA2B)
Sequencing CAATATACTCAATACTATACCT
Forward Biotin-ATTATTTGGTGAAATGATT
cg02228185
Reverse CAACCCTATTCTCTAAATCTC
(ASPA)
Sequencing CCCTATTCTCTAAATCTCA
Forward AGGTTTGTAGTAGGTTGAG
cgl7861230
Reverse Biotin-AACTCAAATCCCTCTC
(PDE4C)
Sequencing GTTATAGTATGATTAGAGTTT
Forward Biotin-AGTATAGGTAGTTGGGGTTTTTTTTATTAGTTTTTGTA
cg07380416
( ) Reverse CCAAATCTACTCTACCCTTTACTATTCTTATTCCTAT
CD6
Sequencing CCTATATCTCTCTCTACTCTCTCC
Forward ATTGTGGATAAGTTGTTAAGAGGTTTGAGTAGG
cg20837735
Reverse Biotin-AAACAAACAAACCAAAAACACAAAAACCTAAATAT
(SERPINB5)
Sequencing GGTGTTGTTTAGGTGAGTT
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