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Abstract: Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in
pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-
term moderate CR on immune function in humans. In this multi-center, randomized clinical trial to determine CR’s effect
on inflammation and cell-mediated immunity, 218 healthy non-obese adults (20-50 y), were assigned 25% CR (n=143) or an
ad-libitum (AL) diet (n=75), and outcomes tested at baseline, 12, and 24 months of CR. CR induced a 10.4% weight loss over
the 2-y period. Relative to AL group, CR reduced circulating inflammatory markers, including total WBC and lymphocyte
counts, ICAM-1 and leptin. Serum CRP and TNF-a concentrations were about 40% and 50% lower in CR group, respectively.
CR had no effect on the delayed-type hypersensitivity skin response or antibody response to vaccines, nor did it cause
difference in clinically significant infections. In conclusion, long-term moderate CR without malnutrition induces a
significant and persistent inhibition of inflammation without impairing key in vivo indicators of cell-mediated immunity.
Given the established role of these pro-inflammatory molecules in the pathogenesis of multiple chronic diseases, these CR-
induced adaptations suggest a shift toward a healthy phenotype.

INTRODUCTION

Calorie restriction (CR) without malnutrition is the most
powerful intervention to increase lifespan in simple
model organisms and rodents [1]. CR decreases
inflammation, which is believed to protect against age-
associated diseases [2, 3]. Low-grade chronic
inflammation is deeply implicated in the pathogenesis

of multiple age-associated chronic diseases and in the
biology of aging itself [4]. Serum concentrations of C-
reactive protein (CRP, a highly specific systemic marker
of inflammation) and TNF-a (a powerful pro-
inflammatory cytokine) are both associated with an
increased risk of developing insulin resistance, type 2
diabetes (T2D), cardiovascular disease (CVD) and cancer
[5-8]. Excessive adiposity is associated with increased
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adipose tissue TNF-a expression [9] and serum TNF-a
levels [10], which are reduced by weight loss [9, 11].
However, concerns exist regarding the potential
immunosuppressive effects of CR, because some studies
have shown a detrimental effect on cell-mediated
immune responses in monkeys [12] and increased
susceptibility to infection in rodents [13, 14]. On the
contrary, other studies in aging mouse and monkeys
show that CR can enhance the T cell receptor diversity
suggesting improved immune —surveillance [15, 16].

In humans, CR including a restriction of protein and
essential nutrients impairs cell-mediated immune
responses [17] and increases susceptibility to morbidity
and mortality from infectious diseases. However, little is
known about the long-term effects of moderate CR with
adequate intake of nutrients on inflammatory markers
and cell-mediated immune response of healthy adults.

A purpose of this 2-year multicenter randomized
controlled trial (RCT) was to evaluate the effects of a
25% CR diet on inflammatory markers [WBC count,
high sensitivity CRP (hs-CRP), pro-inflammatory
cytokines, adhesion molecules], and in vivo measures of
cell-mediated immunity [antibody response to 3 vaccines,

and delayed-type hypersensitivity skin response (DTH)
to three recall antigens] in a large number of healthy,
non-obese young and middle-aged individuals. Self-
reported infections, allergies and related medications
were documented.

RESULTS
Participants and baseline characteristics

As described previously [18], 1,069 interested individuals
were invited to an in-person screening evaluation, 238
started baseline testing and 220 were randomized. Two
CR participants dropped prior to randomization, resulting
in an ITT cohort of 218 (Figure 1 and Table 1). Thirty
participants withdrew from the study [4 (5.3%) in the AL
and 26 (18.2%) in the CR group (p= 0.01)]. Three CR
participants continued the study evaluations beyond
withdrawal and were included in analyses. There were no
differences at baseline between AL and CR groups in
biometric and demographic variables including body
weight, body mass index (BMI) and other body
composition and demographic variables, blood glucose or
lipid profile (Table 1) or for any of the immune and
inflammatory outcomes.

[ Enrollment ]

| 238 Eligible |

18 Dropped During Baseline
* Withdrew Consent (n=5)
* Found ineligible (n=10)

[ Allocation ]

o Anemia (n=2)
o Low BMD (n=8)
= Other (n=3)

!

| Randomized (N=220) |

.

25% CR (n=145)
Started intervention (n=143)
* Withdrew Consent (n=1)
* Work Related Issues (n=1)

.

Ad Libitum (n=75)
Started intervention (n=75)

|

117 Completed Intervention
26 Stopped Intervention:
* 3 women became pregnant
* 6 moved away from study site
= 3 withdrawn for safety
* 8 withdrew consent
* 6 personal and other reasons

| Follow-up

] A 4
J

71 Completed Intervention
4 Stopped Intervention:
* 3 women became pregnant
* 1 withdrew consent

Figure 1. CONSORT diagram. Two hundred and thirty eight individuals were eligible and 220 individuals were randomized. Two
individuals, both assigned to the calorie-restricted (CR) group, dropped out prior to starting the intervention, resulting in an intention-to-
treat cohort of 218 participants; 75 in the ad libitum (AL) control and 143 in the CR group (Table 1). Thirty participants were withdrawn or
dropped from the intervention prior to completion including 4 (5.3%) in the AL control group and 26 (18.2%) in the CR group (p=0.01).
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Table 1. Demographic, anthropometric and clinical characteristics at baseline for the 218 participants

who started the 2-year intervention *

Calorie Restriction (n=143)+ Ad Libitum (n=75)+
Race

White, n (%) 111 (77.6%) 57 (76%)

African American, n (%) 15 (10.5%) 11 (14.7%)

Other, n (%) 17 (11.9%) 7(9.3%)

Sex (F/M) 99F/44M 53F/22M
Age,y 38.0(7.2) 37.9(6.9)
Height, cm 168.9 (8.6) 168.4 (8.3)
Baseline Weight, kg 71.8 (9.2) 71.3 (8.6)
Baseline BMI, kg/m’ 25.1 (1.7) 25.1 (1.6)
Body Fat, % 33.6 (6.6) 32.9(6.1)
Blood pressure

SBP, mmHg 112 (9.9) 111 (9.9)

DBP, mmHg 72.1(7.5) 71.2 (7.1)
Laboratory Values

Glucose, mg/dL 81.9 (5.6) 83.6 (6.1)

Insulin, pIU/mL 5.4(0.2) 5.8(0.3)

HDL-C, mg/dL 49.1 (13.3) 49.2 (11.7)

LDL-C, mg/dL 98.0 (26.5) 105.6 (28.6)

Tg, mg/dL 103.5 (50.5) 106.8 (59.7)
Abbreviations: AL, ad libitum control group; CR, 25% calorie restriction group; SBP, systolic blood pressure; DBP,
diastolic blood pressure; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; Tg,
triglycerides.

* Values represent mean (SD).
1 No significant between group differences for all listed variables.

Intervention adherence and body composition

Participant adherence and changes in body composition
in response to CR have been published elsewhere [19].
Energy intake was reduced by 19.5 (0.8) % (480 kcal/d)
during the first 6-months of CR, and by an average of
9.1 (0.7) % (234 kcal/d) for the remaining 18-mo
(p<0.0001 vs. AL). CR induced significant reduction in
body weight [8.3 (0.3) kg (11.5%) at 1-y and a net
change of 7.6 (0.3) kg (10.4%) at 2-y (p<0.001)], BMI
and % body fat [19]. No significant change was
observed in energy intake or body composition in the
AL group. Measured by DEXA, CR induced a 6.1%

(0.2) kg change in Fat Mass at 1-yr and 5.3 (0.3) kg at
2-yr, but did not change in the AL group.

Moderate CR impacts white blood cell profile

Complete blood count and differentials (CBC-DifY)
stayed within normal ranges in both groups. However,
compared to AL, CR significantly reduced the number
of WBC at month 12 (p=0.03), and 24 (p=0.002)
(Figure 2A). There was a trend for a correlation
between changes in BMI from baseline to 24 months
and that of WBC number (r=0.14, p=0.07) when both
CR and AL groups were combined.
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A Changes in White Blood Cells
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Figure 2. Change in the number of white blood cells and lymphocytes following 2
years of calorie restriction in humans. Panel (A) baseline values of white blood cells for ad
libitum (AL) and calorie-restricted (CR) groups were 5.9 x 103/p| and 6.0 x 103/ul, respectively.
Panel (B) baseline values of lymphocytes for both AL and CR groups were 1.8 x 103/ul. Data are
mean (SE). The P value comparisons are for AL and CR groups at indicated time points.

Compared to AL, CR significantly reduced the number
of lymphocytes at month 24 (p=0.0001) (Figure 2B).
The difference in the change in lymphocytes between
CR and AL group was -0.106 at 12 months (p=0.09)
and -0.207 at month 24. (p<0.0001. A significant
correlation between changes in BMI from baseline to
month 24 and that of lymphocytes (r=0.20, p=0.006)
was observed when both CR and AL groups were
combined.

While a significant difference in change in monocytes
was observed between the two groups, this was mainly
due to an increase in the AL group. The decrease in
neutrophils in the CR group at month 24 in comparison
to the AL group tended to be significant (p=0.067)
(Supplemental Table 1). No significant differences in

the eosinophils or basophils were observed (Both
groups showed a small but significant increase in
basophils; these numbers stayed within normal ranges
(Supplemental Table 1).

Moderate CR reduces circulating inflammatory
markers

CRP (natLog) decreased significantly in the CR
compared to AL group at both months 12 and 24
(p=0.001) (Figure 3A). The correlation between change
in BMI and change in the natural logarithm of CRP
trended toward significance (r=0.15, p=0.05).

Plasma TNF-a decreased significantly in both AL and
CR groups at month 12 (-0.34 vs. -0.30 pg/mL;
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p=0.012, p=0.0024 for AL and CR, respectively);
further declines in the CR group between month 12 and
24 (p=0.018) resulted in a significantly higher decrease
in TNF-ain CR compared to AL group at month 24
(p=0.025) (Figure 3B). A significant correlation
between changes in BMI from baseline to 24 months
and that of TNFa (r=0.15, p=0.04) was observed when
both CR and AL groups were combined.

Compared to AL group, there was a significant decline
in serum ICAM-1 levels in the CR group from baseline
to month 12 (P<0.0001), however, ICAM levels in the
AL group decreased significantly between month 12
and 24 (P<0.0001) resulting in a non-significant
difference between the AL and CR groups at month 24
(P=0.14) (Figure 3C). A significant correlation between
change in BMI from baseline to 24 months and that of
ICAM-1 (r=0.17, p=0.02) was observed when both CR
and AL groups were combined.

A Changes in CRP

Change in CRP (pg/ml)

No. of participants
Ad libitum (AL) 74 70
Calorie-restricted (CR) 143

C Changes in ICAM-1

P =0.0001

Change in ICAM-1 (ng/ml)

No. of participants
Ad libitum (AL) 74 70
Calorie-restricted (CR) 143

The change in leptin level was significantly greater in
CR compared to AL group at both month 12 and 24
(p<0.0001) (Figure 3D). In addition, a significant
correlation was observed between changes in BMI from
baseline to month 24 months and changes in leptin
when both CR and AL groups were combined (r=0.60,
p=0.001).

No significant changes were observed for IL-6, IL-8,
and MCP-1 (data not shown).

Response to vaccine

Antibody responses to vaccines were measured at the
end of the intervention. Three vaccines, Hepatitis A
(HEP-A) (primary T cell-dependent), tetanus/diphtheria
(TD) (secondary T cell-dependent) and pneumococcal
(B cell dependent) (PN) were administered at month 17.
A booster shot for HEP-A was administered at month
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Figure 3. Change in plasma concentrations of inflammation markers following 2 years of calorie restriction in
humans. Panel (A) baseline values of C-reactive protein (hs-CRP) for ad libitum (AL) and calorie-restricted (CR) groups were
1.1 and 1.5 pg/mL, respectively. Panel (B) baseline values of tumor necrosis factor-alpha (TNF-a) for AL and CR groups were
3.1 and 3.5 pg/ml, respectively. Panel (C) baseline values of intercellular adhesion molecule-1 (ICAM-1) for AL and CR
groups were 165.4 and 165.0 ng/ml, respectively. Panel (D) baseline values of leptin for AL and CR groups were 17.7 and
16.9 ng/ml, respectively. Data are mean (SE). The P value comparisons are for AL and CR groups at indicated time points.
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23. Blood for antibody response was collected at month
17 (before vaccination), 18, and 24 (after vaccination)
for all vaccines, and 23 for before HEP-A booster.
There was no significant difference between AL and CR
groups in pre-vaccination (month 17 and 23) or post-
vaccination (month 18 and 24) levels of antibodies to
Hepatits A HEP-A, TD), or any of the PN IgG serotypes
(1,2,3,4,5,6,7F, 8,9N, 9V, 10A, 11A, 12F, 14, 15B,
17F, 18C, 19A, 19F, 20, 22F, 23F, 33F) (Supplemental
Table 3).

For HEP-A antibody level, the majority of subjects
within both AL and CR groups had levels above the

detection limit and thus quantitative values could not be
obtained. However, there were no differences between
AL and CR groups in % participants who had values
above the detection limit at any time point for HEP-A or
other vaccines.

DTH

There was no significant difference at baseline between
AL and CR groups in the diameter of induration at 24 or
48 h for individual antigens or for total diameter of
induration (Table 2), nor in number of positive antigens.

Table 2. Effect of calorie restriction on delayed-type hypersensitivity skin response at 48 hours*

Time point
Variable Baseline Month 12 Month 24
Trichophyton (diameter of induration, mm)
AL 0.9 (0.3) 2.2 (0.6) 3.1(0.8)
CR 1.5(0.4) 1.1 (0.5) 1.8 (0.7)
p-value 0.79 0.294 0.381
Tetanus (diameter of induration, mm)
AL 12.1 (1.1) 10.5 (1.3) 9.7 (1.Dt, &
CR 13.5 (1.0) 10.5 (1.0)F 8.0 (0.9t
p-value 0.812 1 0.407
Candida (diameter of induration, mm)
AL 7.5(0.9) 9.2(1.3) 9.4 (1.2)
CR 9.5 (0.8) 10.0 (1.0) 8.7(0.9)
p-value 0.167 1 1
Total Diameter of Induration (mm) for all observed values
AL 20.5 (1.7) 20.6 (2.2) 21.5(1.9)
CR 244 (1.4 21.2(1.6) 18.2 (1.6)1, §
p-value 0.127 1 0.353
Number of Positive Responses (> Smm)
AL 1.48 (0.09) 1.64 (0.11) 1.72 (0.13)
CR 1.59 (0.07) 1.69 (0.08) 1.59 (0.07)
p-value 0.392 0.737 0.361
Abbreviations: AL, ad libitum control group; CR, 25% calorie restriction group.
* Results are mean (SE). Predicted values based on statistical analysis.
1 Significantly different from baseline within each treatment group at p<0.05.
1 p<0.016 for response to Tetanus toxoid.
§ p<0.001 for total diameter of induration.
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There were no significant main effects of treatment or
time and their interaction or in the change during 2-
years in the total number of positive antigens or total
diameter of induration for positive responses (>5mm) or
all observed responses at 24 or 48 hours between CR
and AL groups. A significant within CR group change
from baseline to month 24 (p=0.001) in total diameter
of induration (Table 2) was observed and both groups
showed a significant decline in the diameter of
induration for positive responses (values >5mm) to
Tetanus toxoid (p=0.016). The reason for this decline is
not clear and cannot be explained by any
methodological inconsistency, changes in participants’
health status, timing of administration of DTH, or
timing of tetanus vaccination.

Infection

Incidence of total infections or organ-specific
infections, allergies and associated medications as well
as severity of infections and allergies over the 24-month
follow-up did not significantly differ between AL and
CR groups (Supplemental Tables 3A and B). This was
true for the annualized rate of infection and allergies
with the exception of lower respiratory (CR group
tended to have a lower rate 0.046 vs 0.015; p=0.058)
and eye infections (CR group had a higher rate 0.00 vs
0.019; p=0.036) (Supplemental Table 3A).

DISCUSSION

This is the first RCT to test the long-term effects of
moderate CR without malnutrition in a large sample of
young and middle-aged non-obese individuals using a
variety of inflammatory and immune outcomes. We
show that 25% CR for 24 mo persistently reduced
circulating inflammatory markers including WBC
count. Serum concentrations of CRP and TNF-o were
about 40% and 50% lower in the CR group,
respectively. Furthermore, despite a major reduction in
body fat and circulating leptin levels, a significant
impairment in key in vivo measures of adaptive immune
function with CR was not observed in our study and this
finding is supported by the lack of clinically significant
differences in self-reported infection rate between CR
and AL groups.

Low-grade chronic inflammation is implicated in the
pathogenesis of multiple age-associated chronic
diseases and in the biology of aging itself [4]. On the
other hand, research on rodents housed in pathogen-free
facilities and data from undernourished children and
adults living in third world countries suggest that a
chronic reduction in energy intake may impair adaptive
immunity against pathogens by lowering leptin and

other nutrient-sensing pathways [17, 20] While data
from animal and observational human studies show that
CR without malnutrition inhibits inflammation [3, 20-
22], this RCT is the first to show a causal relationship in
humans. The WBC count has been broadly used as a
non-specific marker of systemic inflammation [23],
with higher levels, even when within the clinical
reference range, associated with an increased risk of
developing insulin resistance, T2D [24], hypertension
[25], CVD [26], and cancer [27]. Moreover, the relative
risk of CVD and cancer mortality increases in a dose-
dependent manner with increasing WBC count,
independent of other risk factors [28]. Data from
previous weight loss studies in obese individuals have
shown that CR reduces total WBC count, IL-1f, IL-6,
and TNF-a [29]. We found that CR induced a
significant reduction in total WBC, lymphocyte and
monocyte count, as well as a strong trend (p=0.067) for
a decrease in neutrophils, suggesting that CR has
metabolic benefits even in non-obese individuals. The
anti-inflammatory effect of CR is further supported by
the CR-induced decrease in serum levels of CRP, TNF-
a, ICAM-1, and leptin [30]. However, in our study the
serum concentrations of other pro-inflammatory
cytokines and chemokines (IL-6, IL-8, MCP-1) were
not significantly altered by CR, probably because our
volunteers were healthy, young to middle-aged and non-
obese, with relatively low levels of visceral adiposity
[31]. Since obesity-associated increase in circulating IL-
6 is mainly contributed by increased output from the
visceral adipose tissue [31], it is possible that a
reduction in visceral fat mass would lead to more
pronounced IL-6-lowering effect in an obese individual
relative to their non-obese counterpart with an already
low IL-6 level.

The mechanisms underlying the anti-inflammatory
effect of CR are not entirely clear. It is hypothesized
that the reductions in fat mass and leptin largely explain
the beneficial effect of CR on inflammation. However,
our findings suggest that other metabolic and molecular
factors may play a role, because peak reduction in
circulating leptin levels at month 12 were not
accompanied by a significant reduction in serum TNF-a
levels. Thus, the significant reduction in CRP and TNF-
a. concentrations observed at 24 months may be due to
CR-induced alterations of the neuroendocrine system
through the down-regulation of nutrient-sensing
pathways that impact mitochondrial function, redox
status and inflammatory gene activation [32-35].

A major finding of this study is the lack of significant
negative effects of CR on key in vivo indicators of cell-
mediated immunity. There is controversy in the
literature regarding the impact of CR on cell-mediated
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immunity. Although some animal studies indicate that
age-associated impairment of immune function may be
improved by CR, and short-term CR in a small number
of subjects improved T cell-mediated function [36],
others have raised concern regarding the potential
adverse impact of CR on cell-mediated immunity and
resistance to pathogens. For example, CR mice were
shown to have lower natural killer cell activity,
decreased survival, and delayed viral -clearance
compared to ad-libitum fed mice [13, 14], which can be
reversed by re-feeding [37]. CR also caused higher
mortality from polymicrobial sepsis [38] and West Nile
Virus [39], and more susceptibility to the intestinal
parasite (Heligmosomoides bakeri) infection [40] in
mice. In this study, despite a ~57% decrease in leptin,
CR did not exert any detrimental effect on the two best
available in vivo indicators of acquired (specific)
immunity, i.e., antibody production to vaccines and
DTH to recall antigens. This difference might be due to
moderate level of CR (25%) administered in the current
study compared to that used in several animal studies
which can be as high as 40%. Taken together, these
results suggest that moderate CR without malnutrition is
safe and does not adversely affect immune response to
pathogens, which is also supported by the lack of
clinically significant differences in self-reported
infection rate between CR and AL groups. It will be
interesting to determine if lower than 25% CR would be
effective in reducing inflammation.

In conclusion, data from this unique RCT showed that
moderate long-term CR without malnutrition decreases
inflammation in non-obese, healthy adults, as
demonstrated by reduced number of WBC,
lymphocytes, and neutrophils in blood, as well as
reduced circulating levels of CRP, leptin, TNF-a, and
ICAM-1, with no significant adverse effect on key in
vivo indicators of cell-mediated immunity. These CR-
induced changes suggest a shift toward a healthy
phenotype, given the established role of these pro-
inflammatory molecules as risk markers in the
development of metabolic syndrome and age-related
chronic diseases, in particular CVD, T2D and cancer.

METHODS

Overview. The Comprehensive Assessment of Long-
term Effects of Reducing Intake of Energy (CALERIE)
Phase 2 Study was a two-year, multi-center, parallel-
group, single-blind RCT of healthy individuals
receiving an intervention to reduce energy intake by
25% (CR) or maintain habitual ad libitum intake (AL-
control) group. Clinical outcomes were assessed every
6-mo as detailed elsewhere [19, 41]. The study protocol
(ClinicalTrials.gov ID:NCT00427193), was approved

by the institutional review boards at all research sites,
and participants provided written informed consent.
Exclusion criteria for administration of vaccine and/or
DTH included history of allergic reactions, infection or
exposure to antibiotics in the previous two-weeks, non-
steroidal anti-inflammatory drugs within 72 h,
vaccination within last 6-wk, steroids >10 mg/d, or any
immunosuppressive medication. For Hepatitis A only
participants were screened out of the vaccination testing
if they had previously received a vaccination.

Baseline testing was conducted over six weeks and
included evaluations of health status and doubly labeled
water (DLW) measurements of energy expenditure to
individualize the 25% CR prescription. Fasting blood
samples were collected for immune parameters. DTH
and vaccines were administered as indicated below.

Following Dbaseline testing, participants were
randomized to either AL or CR in a 2:1 allocation in
favor of CR. Randomization was stratified by site (3
sites), sex, and BMI (normal weight, overweight).

The intervention targeted an immediate and sustained
25% CR [42, 43]. Control participants were advised to
continue their current diets. No specific level of
physical activity was recommended. Percent CR was
calculated and adherence evaluated from DLW
measurements at months 12 and 24 [43]. Participants
(both CR and AL) received a multivitamin and mineral
supplement (Nature Made Multi Complete, Pharmavite,
Mission Hills, CA) plus a calcium supplement (1000
mg/d, Douglas Laboratories, Pittsburgh, PA) to ensure
current recommendations for micronutrients were met
regardless of the intervention allocation.

Outcome assessments.  Participants were weighed in a
pre-weighed hospital gown after an overnight fast
(Scale Tronix 5200, White Plains, NY). Height was
measured twice using a wall-mounted stadiometer.
Percent body fat, lean mass, and bone were measured
by dual X-ray absorptiometry (DXA; Hologic Inc.,
Bedford, MA) and analyzed using Hologic software
version Apex 3.3.

As part of safety testing, participants record signs,
symptoms, adverse events, and medication use in a
diary and hematology, serum chemistry and urinalysis
were monitored every 3-mo [41]. Self-reported
infection, allergy, and antibiotic use and duration were
recorded throughout the study and coded for severity
(mild, moderate, and severe) by the Coordinating
Center in accordance with MedRA version 14.1 and
WHO Drug Dictionary Enhanced-March 2012
guidelines.

www.impactaging.com

AGING, July 2016, Vol.8 No.7



Immune and inflammatory markers. Inflammatory
markers were measured in fasting blood at baseline,

month 12 and 24, and analyzed at the University of
Vermont. Hs-CRP was measured using particle-
enhanced immunonephelometric assay (BN II, Siemens,
Deerfield, IL; CV=3.2 + 2.5%); TNF-a, monocyte
chemoattractant protein-1 (MCP-1), leptin, IL-1B, and
IL-8 wusing the multiplex immunoassay (Human
Adipokine Panel B, Millipore, Billerica, MA; Bio-Plex
200, Bio-Rad  Laboratories, Hercules, CA,;
CV=6.1¢1.7%, 6.4+2.1%, 4.3x1.5%, 8.0+4.4% and
8.7£3.9%, respectively); and IL-6 and intracellular
adhesion molecule-1 (ICAM-1) using ELISA (R&D
Systems, Minneapolis, MN; CV=7.9£3.1% and
8.2+1.2%, respectively). Complete blood count and
WBC differential (CBC-Diff) were assayed using
automated methods (Esoterix Inc., a LabCorp
Company, Cranford, NJ).

In vivo cell-mediated immunity was assessed using
delayed type hypersensitivity skin response (DTH) and
antibody response to 3 vaccines. DTH, which
determines ability of immune response to antigens to
which it has been previously exposed, was assessed
using Mantoux test. Three recall antigens [7etanus
toxoid (Aventis Pasteur), Candida albicans (Candin;
Allermed Laboratories, San Diego, CA), and
Trichophyton species (Trichophyton mentagrophytes in
conjunction with Trichophyton rubrum; Hollister-Stier
Labs, Spokane, WA)] and a negative control (0.9%
normal saline) were used. Antigens were employed in a
standard volume of 0.1 mL except Tetanus toxoid
[0.025 mL (0.2 limit of flocculation units per dose)] and
were injected intradermally on the volar surface of the
forearm by trained research staff. Vertical and
horizontal diameters of induration after 24 and 48 h
were measured, and mean values >5 mm were
considered positive. Total diameter of induration was
calculated from sum of the means of the 3 antigens.

Antibody responses to vaccines were measured at the
end of the intervention. Three vaccines, Hepatitis A
(HEP-A) (primary T cell-dependent), tetanus/diphtheria
(TD) (secondary T cell-dependent) and pneumococcal
(B cell dependent) (PN) were administered at month 17.
A booster shot for HEP-A was administered at month
23. Blood for antibody response was collected at month
17 (before vaccination), 18, and 24 (after vaccination)
for all vaccines, and 23 for before HEP-A booster. Anti-
HEP-A virus (anti-HAV) antibodies (total immuno-
globulin, IgM and IgG) were measured by chemi-
luminescent immunoassay (Elecsys, Roche Diagnostics,
Indianapolis, IN; CV=1.9 + 1.4%), anti-diphtheria, and
anti-tetanus toxoid IgG antibodies by EIA, and anti-
Streptococcus pneumonia 1gG antibodies (23 serotypes)

by microsphere photometry at Mayo Medical
Laboratories, Rochester, MN.

Complete blood count with differentials(CBC). CBC
and white cell differential were assayed using
automated  methods employed by Esoterix Inc.
(A LabCorp Company, Cranford, NJ)

Infection, asthma, allergies and antibiotic use. Self-
reported infection, and asthma, allergy and antibiotic
use, and their start and end date were recorded
throughout the intervention period and coded based on
severity (mild, moderate and severe) by the
Coordinating Center in accordance with MedRA
version 14.1 and WHO Drug Dictionary Enhanced-
March 2012 guidelines.

Statistical methods. Methods for the overall CALERIE
study have been described elsewhere [19]. Briefly,
intention-to-treat analysis was performed by including
all available observations. For continuous outcomes
(CBC-Diff and inflammatory markers) repeated Mixed
models analysis [44-46] were used to examine change
from baseline, controlling for site, sex, BMI stratum,
and the baseline value for the outcome of interest.
Significant between-group differences at each time
point were tested at 0=0.05. Bonferroni correction was
applied where appropriate [47] for between group p
values while within group changes p-values were
always protected by a Bonferroni correction.

For values beyond the limits of detection of the assay
for antibody response, a parametric regression model
used in survival analysis [48] was applied. Values
above or below detection limits were considered
censored at those points. Between-group tests were
performed using the lognormal distribution for the
outcome adjusting for site, sex, and BMI stratum.

For the three DTH antigens, individual positive values
were analyzed using the generalized estimating equation
model [49] with the logit link and the Bernoulli
variance. The number of positive antigens (0, 1, 2 or 3)
was treated as a binomial outcome and analyzed in a
similar manner. The induration diameters were treated
as continuous and were analyzed using the repeated
measures model described above.

The annualized infection, allergy, and associated
medication rates were derived as the total number of
episodes (or drugs) divided by the amount of follow-up
time. For any outcome, a between-group comparison
was performed using a generalized linear model [50]
with the /n link and the Poisson variance, adjusting for
site, sex and BMI stratum; the natural logarithm of the
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amount of follow-up time contributed by each
participant was included as an offset. The incidence of
any infection was treated as a binary outcome, and
analyzed using the same /n-Poisson model with the
modification suggested by Zou [51].

All analyses were performed by the statistical unit at
Duke University Clinical Research Institute (DCRI,
Durham, NC) using SAS software version 9.2 (SAS
Institute Inc., Cary, NC).
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SUPPLEMENTAL DATA

Appendix Table 1. Effect of calorie restriction on white blood cells*
Treatment Group
Variable (time) CR AL p-value §
Total monocytes (10°/uL)
Baseline 0.33 (0.01) 0.32 (0.01)
Mo. 12 0.32 (0.01) 0.37 (0.01) 0.004
Mo. 24 0.32 (0.01) 0.35(0.01) 0.034
Total Neutrophils (10°/uL)
Baseline 3.68 (0.11) 3.60 (0.13)
Mo. 12 3.41(0.12) 3.71 (0.16) 0.106
Mo. 24 3.24 (0.10) 3.54 (0.14) 0.067
Total Eosinophils (10°/uL)
Baseline 0.14 (0.01) 0.11 (0.01)
Mo. 12 0.14 (0.01) 0.12 (0.01) 0.095
Mo. 24 0.13 (0.01) 0.15(0.01) 0.102
Total Basophils (10°/uL)
Baseline 0.01 (0.001) 0.02 (0.002)
Mo. 12 0.021 (0.002) t 0.025 (0.002) f 0.378
Mo. 24 0.020 (0.002) T 0.024 (0.002) f 0.443
* Results are mean (SE) and reflect predicted values at months 12 and 24 based on intention-to-treat (ITT) statistical
analysis, p-values reflect the ITT analyses for changes from baseline at each time point.
1 Significantly different from baseline within the same treatment group.
I Values reflect difference in change from baseline between treatment groups at each time point.
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Appendix Table 2. Effect of calorie restriction on antibody response to Hepatitis A, Tetanus/Diphtheria and
Pneumococcal vaccines

Median (IQR)* % with detectable values
Time (Mos.) 17 | 18 | 24 17 | 18 | 24
Hepatitis A (IU/L)
AL 9.7(7.8,11.7) | 41.7 (29.5, NA 42.9% 27.5% 0%t
53.7)
CR 8.6(7.5,10.3) | 37.3 (26.0, 28.5 (16.4, 28.0% 23.2% 5.1%%
53.0) 40.7)
p-value 0.601% 0.983% NA 0.670 0.832 0.332
Tetanus (IU/mL)
AL 243 (1.8,3.5) | 495(3.8,59) | 3.31(2.6,4.1) 90.2% 51.7% 79.3%
CR 2.56(1.7,3.9) | 437(3.3,5.7) | 3.70(2.6,5.0) 93.1% 52.9% 79.4%
p-value 0.675 0.775 0.940 0.499% 0.876% 0.992%
Diphtheria (IU/mL)
AL 0.36 (0.2,0.7) 1.1(0.7,1.9) | 0.77(0.4,1.1) 100% 93.3% 98.3%
CR 0.35(0.2,0.7) 1.1(0.7,1.5) | 0.75(0.4,1.3) 98% 87.3% 100%
p-value 0.350 0.644 0.901 0.273 0.416 0.196
Pneumonia IgG Serotype 1 (ug/mL)
AL 1.5(0.8,4.5) 10.0 (3.7, 8.1(3.1,30.5) 85.7% 95.1% 100%
35.4)
CR 1.7(0.8,3.9) | 7.0(2.5,23.7) | 6.3(2.9,21.3) 77.9% 96.1% 94.6%
p-value 0.604 0.474 0.233 0.356 0.624 0.314
Pneumonia IgG Serotype 2 (ug/mL)
AL 0.65(04,1.3) | 55(22,93) | 43(2.1,12.5) 88.9% 94.3% 100%
CR 0.70(0.4,1.5) | 3.7(1.7,10.7) | 3.5(1.4,9.9 80.4% 100% 98.8%
p-value 0.437 0.553 0.296 0.185 0.448 0.456
Pneumonia IgG Serotype 3 (ng/mL)
AL 1.0 (0.5, 2.8) 3.8 (1.6, 8.0) 29(1.1,7.7) 90.5% 98.4% 98.1%
CR 1.2 (0.5, 2.8) 32(1.8,7.1) 2.5(1.2,6.6) 88.3% 99.0% 98.9%
p-value 0.853 0.973 0.599 0.971 0.702 0.676
Pneumonia IgG Serotype 4 (ug/mL)
AL 0.5 (0.2, 1.6) 1.3 (0.5, 3.6) 1.1(0.4,3.9) 76.2% 100% 100%
CR 0.4 (0.2, 1.0) 1.7 (0.9,4.2) 1.2 (0.7,3.2) 78.8% 98.1% 97.8%
p-value 0.856 0.158 0.598 0.498 1.00 1.00
Pneumonia IgG Serotype 5 (ug/mL)
AL 2.8(1.0,52) | 47(26,134) | 41(23,11.3) 96.8% 100% 100%
CR 3.0(1.2,5.1) | 45(2.0,12.8) | 49(2.1,11.5) 95.2% 100% 100%
p-value 0.788 0.792 0.944 0.611 0.611 0.611
Pneumonia IgG Serotype 8 (ug/mL)
AL 1.1 (0.6, 2.6) 3.5(1.8,7.5) 3.0(1.5,6.9) 100% 100% 100%
CR 1.1 (0.5, 2.6) 26(1.2,64) 2.6(1.3,5.3) 99.0% 99.0% 98.9%
p-value 0.511 0.433 0.357 0.436 0.444 0.455
Pneumonia IgG Serotype 14 (ug/mL)
AL 32(1.3,52) 11.7 (4.3, 13.6 (4.2, 74.6% 93.4% 86.5%
30.6) 29.4)
CR 22(1.2,48) | 9.7(2.8,31.7) | 9.53.0,27.8) 72.1% 90.4% 90.3%
p-value 0.423 0.357 0.908 0.726 0.498 0.487
Pneumonia IgG Serotype 20 (ug/mL)
AL 0.8(04,1.8) | 3.0(1.0,11.9) | 2.5(0.9,5.3) 79.4% 98.4% 96.2%
CR 0.8 (0.5, 1.8) 2.2 (0.9,7.6) 2.1(0.7,5.9) 75.0% 94.2% 93.5%
p-value 0.777 0.215 0.514 0.723 0.503 0.910
Pneumonia IgG Serotype 6B (ug/mL)
AL 25(1.2,52) | 51(28,11.9) | 43(2.3,10.2) 85.7% 93.4% 92.3%
CR 274,48 | 52@3.0,12.7) | 53(28,11.9 82.7% 96.2% 92.4%
p-value 0.876 0.401 0.564 0.854 0.187 0.630
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Pneumonia IgG Serotype 7F (ug/mL)

AL 30(1.7,6.8) | 52(2.6,11.4) | 4.8(2.5,9.6) 98.4% 96.7% 98.1%
CR 2.8(1.5,53) | 48(23,10.1) | 48(2.7,9.3) 95.2% 95.2% 97.8%
p-value 0.395 0.639 0.910 0.280 0.385 0.927
Continued to next page
Median (IQR)* % with detectable values
Time (Mos.) 17 18 24 17 | 18 24
Pneumonia IgG Serotype 9N (ug/mL)
AL 1.3(0.7,3.2) 24(1.2,8.0) 2.5(1.2,6.5) 90.5% 100% 100%
CR 1.4 (0.6, 3.5) 2.8(1.2,6.0 2.7(1.2,6.3) 77.9% 95.1% 95.7%
p-value 0.140 0.633 0.674 0.083 0.734 0.457
Pneumonia IgG Serotype 9V (ug/mL)
AL 2.1(1.0,4.0) | 3901.3,11.2) | 43(1.7,9.1) 95.2% 96.7% 96.2%
CR 1.9 (1.0,4.7) 3.4(1.6,8.2) 3.5(1.6,84) 92.3% 96.2% 96.8%
p-value 0.636 0.162 0.215 0.461 0.851 0.845
Pneumonia IgG Serotype 10A (ug/mL)
AL 1.9(0.9,5.00) | 34(1.6,13.9) | 2.8(1.3,8.0) 85.7% 88.5% 92.3%
CR 2.7(0.9,5.0) 3.8(1.3,9.5) 3.0(1.1,8.0) 76.9% 89.4% 89.2%
p-value 0.393 0.681 0.325 0.168 0.859 0.551
Pneumonia IgG Serotype 11A (ug/mL)
AL 1.1(0.5,2.2) 3.4(1.9,8.8) 2.9(1.5,6.8) 87.3% 98.4% 100%
CR 1.2(0.5,4.2) 4.1(2.0,8.6) 3.6 (1.6,8.1) 94.2% 100% 98.9%
p-value 0.093 0.799 0.905 0.118 0.194 0.455
Pneumonia IgG Serotype 12F (ug/mL)
AL 0.4 (0.2, 1.0) 0.6 (0.3, 2.0) 0.7 (0.3,2.5) 81.0% 91.8% 90.4%
CR 0.6 (0.3,2.1) 1.2(04,3.9 1.0(04,4.1) 74.0% 92.3% 89.2%
p-value 0.626 0.211 0.395 0.308 0.908 0.830
Pneumonia IgG Serotype 15B (ug/mL)
AL 0.8(04,1.6) | 3.7(1.7,13.7) | 3.0(1.5,11.9) 84.1% 98.4% 100%
CR 0.8(04,2.0) | 41(1.6,13.0) | 4.0(1.6,10.4) 84.6% 98.1% 96.8%
p-value 0.577 0.650 0.672 0.933 0.452 0.192
Pneumonia IgG Serotype 17F (ug/mL)
AL 32(1.5,64) 12.1 (4.7, 10.3 (4.0, 85.7% 98.4% 100%
21.9) 19.8)
CR 3.0 (1.6, 6.0) 11.1 (5.0, 10.8 (5.7, 89.4% 98.1% 97.8%
24.8) 19.4)
p-value 0.739 0.785 0.897 0.476 0.896 0.289
Pneumonia IgG Serotype 18C (ug/mL)
AL 0.6(03,14) | 3571.0,102) | 3.4(1.1,94) 68.3% 98.4% 92.3%
CR 0.8(0.5,2.00 | 44(1.5,10.8) | 4.3(1.3,8.6) 71.2% 98.1% 97.8%
p-value 0.239 0.303 0.344 0.693 0.896 0.109
Pneumonia IgG Serotype 19A (ug/mL)
AL 4.7(2.6,12.5) | 8.5(3.6,24.8) 11.3 (4.8, 76.2% 88.3% 86.3%
23.7)
CR 43(2.3,94) 13.0 (5.7, 12.9 (4.8, 79.4% 89.0% 89.9%
38.0) 39.2)
p-value 0.798 0.451 0.581 0.628 0.611 0.957
Pneumonia IgG Serotype 19F (ug/mL)
AL 2.7(1.3,51) | 52(2.6,16.6) | 3.9(2.0,13.8) 74.6% 86.9% 90.4%
CR 29(1.5,56) | 84(29,18.0) | 5.9 (2.5,12.0) 84.6% 91.3% 93.5%
p-value 0.063 0.228 0.256 0.062 0.200 0.254
Pneumonia IgG Serotype 22F (nug/mL)
AL 42(2.1,8.0) | 52(2.7,10.2) | 4.9 (2.5,10.6) 96.8% 95.1% 98.1%
CR 33(1.6,8.8) | 3.6(2.0,10.1) | 4.5(2.0,9.0) 91.3% 96.2% 95.7%
p-value 0.165 0.413 0.379 0.031 0.503 0.453
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Pneumonia IgG Serotype 23F (ug/mL)

AL 7.8(3.2,16.4) | 8.8(3.3,20.0) | 8.1(3.4,21.0) 95.2% 93.4% 96.2%

CR 7.5(2.8,16.2) | 9.3(3.7,21.0) | 9.6 (3.5,18.8) 92.3% 94.2% 93.5%

p-value 0.532 0.726 0.505 0.461 0.524 0.511
Pneumonia IgG Serotype 33F (ug/mL)

AL 1.2(0.6,2.9) | 43(1.3,13.0) | 44(1.5,11.2) 85.7% 100% 98.1%

CR 0.9(0.5,2.4) 5.0(1.8,9.6) | 42(1.8,12.5) 89.4% 96.2% 97.8%

p-value 0.363 0.636 0.980 0.285 0.444 0.441

* Based on observations within detectable range. IQR, Inter-Quartile Range
1 For Hepatitis A values reflect those above the detectable range.
1 p-values are from statistical analysis accounting for censoring.

NA: Since majority of values were beyond the detectable range quantitative analysis could not be performed.

Appendix Table 3A. Annualized Rate of Infections, Allergies and Associated Medications Over the 24-Month Follow-up

AL (N=75) CR (N=143)
Total Total
No. Average Annualized No. Average Annualized

Event Episodes* No. Days¥t Ratel Episodes* No. DaysT Rate p-value§
All Infections 156 14.5 1.032 239 9.8 0.897 0.2838

Total respiratory 115 11.9 0.761 169 7.2 0.635 0.2099
infections

Upper respiratory 108 10.9 0.715 165 6.9 0.620 0.3684
infections

Lower respiratory 7 1.0 0.046 4 0.2 0.015 0.0583
infections

GI infections 7 0.2 0.046 18 0.4 0.068 0.3602

Skin infections 9 0.7 0.060 7 0.2 0.026 0.1161

Urinary track infections 6 0.5 0.040 11 0.4 0.041 0.9154

Ear infections 4 0.3 0.026 2 0.1 0.008 0.1420

Eye infections 0 0.0 0.000 5 0.1 0.019 0.0357

Oral dental infections 6 0.3 0.040 19 0.9 0.071 0.1445
Allergies 36 1.3 0.238 47 1.2 0.176 0.1912
OTC Medication Use 190 145.0 1.257 346 229.9 1.299 0.7120
Allergy Medication Use 82 55.5 0.543 138 50.8 0.518 0.7871
Antibiotics Medication 71 35.6 0.470 139 33.9 0.522 0.4516
Use

* Total number of distinct episodes summed across participants in that treatment arm.
1 The total number of days during which the event was prevalent across participants in that treatment arm, divided by the number of
participants in that treatment group
1 Total number of distinct events divided by the total amount of follow-up time in that treatment arm, standardized to 365 days in a

calendar year.

§ The p-value is derived from the Poisson regression model comparing the number of distinct episodes between the two groups.
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Appendix Table 3B. Distribution of the Severity of the Events, Pooled Across all Events Among Participants Who Experienced the Event at Least

Once
AL (N=75) CR (N=143)
No. Pts
No. Pts >=1 >=1
Event event* Mild+ Moderate Severe event* Mild+ Moderate Severe
All Infections 53 70 (44.9%) 64 (41.0%) 22 89 99 (41.4%) 111 (46.4%) 29 (12.1%)
(14.1%)

Total respiratory 48 51 (44.3%) 51 (44.3%) 13 79 71 (42.0%) 77 (45.6%) 21 (12.4%)
infections (11.3%)

Upper respiratory 46 49 (45.4%) 47 (43.5%) 12 79 70 (42.4%) 74 (44.8%) 21 (12.7%)
infections (11.1%)

Lower respiratory 5 2 (28.6%) 4 (57.1%) 1(14.3%) 4 1 (25.0%) 3 (75.0%) 0
infections

GI infections 7 2 (28.6%) 1 (14.3%) 4 (57.1%) 14 6 (33.3%) 8 (44.4%) 4 (22.2%)

Skin infections 7 6 (66.7%) 3 (33.3%) 0 7 3 (42.9%) 3 (42.9%) 1 (14.3%)

Urinary track infections 4 2 (33.3%) 3 (50.0%) 1 (16.7%) 8 1(9.1%) 10 (90.9%) 0

Ear infections 3 0 1 (25.0%) 3 (75.0%) 2 0 0 2

(100.0%)

Eye infections 0 0 0 0 4 3 (60.0%) 2 (40.0%) 0

Oral dental infections 4 3 (50.0%) 3(50.0%) 0 7 10 (52.6%) 8 (42.1%) 1(5.3%)
Allergies 16 27 (75.0%) 6 (16.7%) 3 (8.3%) 23 28 (59.6%) 13 (27.7%) 6 (12.8%)

* Number of participants who experienced the event at least once in that treatment arm.
+ The frequency and percent of all such events pooled across all events across all participants who experienced that event at least once.
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