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Abstract: Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats
in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA
methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is
associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various
brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age
acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years.
Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After
excluding controls, we observe a negative correlation (r=-0.41, p=5.5x10'8) between HD gene CAG repeat length and the
epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a
significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated
epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels.

INTRODUCTION trinucleotide repeat expansion resulting in an elongated

polyglutamine stretch near the N-terminus of the
Huntington’s disease (HD) is a dominantly inherited huntingtin (HTT) protein [2]. HD patients have CAG
neurodegenerative disorder clinically characterized by repeat lengths greater than 36 on one of the HTT alleles.
progressive movement disorder, cognitive dysfunction, Although HD affects a number of brain regions such as
and psychiatric impairment [1]. HD is caused by a CAG the cortex, thalamus, and subthalamic nucleus, the
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striatum is the most severely affected region [3]. Large
postmortem pathological series and neuroimaging studies
suggest that CAG repeat length is highly correlated with
caudate but not cortical atrophy [4-6]. The hallmark of
HD neuropathology is massive degeneration of the
striatal medium-sized spiny neurons (MSNs) and, to a
lesser extent, the deep layer cortical pyramidal neurons
[7]. HD neurodegeneration mainly affects the MSNs of
the neostriatal nuclei, caudate nucleus and putamen,
explaining the grave motor symptoms. Despite the
specificity of neurodegeneration in HD, HTT is broadly
present in cells throughout the brain [8].

HD is one of several polyglutamine disorders (including
inherited ataxias, muscular dystrophy, and several forms
of mental retardation [3]) that are caused by the
expansion of unstable CAG trinucleotide repeats. The
differential pathogenesis of polyglutamine disorders
may be due to differences in polyglutamine protein
context or functions because these disorders exhibit
distinct patterns of neuronal loss and clinical
manifestation despite nearly ubiquitous expression of
these proteins, at least in the brain, and in the case of
HTT the ubiquitous expression throughout the body and
during development.

The age of onset of HD motor symptoms strongly
correlates with the number of CAG trinucleotide repeats
in HTT [9-11]. HD patients are usually clinically
diagnosed in their 40s, but the age of onset can range
from earlier than 10 for individuals with high repeat
lengths to over 80 years for those with repeat lengths
below 40. Overall, three non-mutually exclusive
hypotheses could explain adult onset in HD: First,
normal aging renders MSNs more vulnerable to mutant
HTT toxicity [12]. Second, mutant HTT progressively
produces cumulative defects over time. Third, mutant
HTT toxicity accelerates the biological age of affected
cells and tissues, which makes them wvulnerable to
dysfunction and cell death. We are not aware of any
data or results that would support this third hypothesis.
Irrespective  of the wvalidity of this "accelerated
biological age hypothesis in HD", there is little doubt
that biological age plays an important role in HD. For
example, the product of CAG repeat length and
chronological age (“CAP score") relates to clinical
outcomes in HD according to recent longitudinal studies
of HD patient cohorts [10]. Here, we address the
challenge of directly testing whether HD is associated
with accelerated aging in brain tissue by exploiting our
DNA methylation based biomarker of tissue age, which
is referred to as the epigenetic clock.

DNA methylation levels lend themselves to defining a
biomarker of tissue age because chronological age has a

profound effect on DNA methylation levels [13-17]. We
recently developed an epigenetic measure of tissue age
by combining the DNA methylation levels of 353
dinucleotide markers known as cytosine phosphate
guanines or CpGs [18 ]. The weighted average of these
353 epigenetic markers gives rise to an estimate of
tissue age (in units of years), which is referred to as
"DNA methylation age" or as "epigenetic age". This
epigenetic clock method to estimate age appears to
apply to any tissue or cell type that contains DNA (with
the exception of sperm) including individual cell types
(helper T cells, neurons, glial cells), complex tissues
and organs (blood, brain, bone, breast, kidney, liver,
lung [18-20]) and extending to prenatal brain samples
[21]. The epigenetic clock method for estimating age is
particularly attractive in the context of neuro-
degenerative diseases for the following reasons. First, it
applies to all brain regions, sorted brain cells [18-20],
beginning with prenatal brain samples [21]. Second,
recent findings suggest that the epigenetic clock
captures aspects of the biological age of brain tissue,
e.g. the epigenetic age of the frontal lobe relates to
neuropathological variables and to Alzheimer's disease
(AD) related cognitive functioning [22].

To explore changes in the brain methylome in HD
individuals, we also carried out a systems biological
analysis of DNA methylation levels. We constructed co-
methylation modules and identified those that are
associated with HD status in several brain regions.

RESULTS

Accuracy of the epigenetic clock in brain samples
from HD patients and controls

We collected 475 brain samples from multiple brain
regions of 65 individuals (26 HD, 18 Alzheimer's
disease, and 21 controls) and profiled the samples using
the [llumina 450k platform. An overview of our data set
is presented in Table 1. Individual level data such as
postmortem interval can be found in Supplementary
Table 1. Epigenetic age (referred to as DNAm age) was
calculated as described in [18]. As expected, DNAm
age has a strong linear relationship with chronological
age in brain tissue samples (r=0.94, Supplementary
Figure 1A). However, 4 samples deviate strongly from
the linear trend. To err on the side of caution, we
"winsorized" the DNAm age estimates of these 4
putative outliers by replacing them with the second
most extreme age estimate from the same individual
(based on the remaining non-cerebellar brain regions).
Winsorisation effectively limits the adverse effects of
severe outliers in the DNAm age estimate. We did not
use DNAm age estimates from the cerebellum in this
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winsorization approach because the cerebellum ages
more slowly than other brain regions [20]. After the
winsorization, the correlation between DNAm age and
chronological age increased slightly (from r=0.94 to
r=0.95, Figure 1A).

To formally measure epigenetic age acceleration effects,
we constructed a regression model of DNAm age on
chronological age in non-HD samples (grey line in
Figure 1A). We then defined age acceleration for each
sample (HD or non-HD) as the corresponding residual
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Figure 1. Epigenetic clock analysis of non-cerebellar brain regions. (A) Scatter plot of (winsorized) DNAm age versus
chronological age (x-axis). Red dots correspond to HD cases, black dots to non-HD samples. The curve corresponds to a spline
regression line (2 degrees of freedom) through the non-HD samples. Epigenetic age acceleration was defined as the vertical distance of
each sample from the spline regression line. (B) HD Vonsattel grade vs the proportion of neurons (y-axis). The proportion of neurons
was estimated based on DNA methylation data using the CETS method [23]. (C,D) HD status versus (C) epigenetic age acceleration, D)
an intrinsic measure of epigenetic age acceleration that adjusts for the proportion of neurons. (E,F) HD Vonsattel grade versus (E) age
acceleration and (F) an intrinsic measure of epigenetic age acceleration that adjusts for the proportion of neurons. All bar plots show
the mean value (y-axis) and one standard error and report the results from a non-parametric group comparison test (Kruskal Wallis).
The "winsorized" the DNAm age estimates changed the values of four putative outliers as described in Supplementary Figure 1.
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resulting from the regression model. Thus, positive age
acceleration means the (methylation state of the) sample
appears to be older than would be expected from non-
HD samples. We find that HD is significantly
associated with epigenetic age acceleration (Figure 1C),
and that this finding holds even when one uses the un-
winsorized version of DNAm age (Supplementary
Figure 1B). We also defined an "intrinsic" measure of
age acceleration as the residual that results by
regressing DNAm age on both chronological age and
the proportion of neurons which was estimated using
the CETS method [23]. The resulting cell-intrinsic
measure of age acceleration, which is not confounded
by the abundance of neurons, is again associated with
HD status (Figure 1D). We find that epigenetic age
acceleration relates significantly to Vonsattel grade (VS
grade), a semi-quantitative (0-4) measure of neuro-
pathologic abnormalities of post-mortem HD brains
based on macroscopic and microscopic criteria [24]. VS
grade 1 and 2 samples exhibit the highest positive age
acceleration whereas VS grade 4 samples exhibit
negative epigenetic age acceleration (Figure 1E) which
persists even after controlling for the proportion of
neurons/glia (Figure 1F). This unexpected negative age
acceleration in VS grade 4 samples, which can also be
observed in specific brain regions (Supplementary
Figure 2), may be due to one of the following
explanations. First, it could be a false positive that
reflects the low sample size (n=7) of grade 4 samples.

Table 1. Overview of the brain methylation data set.

However, we think this explanation is unlikely since
one already observes a diminished epigenetic age
acceleration in grade 3 samples and because we find a
similar negative relationship of epigenetic age
acceleration with CAG repeat length (as described
below). Second, it might reflect the severe loss of
neurons even though moderate changes in cell
composition do not seem to affect the estimate of
DNAm age [18, 20]. However, we observe the same
effect when using our cell intrinsic measure of age
acceleration that adjusts for the proportion of neurons
(Figure 1F). Further, only a marginally significant
association between the proportion of neurons and VS
grade can be observed in the brain regions of our study
(p=0.011, Figure 1B). We next studied epigenctic age
acceleration in individual brain regions. After removing
grade 4 samples, we find that HD has a suggestive
association with epigenetic age acceleration in the
parietal lobe (p=0.072, Figure 2B), frontal Ilobe
(p=0.077, Figure 2F), and cingulate gyrus (p=0.047,
Figure 2K). No significant associations could be
observed in the occipital lobe (Figure 2H,I).
Comparisons in other brain regions, including the
caudate nucleus (Figure 2Q,R), were inconclusive,
possibly due to HD disease stage (the striatum is more
affected than the cortex and may thus be equivalent to
HD stage 3 or 4) or due to the low group sizes (group
sizes are shown under each bar in the bar plot panels in
Figure 2).

Disease Status

Huntington's Alzheimer's Control
Brain samples (n) 215 125 135
Frontal lobe (n) 50 21 32
Occipital lobe (n) 31 24 20
Parietal lobe (n) 62 0 35
Temporal lobe (n) 8 23 6
Caudate nucleus (n) 17 0 12
Cerebellum (n) 10 23 9
Cingulate gyrus (n) 21 0 12
Hippocampus (n) 8 18 7
Midbrain (n) 8 16 1
No. of individuals 26 18 21
No. of women 10 13 6
Mean Age (range) 56.1 (30, 91) 84.6 (58, 114) 59.1 (15, 93)
Mean Postmortem interval 14.8 (3.5, 46) 20.5 (21, 52) 16.4 (6.0, 36)
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Figure 2. Epigenetic age acceleration in specific brain regions. Rows correspond to different brain regions. The first column
(A,D,G,J,M,P) depicts DNAm age (y-axis) versus chronological age (x-axis) in different brain regions. The grey line corresponds to a
spline regression model (based on 2 degrees of freedom) through non-HD samples. Epigenetic age acceleration was defined as the
vertical distance of each sample from the spline regression line. The bar plots in the second column (B,E,H,K,N,Q) show the relationship
between epigenetic age acceleration (y-axis) and HD status. The bar plots in the third column (C,F,l,L,0,R) involve the intrinsic measure
of age acceleration that adjusts for the proportion of neurons. The rows correspond to samples from the parietal lobe, frontal lobe,
occipital lobe, cingulate gyrus, motor cortex, and caudate nucleus. Each bar plot depicts the mean value and one standard error and
reports a non-parametric group comparison test p-value (Kruskal Wallis Test). HD grade 4 samples were removed from this analysis.

Regression analysis that

confounders

adjusts for possible

We next asked whether the observed epigenetic age
acceleration could be due to confounding by known or
unknown confounders. To answer this question, we
studied age acceleration wusing three different
multivariate linear regression models that include

known and inferred confounders (Table 2). The first
model regressed DNAm age on HD status, chronological
age, sex, brain bank, and brain region. We find that HD
status remains highly significantly associated with
DNAm age (p:6.7x10'5) even after adjusting for these
known confounders. In the second linear model, which
contains the estimated proportion of neurons as covariate,
HD status remains highly significantly associated with
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DNAm age (p=0.00070). The third model is similar to
the first but also adjusts for the first five principal
components (PCs) estimated from the DNA methylation
data. These PCs are likely to reflect unobserved con-
founders (technical variation, changes in cell compo-
sition) and so can be viewed as inferred confounders.
Although including 5 PCs in a multivariate model may be
overly conservative, HD status remains marginally

significantly associated with DNAm age (p=0.065).
Overall, the multivariate model analysis strongly
suggests that the epigenetic age acceleration effects
observed in HD are not due to confounding effects. The
multivariate models allow us to estimate the increase in
biological age due to HD status. HD status increases the
biological age by 3.2 years according to model 1 or by
2.7 years according to model 2 (caption of Table 2).

Table 2. Linear model that regresses DNAm age on HD status and other covariates.

Model 1 Model 2 Model 3
Covariate Contrast Coef (SE) P-value | Coef (SE) P-value Coef (SE) P-value
Huntington 2.06 (0.517) 6.7x10” | 1.704 (0.503) 0.00070 | 0.9 (0.486) 0.065
Age 0.646 (0.012)  <2x107° | 0.64 (0.011)  <2x10"° | 0.632(0.011)  <2x107°
Sex Female vs Male | -0.981 (0.49) 0.046 | -0.84 (0.474) 0.077 | 0.611 (2.637) 0.817
UCLA vs
Brain Bank  NewZealand -0.093 (1.224) 0.94 | 1.049 (1.198) 0.382 | 1.32(1.139) 0.247
Caudate
Nucleus vs
Tissue Frontal -1.237 (1.266) 0.33 | -3.412 (1.278) 0.008 | -3.239 (1.201) 0.007
Cingulate Gyrus
vs Frontal -1.631 (1.224) 0.18 | -1.961 (1.183) 0.098 | -0.729 (1.119) 0.52
CRBM vs 16.194
Frontal -5.353 (1.121)  1.8x10° | -3.854 (1.113) 0.001 | (10.299) 0.12
Hippocampus
vs Frontal 1.327 (1.191) 0.27 | -0.077 (1.175) 0.95 | 1.08 (1.131) 0.34
Midbrain vs
Frontal -1.115 (1.274) 0.38 | -4.12 (1.334) 0.002 | -1.327 (1.331) 0.32
Motor Cortex vs
Frontal 1.539 (1.224) 0.21 | 1.699 (1.182) 0.151 | 1.64 (1.112) 0.14
Occipital vs
Frontal -2.886 (1.115) 0.01 | -1.704 (1.096) 0.121 | -2.218 (1.037) 0.033
Parietal vs
Frontal 0.835 (1.065) 0.43 | 1.781 (1.042) 0.088 | 1.382 (0.982) 0.16
Sensory Cortex
vs Frontal -0.173 (1.224) 0.89 | 0.079 (1.183) 0.95 | 0.179 (1.116) 0.87
Temporal vs
Frontal 0.191 (1.156) 0.87 | 0.228 (1.116) 0.84 | 0.621 (1.053) 0.56
Visual Cortex
vs Frontal 0.4 (1.233) 0.75 | 2.178 (1.23) 0.077 | 0.408 (1.192) 0.73
-13.966
Prop. Neurons (2.395) 5.5x107
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Coefficients, standard error, and corresponding p-values for three multivariate models.
According to model 1, the age acceleration due to HD status amounts to 3.3 years (=2.159/0.646).

Model 2 is similar to model 1 but includes the (estimated) proportion of neurons as covariate. Model 3 is similar to
model 1 but includes principal components. Since the analysis ignores the dependency of observations (due to multiple
brain regions coming from the same individual), the p-values should only be interested as descriptive measures (as
opposed to inferential measures). The multivariate models allow us to estimate the increase in biological age due to HD
status. HD status is associated with an increase of 3.2 years (=2.06/0.646) according to model 1, an increase of 2.7 years
(=1.704/0.64) according to model 2, and am increase of 1.4 years according to model 3.
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Figure 3. CAG length and age of HD onset versus epigenetic age acceleration in HD patients. Results for CAG length and for
age of onset can be found in the first two rows and the last two rows, respectively. (A-H) CAG length (x-axis) versus epigenetic age
acceleration in (A) all non-cerebellar samples, (B) parietal lobe, (C) frontal lobe, (D) occipital lobe, (E) caudate nucleus, (F) cingulate gyrus,
(G) motor cortex, (H) sensory cortex. (I-P) Age of HD motoric onset (x-axis) versus epigenetic age acceleration in (I) all non-cerebellar
samples, (J) parietal lobe, (K) frontal lobe, (L) occipital lobe, (M) caudate nucleus, (N) cingulate gyrus, (O) motor cortex, (P) sensory cortex.
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CAG-repeat length versus
acceleration

epigenetic  age

The graded impact of CAG length on HD age of onset
and disease manifestation leads to the “polyglutamine
trigger” hypothesis, which suggests that polyglutamine
expansion in the context of endogenous HTT protein
leads to subtle but repeat-length-dependent graded
molecular changes in affected cells that act in a
dominant fashion to trigger the disease [25]. The search
of CAG-repeat-length dependent, continuous molecular
changes have implicated altered energetics [26], gene
expression, and epigenetic changes [27-30]. After
removing controls, we find a significant negative
correlation between CAG length and epigenetic age
acceleration of HD brain samples (r=-0.41, p=5.5x10",
Figure 3A) and in specific brain regions from HD cases
(Figure 3B-H). This negative correlation probably
relates to the finding that VS grade 4 samples exhibit
negative age acceleration because a) the seven grade 4
samples also exhibited the highest CAG length (of 53
trinucleotide replicates), and b) VS grade is strongly
correlated with CAG length in our HD cases (r=0.75,
p=9.0x10", Supplementary Figure 3A).

For a subset of 21 HD subjects, we also had information
on the age of HD motoric onset. We found a significant
positive correlation between the age of HD motoric onset
and epigenetic age acceleration (Figure 3I-P). The
marginal associations between age acceleration and the
clinical parameters (age of onset, CAG length, and HD
grade) are congruent with the pairwise correlations
between the clinical parameters in the 21 HD subjects
(Supplementary Figure 3): CAG length has a strong
positive correlation with HD grade (r=0.75) and a strong
negative correlation with age of onset (r=-0.55,
p=0.0098, Supplementary Figure 3B). Age of onset was
highly correlated with chronological age at death in our
data set (r=0.78, p=3.5x10"5). No significant correlation
could be observed between HD grade and age of onset
(Supplementary Figure 3C).

In contrast to our findings of epigenetic age acceleration
in brains of HD cases, we find no difference in
epigenetic age acceleration between Alzheimer's disease
brains and controls (Supplementary Figure 4), which
might reflect the low sample size as discussed below.
We could not find a significant age acceleration effect
due to HD in several brain regions (Supplementary
Figure 5), which might reflect the low sample sizes.

Table 3. The most significant CpGs from our EWAS of HD status across three brain regions.

CpG name Gene Chrom. Z statistic p meta p Frontal  p Occipital p Parietal
meta analysis
cg01524723 3 7.87 3.6E-15 7.2E-07 5.3E-06 3.5E-05
cgl0112599 TMEMSA 16 7.74 9.9E-15 1.1E-06 4.8E-06 6.9E-05
cgl1540707 IDE 10 7.61 2.8E-14 2.8E-05 1.7E-03 9.5E-09
cg22897634 GRIK2 6 7.45 9.2E-14 1.8E-06 5.7E-05 4.4E-05
cg05482066 8 7.43 1.1E-13 1.3E-06 6.2E-04 6.6E-06
cg27250180 21 7.36 1.8E-13 8.0E-06 4.2E-05 2.8E-05
cg14593290 DDC 7 7.33 2.4E-13 1.9E-07 3.7E-04 1.2E-04
cg00249621 TSPYLS 8 7.27 3.7E-13 1.3E-04 1.0E-02 1.6E-09
cg00160777 CHP2 16 7.16 8.1E-13 5.0E-06 8.4E-03 4.8E-07
cg14937409 KRI1 19 7.11 1.2E-12 8.3E-07 2.8E-04 2.2E-04
cg04195855 LRRK1 15 7.09 1.3E-12 7.0E-07 1.9E-03 4.1E-05
cg08291433 11 7.08 1.5E-12 4.4E-06 9.9E-04 1.8E-05
cg21535199 LCEIF 1 -7.14 9.4E-13 4.5E-05 2.3E-02 5.8E-09
cg08718119 LOC642846 12 -7.27 3.7E-13 8.4E-07 9.8E-03 1.0E-06
cgl14227325 RGPDS 2 -7.4 1.3E-13 3.0E-05 1.9E-03 5.6E-08
cgl7863923 RGPDI1 2 -7.45 9.7E-14 1.7E-04 3.7E-04 3.2E-08

The second column reports the gene symbol of a neighboring gene. The CpGs were selected according to the meta
analysis p-value (5th column) across the 3 regions (frontal, occipital, and parietal lobe). The meta analysis Z statistic
(4rd column) is positive/negative for CpGs that are hyper/hypo methylated in HD compared to non-HD samples. "p
Frontal" denotes the Kruskal Wallis p value for disease status in the frontal lobe samples. Bar plots can be found in

Supplementary Figure 9.
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A EWAS meta analysis across frontal, parietal, and occipital lobe
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Figure 4. Manhattan plots for EWAS results. (A) The y-axis shows log (base 10) transformed p-values resulting from a meta analysis
across 3 lobes (frontal, parietal, and occipital lobe). Meta analysis p-value resulted from the limma R function that also included the batch
as covariate. EWAS results (Kruskal Wallis test) for individual lobes can be found in (B) frontal lobe, (C) occipital lobe, (D) parietal lobe.
The horizontal line corresponds to a Bonferroni corrected significance level of p=0.05/500000. The statistical analysis ignored the
dependence between observations arising from the fact that multiple samples were collected from the same individual. Therefore, the p-
values should be considered as descriptive (rather than inferential) measures.

Epigenome-wide association study (EWAS)

In a secondary analysis, we related HD status to
individual epigenetic markers (CpGs). Here we focused
on 327k CpGs (out of over 485k) with highest variance
across the samples (Methods).

Since sex and age has profound effects on DNA
methylation levels (which are largely preserved across
brain regions Supplementary Figure 6), we adjusted the
DNA methylation levels for age and sex by forming

residuals. Further, we restricted the analysis to samples
from post mortem lobes for which we had sufficient
sample sizes (Table 1) namely the frontal lobe (Figure
4B), occipital lobe (Figure 4C), and parietal lobe
(Figure 4D). The association between HD and age-
adjusted methylation levels is strongly preserved across
the lobes (Supplementary Figure 7). After combining
the EWAS results from each of the 3 lobes using meta
analysis, we found that 1467 CpGs are significantly
associated with HD at a Bonferroni corrected
significance level of 1x107 =0.05/500000 (Figure 4A).
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The 16 most significant (p <1.2x10™%) HD related CpGs
are presented in Table 3 and in Supplementary Figure 8.
The meta-analysis p-values need be interpreted as
descriptive  (hypothesis  promoting) rather than
inferential measure for the following reasons. First, the
meta analysis did not adjust for the fact that multiple
samples were collected from each individual. Second,
the distribution of EWAS p-values exhibit high inflation
factors (lambda=7.3 for the meta analysis, 3.5 for the
frontal lobe, 3.0 parietal lobe, 2.2 for the occipital lobe,
Supplementary Figure 9). Detailed results for all CpGs
can be found in Supplementary File 11.

WGCNA
modules

reveals HD-dependent co-methylation

In light of the low sample size we conducted weighted
correlation network analysis (WGCNA) [31-34], which

is a systems biological analysis method that has been
successfully applied to DNA methylation data, e.g. to
study aging effects [35]. WGCNA constructs modules
of co-methylated CpGs and identifies modules (as
opposed to individual CpGs) that correlate with HD
status. Among other advantages, this circumvents the
problem of multiple comparisons (485k CpGs on the
[llumina Infinium 450K array). We applied WGCNA to
the same sex and age adjusted methylation data that
were used in our EWAS. We again focused on samples
from three lobes (frontal, occipital, parietal) for which
we had sufficient sample sizes. To prevent between-
lobe differences in methylation from confounding the
module analysis, we employed a consensus network
[36] analysis across the three lobes that essentially
conditions out between-lobe differences. The analysis
identified 54 co-methylation modules; by construction,
these modules contain CpGs co-methylated in each of
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Figure 5. Heat map of correlations between modules and HD status in different lobes. The rows correspond to
modules found in a consensus module analysis across three lobes (frontal lobe, occipital lobe, parietal lobe). Each module
(eigenvector) was correlated to HD status and to the proportion of neurons in the respective brain regions using a robust
correlation test (biweight midcorrelation). Columns 2-4 in each panel report the robust correlation coefficients and the
corresponding p-value (underneath the correlation coefficient) in the frontal, occipital, and parietal lobe, respectively. Each cell is
color-coded according to the sign and strength of the correlation coefficient as shows in the color legend at the right hand side.
Stouffer's meta analysis method was used to combine the three robust correlation test statistics across the three lobes. The first
column of each panel presents a meta analysis Z statistic for HD status (Stouffer's method applied to the results from the 3 lobes)
and corresponding p-value. The remaining columns present analogous results for the estimated proportion of neurons.
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the three lobes. In this manner, network analysis
reduced hundreds of thousands of variables across the 3
lobes to a relatively small number (n=54) of modules.
Since the methylation profiles of probes in each module
are strongly correlated in each of the 3 lobes, it is useful
to summarize each module using a single representative
profile. Toward this end, we defined the module
representative as the first singular vector resulting from
the singular value decomposition of the scaled
methylation levels. We refer to this representative
methylation profile, which can be interpreted as the
weighted average of the CpGs inside a module, as the
eigenvector (also known as eigengene or eigenprofile).
To identify modules related to HD status, we correlated
the 54 module eigenvectors with HD status in the 3
lobes (Figure 5). We then used a meta-analysis of the
eigenvector-HD correlations to quantify the overall
relationship between a consensus module and HD status
across all 3 lobes. Eleven modules passed a Bonferroni
corrected meta-analysis significance threshold of
p=0.05/54= 9.3x10™ that adjusts for the number of
modules (n=54). Five of these modules are hyper-
methylated in HD: module 1 (meta-analysis =2x10'7),
module 21 (p=2x10°), module 17 (p=3x10"), module
19 (p=2x107"), and module 7 (p=3x10'4). Six modules
are hypo-methylated in HD (module 22 p=2x107,
module 6 p=5x107°, module 11 p=5x10", module 38
p=9x10~, module 33 p=2x10*, module 30 p=7x107").
The network analyses provide several layers of
information. First, the strength and significance of
associations between modules and HD status are
strongest in the parietal lobe, followed by the frontal
lobe and then the occipital lobe. Second, the meta-
analysis significance Z statistics allow us to rank
modules by their overall association with HD status.
Module 1 exhibits the strongest positive association
whereas module 22 the strongest negative association
with HD status (first column in the 3 heat maps of
Figure 5). We also related the module eigengenes to the
age of motor onset but found only suggestive
associations that were not significant after adjusting for
multiple comparisons (Supplementary Figure 10).

WGCNA provides a continuous (“fuzzy”) measure of
module membership (MM) for all CpGs with respect to
each of the modules. The module membership measures
how similar the methylation profile of a CpG is to the
eigenvector of the co-methylation module. CpGs whose
profiles are highly similar to the eigenvector can be
identified as intramodular hub nodes[33]; such hubs are
often useful for implicating relevant biological
pathways and prioritizing genes for functional
studies[37]. The module membership measures of all
CpGs can be found on our webpage HDinHD[38§]
(www.HDinHD.org). The module membership values

of intramodular hubs can be found in Supplementary
File 12.

Enrichment the software tool

HDinHD

analysis using

We used a functional enrichment tool known as
HDinHD[38] (www.HDinHD.org) to relate co-
methylation modules to existing gene sets, either
published or generated by other HDinHD users. We
adapted the gene enrichment analysis to the special case
of DNA methylation data as described in Methods. The
most significant results from a hypergeometric test can
be found in Table 4. Methylation module M1, which
has the strongest positive association with HD status, is
highly enriched with genes involved in sensory
perception of chemical stimulus (p=6.2x10'17) and
olfactory receptor activity (p=9.5x10"°). Interestingly,
our methylation module 1 overlaps with a
transcriptional module (also labelled module 1 in
HDinHD) that has been found in several co-expression
network analyses of transcriptomic data sets. In
particular, it overlaps significantly (p=1.1x10""") with a
co-expression module (labelled M.1) that was found in
striatal brain expression data from a mouse model of
HD [39]. To be clear, our module 1 is distinct from the
co-expression module M.1 but the two modules share a
significant number of genes in common. Further, co-
methylation module 1 overlaps with a striatal
coexpression module also labelled M.1 (p=9.4x107")
that was found in a consensus WGCNA across 3 mouse
data sets. Further, it overlaps significantly with a
cortical co-expression module labelled M.1 (p=1.9x10
') which was found in a consensus network analysis
across three developmental time points from an allelic
series of HD mouse models [38]. Genes inside the
striatal co-expression module (M.1) have a positive
correlation with CAG length in the allelic series [38].
Further, it overlaps significantly with a human co-
expression module found in the prefrontal cortex (also
labelled M.1=1.1x10"") and the visual cortex
(p=2.4x10""). Co-methylation module 1 is also enriched
with genes that play a role in olfactory receptor activity
and the detection of a chemical stimulus.

Two HD related co-methylation modules (modules 6
and 11) are highly enriched in genes that are bound by
RNA polymerase II (using a gene list from [40]).

Relationship to prior work

Several articles point to an epigenetic modulation of HD
pathophysiology [30], in the form of HDAC reduction
[41] and/or epigenetic signatures [42, 43]. Our
experimental analysis is focused on DNA methylation

www.impactaging.com

1495

AGING, July 2016, Vol.8 No.7



levels. Recent publications looked at methylation levels
of selected genes in HD patients [44] and analyzed
cortical samples from 7 HD patients and 6 controls [45].
Previous work has demonstrated that post-translational
modifications of histone proteins are significantly
altered in HD cellular and animal models as well as HD
patients (reviewed in [46]). For example, H3K4me3, a
marker of active gene expression [47], is reduced at
promoters of selective downregulated genes in cortical

and striatal regions in both R6/2 Htt model mice and
HD patients [42]. Furthermore, studies have shown a
potential therapeutic role for histone deacetylase
(HDAC) inhibitors in numerous HD rodent and cell
models (reviewed in [46]). DNA (de)methylation in HD
has been investigated in transgenic models [48].

Modified bisulfite sequencing with single base pair
resolution was employed to measure DNA methylation

Table 4. Co-methylation modules that are enriched with gene lists from HDinHD.

Module | Gene Set Identifier | Description Source p-value

1 WGCNA.HD.013.01 | MODULEI (co-expression) | WGCNA of mouse HD data from Giles | 1.1x10™
2012, Q150 striatum, adjusted for age

1 WGCNA.HD.010.01 | MODULE1 WGCNA of mouse HD data|Consensus | 9.4x10™*
WGCNA across mouse R6/2, Q150,
Allelic Series striatum

1 WGCNA.HD.019.01 | MODULEL! WGCNA of mouse HD| Consensus | 1.9x10™"
WGCNA of 2-, 6-, 10-month Allelic
Series cortex

1 WGCNA.HD.004.01 | MODULE1 WGCNA of human HD data: Harvard | 1.1x10"
Brain Tissue Resource - Prefrontal
Cortex

1 WGCNA.HD.005.01 | MODULE1 WGCNA of human HD data: Harvard | 2.4x10"

Brain Tissue Resource - Visual Cortex

1 G0:0050907 Detection ~ of  chemical | GO.BP 6.2x10™"
stimulus involved in sensory
perception

1 G0:0004984 olfactory receptor activity GO.MF 9.5x107"

6 JAM:002734 Annotated genes bound by | Table S2 from Lee 2006 4.6x10™°
RNA polymerase 11

6 G0:0031981 nuclear lumen GO.CC 1.4x107%

6 G0:0090304 nucleic acid  metabolic | GO.BP 5.1x10™
process

6 G0:0016070 RNA metabolic process GO.BP 3.1x107%

11 JAM:002734 Annotated genes bound by | Table S2 from Lee 2006 7.8x107"

RNA polymerase 11
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in the STHdh cellular model of HD [65]. The results
from this study demonstrated that there was a bias
towards hypomethylation associated with CpG-poor
regions in the mHtt expressing STHdh111/111
compared to control STHdh7/7 cells.

Other DNA modifications may be relevant to HD
pathology: global levels of ShmC were reduced in the
striatum and cortex of presymptomatic YAC128 mice
[49] and 7-methylguanine was found to be reduced in
the motor cortex from HD cases [50].

DISCUSSION

To our knowledge this is the first study to demonstrate
that HD is associated with epigenetic age acceleration in
specific brain regions, namely frontal lobe, cingulate
gyrus and the parietal lobe. Although the positive age
acceleration effects that we observed could be the result
of cell type abundance differences between HD and
control samples, there are several reasons that make this
unlikely. First, our intrinsic measure of age acceleration
that adjusts for the abundance of neurons also reveals an
accelerated aging effect. Second, epigenetic age
acceleration can be observed in brain regions that are
relatively unaffected by the disease (e.g. the parietal
lobe Figure 2B). Third, our multivariate analysis
suggests that the age acceleration effect is independent
of the proportion of neurons and unobserved
confounders. Finally, the epigenetic age acceleration in
Vonsattel (VS) grades 1 and 2 and to a lesser extent in
grade 3 cannot reflect the loss of neurons because grade
4 samples, which are associated with the most severe
loss of medium spiny neurons, appear to exhibit
negative epigenetic age acceleration (Figure 1E,F,
Supplementary Figure 2). The negative age acceleration
in VS grade 4 is unexpected and could be a false
positive reflecting the very small sample size.

Our study contributes to an increasing body of evidence
suggesting that epigenetic age acceleration is associated
with neurodegenerative disorders [22, 51, 52]. Future
research will be needed to evaluate to what extent
increased epigenetic age acceleration is specific to HD.
Using our own relatively small data set (Table 1), we
find no difference between Alzheimer's disease brains
and controls when it comes to epigenetic age
acceleration (Supplementary Figure 4). However, we
recently analyzed a large (n=700) number of prefrontal
cortex samples from AD cases and controls to show that
epigenetic age acceleration has significant correlations
with neuropathologic variables and measures of
cognitive functioning [22]. We also found evidence that
epigenetic age is increased in brain samples from Down
syndrome [51] and HIV+ individuals [53].

A question our study left unanswered is whether the
aging acceleration in HD is specific to the methylation-
based biomarker of age or whether it could be observed
using other biomarkers of aging. Until recently few
suitable biomarkers of tissue age have been available,
making it challenging to directly test whether HD is
associated with accelerated aging in brain tissue.
Leukocyte telomere length could be a promising
biomarker since telomere shortening is related to
premature senescence and could be a marker of early
cell death in neurodegenerative disorders. Indeed, recent
evidence suggests that leukocyte telomeres are
shortened in HD and several neurodegenerative
disorders [54]. However, it remains to be seen to what
extent leukocytes lend themselves as "surrogate" tissue
for brain when it comes to assessing aging. Telomere
length is probably not a suitable marker to directly
measure the age of brain tissue because a) terminally
differentiated neurons do not replicate and b) telomere
measurements of brain tissue are inherently variable due
to the cellular complexity within the sample [55].

A key advance of our study in the polyglutamine
disease field is to apply epigenome-wide DNA
methylation data from multiple brain regions of HD
individuals and controls to identify HD related co-
methylation networks. Our systems biological analysis
identified 11 co-methylation modules that are strongly
associated with HD status in several lobes.
Interestingly, the most significant co-methylation
module overlaps with a co-expression module found in
transcriptomic data from HD mouse models (Table 4).
Our study has several limitations. While our epigenetic
age analysis is not likely to be confounded by changes
in cell composition, we cannot make the same claim
about our WGCNA analysis, although our consensus
analysis across three lobes mitigates this problem.
Second, we studied only a relatively small number of
individuals because it is very difficult to secure brain
samples from human post mortem HD cases. Third, we
focused on CpG methylation as opposed to hydroxy
methylation (5hmC). It is noteworthy that the brain has
the highest ShmC levels in the body [56-58] and non-
CpG methylation is prominent in neuronal tissue [56,
59, 601].

We can only speculate on why striatal samples do not
seem to exhibit accelerated epigenetic aging. It might
reflect low statistical power (due to small sample sizes),
it might reflect severe neuronal loss, or it might suggest
that epigenetic age acceleration can only be detected at
the early stages of the disease. Future epigenetic clock
analyses of the striatum and of striatal neurons should
focus on the early stage of striatal degeneration
(Vonsattel stage 0-1) or employ HD mouse models in
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which MSN cell loss is not a major feature. Studies in
the rat striatum suggest that normal aging modulates the
neurotoxicity of mutant huntingtin [12]. Future studies
could explore whether the onset of HD can be delayed
by slowing down the epigenetic aging rate. The positive
youth-promoting side effects of such a treatment
(delayed aging) would probably be attractive to most
patients.

Overall, our study strongly suggests that HD
pathogenesis is associated with large scale DNA
methylation changes and with an accelerated epigenetic
age in brain tissue. It remains to be seen whether
epigenetic age acceleration is prognostic of age of onset
or the rate of disease progression.

METHODS

Sample collection. Postmortem brain samples from HD
and AD cases and neurologically normal controls were
collected at UCLA (n=218 samples from 32
individuals) and University of Auckland (n=257
samples from 33 individuals). The UCLA samples were
provided by the Brain tissue and CSF resource/bank of
the Mary Easton Alzheimer Disease Research Centre at
UCLA (by H. Vinters).

Cubes 3x3x3mm with approximate mass of ~30 mg
were cut from histological specimens collected during
necropsies. Tissue samples were frozen and stored at -
80C. In order to avoid batch effects, all tissue samples
were shipped to the same UCLA core facility for DNA
extraction and DNA methylation profiling. The
Auckland samples were obtained from the Neurological
Foundation of New Zealand Human Brain Bank
(University of Auckland, NZ). The tissue used for this
study had been processed according to a detailed
protocol, which has been previously published [61, 62],
dissected into blocks, snap frozen on dry ice, and stored
at -80°C.

Age of HD motoric onset was available for 21 subjects
from the NZ tissue bank (median age=38, ranging from
15 to 70). A total of 475 Illumina arrays were generated
from 65 individuals (26 HD, 18 Alzheimer's disease,
and 21 controls). After adjusting for chronological age,
we could not detect an age acceleration effect due to
AD status (Supplementary Figure 4). We profiled the
following brain regions: caudate nucleus (n = 29
arrays), cingulate gyrus (n=33), cerebellum (n=42),
hippocampus (n=33), parietal cortex (n=64), frontal
lobe (n=70), occipital cortex (n=43), temporal cortex
(n=37), midbrain (n=26), motor cortex (n=33), sensory
cortex (n=33), and visual cortex (n=32). We also
grouped the samples into broader categories: parietal

lobe (parietal lobe and sensory cortex), frontal lobe
(right frontal lobe, left frontal lobe, frontal gyrus, motor
cortex), occipital lobe (occipital lobe and visual cortex).
In our WGCNA analysis, we focused on 3 lobes for
which sufficient sample sizes (n>=75) were available:
parietal (n=97), frontal (n=103), and occipital (n=75).
We omitted temporal samples from the WGCNA
analysis due to the relatively low sample size (n=37).

Ethics review and IRB. All individuals whose brains
reside in the UCLA tissue bank (or their legal next-of-
kin) signed the "Consent for Autopsy" form by the
Department of Pathology at UCLA, and research
procurement was performed under IRB Research
Protocol Number 11-002504. Further, the epigenetic
analysis is covered by IRB Research Protocol Number:
19119.

The studies using tissue from the Neurological
Foundation Human Brain Bank was approved by the
University of Auckland Human Participants Ethics
Committee Ref #011654. All tissue was obtained with
full informed consent of the families.

DNA extraction. AllPrep DNA/RNA/miRNA Universal
Kit (Qiagen, cat # 80224) was used for the DNA
extractions for frozen tissue samples. 30mg of frozen
tissue was lysed with 600ul. guanidine-isothiocyanate—
containing Buffer RLT Plus in a 2.0mL micro
centrifuge tube, and homogenized by using TissueLyser
II (Qiagen) with 5mm stainless steel beads. Tissue
lysate was continued with the AllPrep protocol for
simultaneous extraction of genomic DNA and total
RNA using RNeasy Mini spin column technology.

DNA methylation data pre-processing. Our novel DNA
methylation data have been posted on Gene Expression
Omnibus (GSE72778).

Bisulfite conversion using the Zymo EZ DNA
Methylation Kit (ZymoResearch, Orange, CA, USA) as
well as subsequent hybridization of the HumanMethy-
lation450k Bead Chip (Illumina, SanDiego, CA), and
scanning (iScan, [llumina) were performed according to
the manufacturers protocols by applying standard
settings. DNA methylation levels (B values) were
determined by calculating the ratio of intensities
between methylated (signal A) and un-methylated
(signal B) sites. Specifically, the  value was calculated
from the intensity of the methylated (M corresponding
to signal A) and un-methylated (U corresponding to
signal B) sites, as the ratio of fluorescent signals

B = Max(M,0)/[Max(M,0)+Max(U,0)+100]. Thus,
values range from 0 (completely un-methylated) to 1
(completely methylated) [63].
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DNA methylation age and epigenetic clock. DNA
methylation levels give rise to particularly promising
biomarkers of aging since chronological age (i.e. the
calendar years that have passed since birth) has a
profound effect on DNA methylation levels in most
human tissues and cell types [13-17, 35, 64-67]. Several
recent studies propose to measure accelerated aging
effects using DNA methylation levels [18, 68, 69]. Here
we use the epigenetic clock method (based on the
DNAm levels of 353 CpGs) because a) it is largely
unaffected by differences in cell composition and b) it
applies to all brain regions. The method applies to two
commercially standardized methylation platforms: the
[llumina 450K and 27K arrays. The epigenetic clock
method is an attractive biomarker of aging because (1)
it applies to most human tissues; (2) its accurate
measurement of chronological age is unprecedented
[18]. The following results suggest that the epigenetic
clock captures aspects of biological age. The epigenetic
age of blood has been found to be predictive of all-
cause mortality even after adjusting for a variety of
known risk factors [70, 71]. Further, the blood of the
offspring of Italian semi-supercentenarians (i.e.
individuals who reached an age of at least 105) has a
lower epigenetic age than that of age-matched controls
[72]. The epigenetic age of blood relates to cognitive
and physical fitness in the elderly [73] and to
Parkinson's disease status [52]. The utility of the
epigenetic clock method has been demonstrated in
applications surrounding obesity [19], Down syndrome
[51], and HIV infection [53].

Predicted age, referred to as DNAm age, correlates with
chronological age in sorted cell types (CD4 T cells,
monocytes, B cells, glial cells, neurons) and tissues and
organs including whole blood, brain, breast, kidney,
liver, lung, saliva [18].

Mathematical details and software tutorials for the
epigenetic clock can be found in the Additional files of
[18]. An online age calculator can be found at our
webpage (https://dnamage.genetics.ucla.edu).

Epigenome-wide association study. For the epigenome-
wide association study and the subsequent network
analysis we focused on those CpGs whose variance was
at least 5x107 in at least one of the 3 lobes. This
restriction resulted in 326777 CpGs retained for further
analysis. DNA methylation data were adjusted for
chronological age and sex by regressing methylation
levels on age and sex and retaining the residuals. For
association testing, we used the Kruskal-Wallis test
because it is relatively insensitive to the distribution of
the methylation levels and potential outliers. We used

the "estlambda" function in the GenABEL R package to
calculate the inflation factors [74].

Meta-analysis. Our analysis methods make extensive
use of meta-analysis. A simple yet powerful meta-
analysis method, known as Stouffer's method, relies on
combining the Z statistics from individual data sets (the
3 brain lobes). Specifically, for each CpG 7 and data set
(brain lobe) a, one obtains a Z statistic Z;,, for example,
by the inverse normal transformation of the p-value.
Next, a meta-analysis Z; statistic for each CpG is
calculated as

The meta-analysis statistic Z; is approximately normally
distributed with mean O and variance 1; the
corresponding p-value is then calculated using the
normal distribution.

Weighted Correlation Network Analysis. Weighted
Correlation Network Analysis (WGCNA)[31, 32] uses
as input a matrix of pairwise correlations between all
pairs of CpGs across the measured samples in a data set.
To minimize effects of possible outliers, we use the
biweight midcorrelation[75] with argument
maxPOutliers = 0.05. One then forms a “signed hybrid”
pairwise co-methylation similarity that equals the
correlation if the correlation is positive, and equals zero
otherwise. Next the co-methylation similarity is raised
to the power p=6 (WGCNA default) to arrive at the
network adjacency. This procedure has the effect of
suppressing low correlations that may be due to noise.
The result is a network adjacency that is zero for
negatively correlated CpGs and is positive for positively
correlated CpGs. Adjacency of weakly correlated CpGs
is nearly zero due to the power transformation.

Consensus module analysis. Consensus modules are
defined as sets of nodes that are highly connected in
multiple networks; loosely speaking, one could identify
the consensus module in individual network analyses
across multiple sets, so the module can be said to arise
from a consensus of multiple data sets [36].

Within WGCNA, consensus modules are identified
using a consensus dissimilarity that is used as input to a
clustering procedure. To describe our definition of the
consensus dissimilarity, we introduce the following
component-wise quantile function for a set of k£ matrices
AV 47, A,
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Quantile,, ; = Quantile, (A(l) A% A(k)).

ifr A e A
Thus, each component of the quantile matrix is the
given quantile (0 < g < 1) of the corresponding
components in the individual input matrices. Using this
notation, we define the consensus network
corresponding to input networks AV , A? R A™ and
quantile g as

Consensu@ (A(l), A© ),. " A% ))

= Quantileq (CTOA/I(]),CTOA/[(Z),...,CTOA/I(k)),

where ¢TOM stands for calibrated Topological Overlap
Measure (TOM). The calculation of ¢cTOM starts with
calculating the standard TOM [31] in each input data set
(network). The calibration aims to make TOM values
comparable between different networks. In this work we
use as calibration the quantile normalization
implemented in the R package preprocessCore [76]. We
treat the independent components (say the lower
triangle) of TOM for each input network as a vector of
measurements corresponding to one “sample;” thus,
quantiles of the calibrated TOM matrices in each
network equal each other and equal the average of the
corresponding quantiles in the original, uncalibrated
TOM matrices.

Given the consensus network defined above, one
defines the consensus dissimilarity ConsDiss;; as

COI’lSDl'S.}} =1- Consensug (A(l), A? ) A(k)).

The consensus dissimilarity is used as input to average-
linkage hierarchical clustering. Branches of the
resulting dendrogram are then identified using the
Dynamic Tree Cut algorithm [77]. Modules are labeled
by (in principle arbitrary) numeric labels and, for easier
visualization, also by colors. Not all CpGs will be
assigned to modules; the label 0 and color grey are
reserved for CpGs not assigned to any module.

Consensus _module  eigenvectors. The module
identification procedure results in modules containing
CpGs with highly correlated methylation profiles. It is
useful to summarize such modules using a single
methylation profile per input data set. We use the
module eigenvector E, defined as the left-singular
vector of the standardized methylation matrix with the
largest singular value[31]. Since consensus modules are
defined across & independent data sets, one can form
their summary profiles in each lobe. Thus, a consensus
module gives rise to k eigenvectors, one in each input
data set, that provide a summary "methylation value"
for each sample in the data set. This allows one to relate

consensus module eigenvectors to other information, for
example to disease status or other traits, in each data set,
and study similarities and differences between the input
data sets in terms of the module-trait associations.

Continuous measure of module membership. Module
eigenvectors lead to a natural measure of similarity
(membership) of all individual CpGs to all modules. We
define a fuzzy measure of module membership of CpG i
in module / as

MM/ = cor(x; E’)

where x; is the methylation profile of CpG i and E' is the
eigenvector of module /. This definition is applicable to
every individual network (data set). The value of
module membership lies between -1 and 1. Higher MM,
indicate that the methylation profile of CpG i is similar
to the summary profile of module /. Since we use
signed networks here, we consider module membership
near -1 low. The advantage of using correlation to
quantify module membership is that the corresponding
statistical ~significance (p-values) can be easily
computed. Genes with highest module membership are
called hub CpGs. Hub CpGs are centrally located inside
the module and represent the methylation profiles of the
entire module.

Module membership in consensus modules. In a
consensus module analysis, we calculate the fuzzy
module membership MM for each CpG in each data set.
Thus, for each consensus analysis of 3 data sets there
are 3 values for the module membership of each CpG in
each module. We then use meta-analysis to summarize
the 3 module memberships into a single meta-analysis Z
statistic[37]. Genes with the highest module
membership meta-analysis Z statistics are called
consensus hub CpGs. It has been shown that consensus
hub CpGs can be useful in studying functional
categories associated with clinical traits[37].

Enrichment analysis of co-methylation modules. We
used [llumina-supplied probe annotation to map CpG
probes to genes. Since each gene is represented by
multiple CpGs (up to a thousand per gene), we
applied the following stepwise procedure to
represent each gene by a single CpGs.

Step 1: Apply consensus WGCNA to assign each CpG
to a consensus co-methylation module. Call the
consensus quantile used for this consensus analysis q.
This analysis reduces the original hundreds of
thousands of CpGs to typically less than 100 modules
(in the brain data case, about 320k CpGs were reduced
to 54 modules).
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Step 2: Define an artificial module assignment where
the "module" label equals the gene identifier. Thus,
there is one module for each gene to which at least 1
CpG maps. Discard all CpGs that do not map to a gene.

Step 3a: For each of the artificial modules that contain
at least 3 CpGs, calculate intramodular connectivity in
each of the input sets. At present we don't use kME but
kIM which is defined as the sum of intramodular
adjacencies. This results in a vector of kIM in each
input data set. Use quantile normalization to calibrate
the kIM vectors across the input data sets. Then
calculate the consensus of the kIM vectors using the
same consensus quantile q that was used for the
consensus WGCNA.

Step 3b: For each of the artificial modules that contain 2
CpGs, calculate the standard deviation of each of the
CpGs in each of the input sets. This results in a vector
of standard deviations for CpGs in each data set. Use
quantile normalization to calibrate the std. deviation
vectors across the data sets. Then calculate the
consensus of the calibrated standard deviation vectors
using the same consensus quantile q that was used for
the consensus WGCNA.

Step 4: Represent each gene with at least 3 CpGs by the
consensus hub CpG, i.e. the CpG with the highest
consensus kIM. Represent each gene with 2 CpGs by
the CpG with the highest consensus standard deviation.
Represent each gene with 1 CpG by the single CpG.
Thus, we move from 300k CpGs to about 20k
representative CpGs (which are mapped in a one to one
fashion to the gene identifiers).

Step 5: Assign each gene to a co-methylation module
(from WGCNA) using the color label (from step 1) of
the representative CpG.

Step 6: Next apply the enrichmentAnalysis function
(from R package anRichment) to the genes and
corresponding color labels from step 5.

We then used standard hypergeometric test (Fisher’s
exact test) to evaluate the significance of the overlaps of
the gene-mapped methylation modules with reference
gene sets including Gene Ontology, KEGG, Reactome,
gene lists from [78] in the WGCNA R package, and
modules from several WGCNA analyses on various HD-
related gene expression data. All gene sets used in our
analysis can be accessed at (https://labs.genetics.ucla.edu/
horvath/htdocs/CoexpressionNetwork/Gene Annotation/).
These HD related genes as are part of the HDinHD
software tool [38] (www.HDinHD.org).

Steps 3-5 are implemented in the R function
"consensusRepresentatives” included in the package
WGCNA since version 1.50. Additionally, the
anRichment R package (https://labs.genetics.ucla.edu/
horvath/htdocs/CoexpressionNetwork/Gene Annotation/)
contains the function "representativeCpG" that further
tailors the consensus representative selection to
methylation data assayed on the Illumina Infinium 450k
microarray.
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SUPPLEMENTARY DATA

Supplementary Table 1. Individual level data on the subjects.
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Supplementary Figure 1. Epigenetic age analysis across all non-cerebellar brain regions. (A) DNAm age (y-axis) versus
chronological age sample collection (i.e. death). Red dots correspond to HD cases, black dots to controls, magenta dots
correspond to putative outliers. The curve corresponds to a spline regression line (2 degrees of freedom) through the control
samples. The scatter plot reports a Pearson correlation coefficient and corresponding p-value. Epigenetic age acceleration was
defined as the vertical distance of each sample from the spline regression line. (B) The bar plot presents mean epigenetic age
acceleration (and one standard error) versus disease status. By definition, the mean epigenetic age acceleration in controls is
zero. The p-value results from a non-parametric group comparison test (Kruskal Wallis).
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Supplementary Figure 2. HD Vonsattel grade (x-axis) versus epigenetic age acceleration and proportion of neurons.
The panels correspond to different brain regions. A,C,E,G,I,K,M,0) Mean age acceleration (with 1 standard error) versus HD
Vonsattel grade (x-axis). For the sake of comparison, the first bar reports the mean age acceleration in control samples. By
definition, the mean age acceleration in control samples is zero. B,D,F,H,J,L,N,P) Estimated proportion of neurons versus VS grade.
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Supplementary Figure 3. Correlations between CAG length, HD grade, and age of HD onset in HD subjects. (A-C) Pairwise
scatter plots based on 21 HD subjects from the New Zealand tissue bank. (D) Chronological age (at death) versus age of onset.
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Supplementary Figure 5. Epigenetic age analysis in brain regions that lead to insignificant results. Here we used
winsorized DNAm age estimates. We use ANOVA instead of the Kruskal Wallis test in the bar plots because of the low group
sizes. Samples with HD grade 4 were removed from the analysis.
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Supplementary Figure 6. The effect of chronological age on DNA methylation levels are preserved across
lobes. The axis of each plot shows the signed log (base 10) transformed p-value of a correlation test. The panels above
the diagonal show scatter plots. The numbers in the lower diagonal show the corresponding correlation coefficients.
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Supplementary Figure 8. The most significant CpGs resulting from our EWAS meta analysis versus disease status. The
panels correspond to the CpGs in Table 3. Each bar plot relates the DNA methylation levels (beta values) to disease status. This statistical
analysis (and p-values) differs from those presented in Table 3 for the following reasons. First, the y-axis shows beta values that were not
adjusted for chronological age. Second, the grouping variable (x-axis) takes on 3 levels (HD, Alzheimer's disease, and controls) whereas a
binary grouping variable (HD vs non-HD) was used to select the CpGs of Table 3. Brain regions are ignored (i.e. lumpted together).
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A Meta, Inflation factor Lambda=7.3
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Supplementary Figure 9. Estimation of inflation factors (lambda values) for the EWAS of HD. The panels correspond
to the respective studies in Figure 3. Each panel shows the estimated lambda inflation factor and plot resulting from the
estlambda R function. Lambda factors for (A) p-values resulting from a meta analysis across 3 lobes (frontal, parietal, and
occipital lobe), (B) frontal lobe, (C) occipital lobe, (D) parietal lobe.
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Module association with age of onset
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Supplementary Figure 10. Correlations between module eigengenes and age at HD motor onset. The Figure
is analogous to Figure 5 but the correlation values and Z statistics refer to age of onset. The first column in each panel

reports a Z statistic. The remaining columns report robust correlation coefficients in different brain regions.

Supplementary Data Sets

Please browse the full text version of this manuscript to
see links to Supplementary Files:

Supplementary File 11. EWAS results for HD status
in multiple brain regions. The file reports Kruskal
Wallis test p-values and corresponding Z statistics for
samples from the frontal lobe, occipital lobe, and
parietal lobe. Further, it reports the meta analysis results
across the three brain region. The meta-analysis p-
valuea should be interpreted as a descriptive (hypothesis
promoting) rather than inferential measure since the
analysis did not adjust for the fact that multiple samples
were collected from each individual. Results are
reported for 326777 CpG from the Illumina Inf450k
array, which satisfied our filtering criteria (high
variance, few missing values).

Supplementary File 12. Module membership
information for intramodular hubs in the consensus
modules. The column correspond to the consensus

modules presented in Figure 5. The Z statistics result
from the application of the "consensusKME" R
function. High positive Z statistics indicate that the CpG
is an intramodular hub in the respective module. A CpG
can be a hub in multiple modules. The module
membership measure should be interpreted as a fuzzy
measure of module membership. Due to space
constraints, we only report those CpGs for which the
absolute value of the Z statistic exceeds 17 for at least
one of the modules.
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