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ABSTRACT

Estimates of biological age based on DNA methylation patterns, often referred to as "epigenetic age", "DNAm
age", have been shown to be robust biomarkers of age in humans. We previously demonstrated that
independent of chronological age, epigenetic age assessed in blood predicted all-cause mortality in four human
cohorts. Here, we expanded our original observation to 13 different cohorts for a total sample size of 13,089
individuals, including three racial/ethnic groups. In addition, we examined whether incorporating information
on blood cell composition into the epigenetic age metrics improves their predictive power for mortality. All
considered measures of epigenetic age acceleration were predictive of mortality (p<8.2x10°°), independent of
chronological age, even after adjusting for additional risk factors (p<5.4x10™), and within the racial/ethnic
groups that we examined (non-Hispanic whites, Hispanics, African Americans). Epigenetic age estimates that
incorporated information on blood cell composition led to the smallest p-values for time to death (p=7.5x10").
Overall, this study a) strengthens the evidence that epigenetic age predicts all-cause mortality above and
beyond chronological age and traditional risk factors, and b) demonstrates that epigenetic age estimates that
incorporate information on blood cell counts lead to highly significant associations with all-cause mortality.

INTRODUCTION
DNA methylation-based biomarkers, often referred to cell composition changes with age and some of these
as “epigenetic age” or "epigenetic clock", are robust changes might be independent predictors of mortality [9—
estimators of chronological age of an individual [1-4]. 12]. Thus, it is of interest to understand whether
For example, a measure of epigenetic age based on considering information on blood cell composition in
levels of methylation in 353 CpG dinucleotide markers measures of epigenetic age improves their predictive
(cytosine linked to guanine by a phosphate group) power for mortality.
allow the estimation of the age of an individual. This
estimate is consistent across most types of biological Here, we evaluated the ability to predict time to death
specimens, including whole blood, brain, breast, for blood-based epigenetic age measures, both
kidney, liver, lung, and saliva and cell types, including published and novel measures that incorporate
CD4+ T cells, monocytes, B cells, glial cells, and information on blood cell composition. Due to the well
neurons [3]. documented age-related changes in blood cell
composition, we distinguished epigenetic measures of
Recent studies suggested that epigenetic age is associated age that were independent of changes in blood cell
with age-related health outcomes above and beyond composition (cell-intrinsic measures), and measures that

chronological age. For example, we and others have
shown that individuals whose epigenetic age was greater
than their chronological age (i.e., individuals exhibiting
epigenetic "age acceleration") were at an increased risk
for death from all causes, even after accounting for
known risk factors [5—7]. Further, we recently showed
that the offspring of semi-supercentenarians (subjects
who reached an age of 105-109 years) have a lower

incorporated age-related changes in blood cell
composition ("extrinsic" measures). By increasing the
number of independent cohort studies, we more than
doubled the number of mortality events available for
analysis, which allowed for detailed subgroup analyses
including those based on race/ethnicity.

epigenetic age than age-matched controls [8]. Based on RESULTS

these findings, it has been hypothesized that epigenetic .

age captures some aspect of biological age and the Cohort studies

resulting susceptibility to disease and multiple health

outcomes. A first step in testing this hypothesis is to test Our meta-analysis included 13 population-based

whether epigenetic age predicts longevity in multiple cohorts. An overview of the cohorts is provided in

populations and across ethnic groups. Table 1. Our study involved 3 racial/ethnic groups: non-
Hispanic whites (n=9,215), Hispanics (n=431), and

In many studies epigenetic age is estimated from DNA Blacks (n=3,443). Detailed descriptions of each cohort

derived from blood samples. It is well known that blood can be found in the Supplemental Materials.

www.aging-us.com 1846 AGING (Albany NY)



Table 1. Baseline characteristics of participating cohorts.

Epigenetic age estimation

We used two methods for estimating the epigenetic age
of each blood sample (Table 2). First, we used the
approach by Horvath (2013) based on 353 CpGs, as
described in [3] and Methods. Second, we used the
approach by Hannum et al. (2013) based on 71 CpGs
[2]. Both epigenetic age estimates were correlated with
chronological age at the time of blood draw (Table 1)
with biweight midcorrelation coefficients ranging from
0.65 to 0.89. But birth cohorts were excluded from this
correlation analysis because it is not meaningful to
calculate correlations with chronological age in this
situation. The Horvath and Hannum estimates were also
highly correlated with each other (r=0.76) even though
the underlying sets of CpGs share only 6 CpGs in
common. (Supplementary Table 1).

Estimated blood cell
chronological age

counts that relate to

We estimated the abundance of ten blood cell types based
on observed DNA methylation patterns (Methods) —
exhausted/senescent CD8+ T cells (CD8+CD28-
CD45RA-), CD8+ naive, CD8+ total, CD4+ naive,
CD4+ total, natural killer cells, B cells, monocytes,
granulocytes, and plasmablasts. To study age-related
changes in blood cell composition, we correlated these
estimated blood cell counts with chronological age in all
of the cohort studies (Supplementary Table 2). Our
results are congruent with findings from flow cytometric
studies that demonstrate that the abundance of naive
CD8+ T cells decreases with age (reflecting thymic
involution), whereas exhausted/senescent CD8+ T cells
increase with age [9-12].

Cohort N Ngeatns (%0) Follow-up Age YHorvath I'Hannum

duration (years)*

(years)*
1. WHI (White) 995 309 31%)  15.4(14.0-16.4) 68 (65-72)  0.67 (p=5.1x10"")  0.73 (p=8.0x10"")
2. WHI (Black) 675 176 (26%)  15.4(13.7-16.5) 62 (57-67)  0.70 (p=1.2x10""")  0.76 (p=3.0x10"**)
3. WHI (Hispanic) 431 78 (18%) 152 (14.1-16.3) 61 (56-67)  0.78 (p=8.9x10™°)  0.79 (p=1.3x10"")
4.LBC 1921 445 312(70%) 102 (6.2-12.9) 79 (78-79)  0.15 (p=1.5x107)  0.13 (p=6.0x10")
5.LBC 1936 919 106 (12%) 7.5 (6.9-8.4) 69 (68-70)  0.15 (p=4.9x10°)  0.16 (p=1.1x10°)
6. NAS 647 221 (34%)  11.6(8.6-12.9)  72(68-77)  0.69 (p=1.3x10"%)  0.76 (p=8.2x10"'%)
7. ARIC (Black) 2,768  1,075(39%) 20.3(14.3-21.4)  57(52-62)  0.65 (p<1x102")  0.71 (p<1x1072")
8. FHS 2,614 236 (9%) 6.2 (5.6-6.9) 66 (60-73)  0.84 (p<1x102*)  0.86 (p<1x102")
9. KORA 1,257 42 (3%) 4.4 (4.0-4.8) 61 (54-68)  0.84 (p<I1x107")  0.88 (p<1x107")
10. InNCHIANTI 506 91 (18%) 15.0 (14.6-15.5)  67(57-73)  0.82 (p=3.2x10"%*)  0.85 (p=2.1x10"*)
11. Rotterdam 710 32 (5%) 5.6 (5.3-5.8) 58 (54-62)  0.72 (p=1.9x10""*)  0.76 (p=1.3x10"*
12.Twins UK 805 30 (4%) 8.5(7.5-8.5) 58 (51-65)  0.87 (p<1x10*)  0.89 (p<Ix1072")
13. BLSA (white) 317 26 (8%) 5.3 (4.0-6.6) 66 (58-73)  0.85 (p=1.1x10"%)  0.88 (p=7.2x10""
Total 13,089 2734 (21%)

The last 3 columns report robust correlation coefficients (biweight midcorrelation) between chronological age and two epigenetic
age estimates (Horvath and Hannum).

* Median (25th percentile - 75" percentile)

T Biweight midcorrelation coefficient of chronological age with epigenetic age using the Horvath method.

¥ Biweight midcorrelation coefficient of chronological age with epigenetic age using the Hannum method.
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Measures of epigenetic age acceleration

Despite high correlations, epigenetic age can deviate
substantially from chronological age at the individual
level. The difference between epigenetic age and chro-

nological age can be used to define "delta age" but the
resulting measure exhibits a negative correlation with
chronological age. By contrast, all of our measures of
epigenetic age acceleration are defined such that they
are uncorrelated with chronological age.

Table 2. Overview of various measures of epigenetic age acceleration.

Measure of age acceleration Short name of  Epigenetic age Uses blood Correlation  Conserved

measure estimate counts with blood in breast
counts tissue

(Universal) epigenetic age acceleration AgeAccely,an, ~ Horvath: 353 CpGs no weak yes
(AgeAccel)

Intrinsic epigenetic age acceleration IEAA.Horvath Horvath: 353 CpGs yes very weak yes

(Horvath) (IEAA)

Age acceleration based on Hannum AgeAccelyym,m ~ Hannum: 71 CpGs no moderate no

Intrinsic epigenetic age acceleration IEAA.Hannum Hannum: 71 CpGs yes very weak no

(Hannum)

Extrinsic epigenetic age acceleration EEAA Enhanced Hannum yes strong no

AgeAccel Breast

AgeAccel Saliva

Description of the differences between epigenetic age and age acceleration measures. Column "Correlation with blood counts

relates to Supplementary Table 4. Column "Conserved in breast tissue" relates to Figure 1.

A Breast vs Blood cor=0.38, p=0.012

B Breast vs Blood cor=0.48, p=0.0011

C Breast vs Blood cor=0.017, p=0.91

D Breast vs Blood cor=0.073, p=0.64
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Figure 1. Epigenetic age acceleration in blood versus that in breast or saliva. (A-D) Epigenetic age acceleration in
healthy female breast tissue (y-axis) versus various measures of epigenetic age acceleration in blood: (A) universal measure
of age acceleration in blood, (B) intrinsic epigenetic age acceleration based on the Horvath estimate of epigenetic age, (C)
extrinsic epigenetic age acceleration, (D) intrinsic epigenetic age acceleration based on the Hannum estimate of epigenetic
age. (E-H) analogous plots for epigenetic age acceleration in saliva (y-axis) and (E) AgeAccel, (F) IEAA based on Horvath, (G)
EEAA, (H) IEAA based on the Hannum estimate. The y-axis of each plot represents the universal measure of age acceleration
defined as the raw residual resulting from regressing epigenetic age (based on Horvath) on chronological age.
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An overview of several measures of epigenetic age
acceleration is presented in Table 2. One such measure
(denoted as AgeAccel) is defined as the residual that
results from regressing epigenetic age on chronological
age. Thus, a positive value of AgeAccel indicates that the
epigenetic age is higher than expected, based on
chronological age. These Horvath and Hannum based
measures of age acceleration are denoted by
AgeAccelyram and AgeAccel gy, tespectively. For the
sake of brevity and consistency with other publications
from our group, we abbreviate AgeAccelyoran as
AgeAccel.

AgeAccelyumm and to a lesser extent AgeAccel were
previously shown to correlate with blood cell counts
[5]. Thus, we distinguished two broad categories of
measures of epigenetic age acceleration when dealing
with DNA methylation from blood or peripheral blood
mononuclear cells (PBMCs): intrinsic and extrinsic
epigenetic measures, which are independent of, or
enhanced by blood cell count information, respectively.
We define intrinsic epigenetic age acceleration (IEAA)
as the residual resulting from regressing epigenetic age
on chronological age and measures of blood cell counts
(Methods). By definition, /EAA4 is not correlated with
chronological age and is weakly correlated with
estimated measures of blood cell counts (Supplementary
Table 4). [EAA is meant to capture cell-intrinsic
properties of the aging process that exhibit some pre-

A AgeAccel, Univariate B
Meta P=1.9e-11, Heterog. P=0.082

IEAA, Univariate c
Meta P=8.2e-09, Heterog. P=0.61

servation across various cell types and organs.
Compared to our other measures of age acceleration,
1EAA, adapted from the Horvath measure of epigenetic
age, exhibited significant correlations with epigenetic
age acceleration in breast tissue (r=0.48, p=0.0011,
Figure 1B) and saliva (r=0.67, p:8.8x10‘9, Figure 1F).
By contrast, an analogous measure of /E4AA based on
the Hannum measure showed much weaker correlations
(r=0.073 in breast and r=0.41 in saliva Figure 1D, 1H).
For this reason, we focused on the Horvath measure of
1IEAA.

The age-related changes to blood cell composition
(Supplementary Table 4) can be leveraged to capture
aspects of immunosenescence. Using these measures,
we derived a novel extrinsic epigenetic age acceleration
(EEAA) measure by up-weighting the blood cell count
contributions  of  Agedccelyypmm (Methods  and
Supplementary Table 4).

Descriptive statistics (minimum, maximum, median) of
the measures of epigenetic age acceleration can be
found in Supplementary Table 3.

Cox regression models of all-cause mortality
We used Cox regression models to assess the predictive

value of our measures of epigenetic age acceleration for
all-cause mortality. All of our Cox models were adjusted

EEAA.static, Univariate

Meta P=7.5e-43, Heterog. P=0.0067

Cohort N (events) HR [95% CI] HR [95% CI] HR [95% CI]
WHI White 995 309 0.993[0.971, 1.016 ] Fard 0.998[0.975, 1.021] | 1.016[0.998 , 1.035]
LBC 1921 445 312 o 1.030[1.013,1.048 ] - 1.023[1.004 ,1.042] b 1.030[1.017 ,1.044]
LBC 1936 919 106 Fe 1.030[1.003 , 1.059] L 1.022[0.992 , 1.053] (R 1.031[1.004 ,1.059]
NAS 647 221 P 0.999[0.975, 1.023] B S 1.010[0.984 ,1.037] i 1.039[1.015,1.063]
FHS 2614 236 b 1.035[1.011,1.060 ] — 1.028[1.003 , 1.055] [ 1.063[1.043,1.083]
KORA 1257 42 b=  1.033[0.975,1.093] S S— 1.033[0.972, 1.098 ] 1 1.095[1.053,1.138]
INCHIANTI 506 91 - 1.034[0.992 ,1.078] [L— 1.034[0.990 , 1.080 ] — 1.036[1.004 , 1.070]
Rotterdam 710 32 -+ 1.049[0.993,1.110] ——y 1.028[0.961,1.100] 1 1.096[1.034,1.161]
BLSA White 317 26 F——1 1.100[1.023,1.183] e 11.114[1.025, 1.212] [ 1.043[0.980 , 1.111]
TwinsUK 805 30 F—— 1.072[0.988,1.162] | 1.036[0.947,1.134] —— 11.102[1.036, 1.172]
WHIBlack 675 176 ey 1.027[1.004 , 1.050 ] - 1.029[1.005, 1.054] [a— 1.036[1.014,1.059]
ARIC Black 2768 1075 - 1.024[1.012,1.037] - 1.023[1.011,1.036 ] ™ 1.041[1.031,1.051]
WHI Hispanic 431 78 F-4  1.038[0.988,1.091] e 1.022[0.971,1.076] R 1.049[1.011,1.088]
Meta (FE) 4 1.024[1.017,1.031]  Meta (FE) + 1.022[1.014,1.029]  Meta (FE) ¢ 1.040[1.034 ,1.046 ]
0.900  1.100 ' 1.300 0.905 ' 1.000 1,105 ' 1.221 0.951 162

Hazard Ratio

1.
Hazard Ratio

1.051 1
Hazard Ratio

Figure 2. Univariate Cox regression meta-analysis of all-cause mortality. A univariate Cox regression model was used to relate
the censored survival time (time to all-cause mortality) to (A) the universal measure of age acceleration (AgeAccel), (B) intrinsic
epigenetic age acceleration (/EAA), (C) extrinsic epigenetic age acceleration (EEAA). The rows correspond to the different
cohorts. Each row depicts the hazard ratio and a 95% confidence interval. The coefficient estimates from the respective studies
were meta-analyzed using a fixed-effect model weighted by inverse variance (implemented in the metafor R package [34]). It is
not appropriate to compare the hazard ratios and confidence intervals of the different measures directly because the measures
have different scales/distributions. However, it is appropriate to compare the meta analysis p values (red sub-title of each plot).
The p-value of the heterogeneity test (Cochran's Q-test) is significant if the cohort-specific estimates differed substantially.
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for the age at baseline (blood draw). Additional
multivariate models further adjusted for covariates
assessed at baseline (chronological age, body mass index,

educational level, alcohol intake, smoking pack-years,
prior history of diabetes, prior history of cancer, hyper-
tension status, self-reported recreational physical activity).

A AgeAccel, Multiv.Clinical B IEAA, Multiv.Clinical c EEAA.static, Multiv.Clinical
Meta P=5.4e-05, Heterog. P=0.083 Meta P=5e-04, Heterog. P=0.45 Meta P=3.4e-19, Heterog. P=0.12
Cohort N (events) HR [95% CI] HR [95% CI] HR [95% CI]

WHI White 869 268 &gl 0.999[0.975, 1.024 ] e 1.002[0.977 , 1.028 ] —— 1.017[0.996 , 1.038 ]
LBC 1921 424 296 L 1.029[1.011, 1.047 ] - 1.021[1.001, 1.041] - 1.033[1.018, 1.047 ]
LBC 1936 908 103 [l 1.011[0.984,1.038] fa—rt 1.009[0.979, 1.040 ] i 1.015[0.988 , 1.042]
NAS 647 221 = 0.991[0.965, 1.017 ] (= 1.001[0.973,1.029 ] —=— 1.036[1.012,1.061]
FHS 1437 163 ! 1.036 [ 1.004 , 1.069 ] = 1.033[1.000, 1.067 ] —=— 1.053[1.028 , 1.080 ]
KORA 1220 40 —— 1.003[0.931,1.081] A 1.005[0.927 , 1.088 ] f————1 1.088[1.005, 1.177 ]
InCHIANTI 490 85 —— 1.038[0.992, 1.085] —— 1.042[0.995, 1.092 ] F—— 1.028 [ 0.992 , 1.066 ]
Rotterdam 652 25 e 1.030 [ 0.966 , 1.097 ] [ 1.007[0.931, 1.089] pb———e—— 1.071[0.993,1.155]
BLSA White 317 26 F—=—11.143[1.050, 1.244 ] f——=—- 1.145[1.035, 1.266 ] f———=——1 1.086[1.005, 1.173]
WHI Black 607 159 k= 1.013[0.989, 1.038 ] | 1.020[0.993, 1.047 ] = 1.029[1.006 , 1.053 ]
ARIC Black 2548 975 n 1.012[0.999, 1.026 ] - 1.011[0.997 ,1.024 ] . 1.022[1.011,1.032]
WHI Hispanic 372 63 1 1.024[0.968 , 1.083 ] F—— 1.011[0.953,1.072] A 1.078[1.029, 1.129]
Meta (FE) ¢ 1.016[1.008,1.023]  Meta (FE) ¢ 1.014[1.006,1.022]  Meta (FE) ¢ 1.029[1.023, 1.035]

0.900 ' 1.100 ' 1.300 0905 = 1105 ' 1.350 0.951 1051 1162

Hazard Ratio Hazard Ratio Hazard Ratio

Figure 3. Multivariate Cox regression meta-analysis adjusted for clinical covariates. A multivariate Cox regression model was
used to relate the censored survival time (time to all-cause mortality) to (A) the universal measure of age acceleration (AgeAccel), (B)
intrinsic epigenetic age acceleration (/EAA), (C) extrinsic epigenetic age acceleration (EEAA). The multivariate Cox regression model
included the following additional covariates: chronological age, body mass index (category), educational level (category), alcohol intake,
smoking pack years, prior history of diabetes, prior history of cancer, hypertension status, recreational physical activity (category). The
rows correspond to the different cohorts. Each row depicts the hazard ratio and a 95% confidence interval. The coefficient estimates
from the respective studies were meta-analyzed using a fixed-effect model weighted by inverse variance (implemented in the metafor R
package [34]). The sub-title of each plot reports the meta-analysis p-value and a heterogeneity test p-value (Cochran's Q-test).
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Figure 4. Hazard ratio of death versus cohort characteristics. Each circle corresponds to a cohort (data set). Circle sizes
correspond to the square root of the number of observed deaths, because the statistical power of a Cox model is determined by the
number of observed deaths. (A-C) The y-axis of each panel corresponds to the natural log of the hazard ratio (In HR) of a univariate Cox
regression model for all-cause mortality. Each panel corresponds to a different measure of epigenetic age acceleration (A) universal age
acceleration, (B) intrinsic age acceleration, (C) extrinsic age acceleration. Panels (D-F) are analogous to those in A-C but the x-axis
corresponds to the median age of the subjects at baseline (Table 1). The title of each panel reports the Wald test statistic (7) and
corresponding p-value resulting from a weighted linear regression model (y regressed on x) where each point (data set) is weighted by
the square root of the number of observed deaths. The dotted red line represents the regression line. The black solid line represents the
line of identify (i.e., no association).
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Table 3. Subgroup analysis by demographic factors.

Age-adjusted Full model
Subgroup HR  p-value HR p-value
Race
White 1.05 3.0x107%¢ 1.03 1.3x10°
Black 1.04 7.8x107% 1.02 7.6x10°
Hispanic 1.05 1.1x107 1.06 5.3x10°
DPinteraction 0.62 0.14
Sex
Men 1.04 7.1x107"° 1.03  1.9x102
Women 1.04 3.7x10"° 1.03 1.9x10°
Dinteraction 0.63 0.95
Follow-up
duration
<5 years 1.02 0.20 0.98 0.79
5-10 years 1.02 1.8x107 1.02 0.17
>10 years 1.03  4.5x107 1.02 4.1x10°
Dinteraction 0.67 0.84
BMI
categories
Underweight 1.11  9.4x10° 1.04 8.9x10°
Normal 1.06 6.1x10™" 1.04 2.3x10°
Overweight 1.04 1.46x10° 1.03  5.0x10°
Obese 1.04 2.2x10™" 1.02 7.1x10°
Dinteraction 0.05 0.75
Smoking status
Never 1.03 6.9x10° 1.04 4.8x10°
Former 1.05 4.2x10% 1.03 6.3x10™
Current 1.06 2.1x10* 1.01 047
Pinteraction 0.05 0.20
Physical
activity status
Yes 1.05 3.8x10° 1.02 1.9x10°
No 1.03  2.5x107 1.03 2.2x10°
Dinteraction 0.23 0.65

Age-adjusted and fully adjusted associations for EEAA to all-
cause mortality by subgroup (rows). The fully adjusted model
includes the following covariates: body mass index, educational
level, alcohol intake, smoking pack-years, prior history of
diabetes, prior history of cancer, hypertension status, self-
reported recreational physical activity.
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Our novel measure of extrinsic age acceleration FEAA Interpreting effect sizes and variance of epigenetic

led to smaller p-values for the associations with all-cause age acceleration
mortality than the original measure AgeAccelyumm n ) ) ) . )
univariate Cox models (preas=7.5x10™" Subjects differed substantially in terms of their

measures of epigenetic age acceleration, e.g. EEAA
ranged from -28 to 28 years in the WHI (standard
deviation =6.4 years, Supplementary Table 3).

pAgeAccelHannu,n:l.4X10'34, Supplementary Figure 1) and in
multivariate Cox models (PEEA A=3.4x10'19,
pAgeAccelHannum:6X10-15, Supplementary Figure 2). Further,
when both EEAA and AgeAccelyanmm were included in
the same Cox model, only EEAA remained significant in
the WHI data and FHS univariate models. Since these
results indicate that EEAA outperforms the closely related

About five percent of the participants of the WHI
exhibited an EFAA value larger than 10, which is
associated with a 48% increased hazard of death as can
be seen from the following calculation. The HR of

measure AgeAccelymm Wwhen it comes to mortality EEAA is 1.040 if EEAA=1 (Figure 2c) but it is
prediction, we removed the latter from subsequent HR=1.48=(1.040)"° if EEAA=10. Negative values of
analyses. age acceleration were associated with a lower hazard of
mortality. For example, 20% of subjects had an EEAA
All considered measures of epigenetic age acceleration value less than -5, which is associated with an 18%
were predictive of time to death in univariate Cox decrease in the hazard of death (HR=0.82=1.04").
models (pAgeAwe,:lelO'“, pIEAA=8.2x10'9,
peeas=7.5x10"" Figure 2) and multivariate Cox models Subgroup analysis

adjusting for risk factors and pre-existing disease status
(Pagedcce=5-4x107,  pp=5.0x10",  pppa=3.4x10"",
Figure 3).

With few exceptions, we found that the associations
between EEAA and time to death remained highly signi-

Table 4. Subgroup analysis by prevalent disease status.

Age-adjusted Full model
Subgroup HR p-value HR  p-value
Cancer status
Yes 1.05 2.5x10™° 1.02  0.18
No 1.05 2.3x10™" 1.03  1.7x10™*
Pinteraction 092 073
Coronary artery
disease status
Yes 1.04 2.4x10° 1.01  0.60
No 1.04 1.5x10™" 1.02  1.5x10*
pinteraction 043 099
Hypertension status
Yes 1.04 7.4x107"7 1.03  2.9x10°
No 1.05 7.1x10°° 1.02  8.6x10°
pinteractian 04 1 O 45
Type 2 diabetes status
Yes 1.04 8.6x10™" 1.03  1.7x10°
No 1.04 1.2x10™"° 1.02  9.3x10°
Pinteraction 070 025

Age-adjusted and fully adjusted associations for EEAA to all-cause
mortality in different subgroups (rows). The fully adjusted model
includes the following covariates: body mass index, educational level,
alcohol intake, smoking pack-years, prior history of diabetes, prior
history of cancer, hypertension status, self-reported recreational
physical activity.
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ficant in subgroups stratified by race, sex, follow-up
duration, body mass index, smoking status, physical
activity (Table 3) and in subgroups stratified by
prevalent disease at baseline such as cancer, coronary
artery disease, hypertension and type 2 diabetes (Table
4). Only one subgroup led to an insignificant finding
(p>0.05) in our univariate model analysis: namely
subjects with less than 5 years of follow up (Table 3).
For multivariate models, we failed to observe
significant associations for the following subgroups: 1)
less than 5 years of follow up, ii) between 5 and 10
years of follow up, iii) current smokers, iv) obese
individuals, v) Hispanics, vi) individuals with cancer,
and vii) subjects with coronary artery disease. The
insignificant results in multivariate models in cancer
patients or CAD patients might reflect the relatively low
sample sizes or that epigenetic age acceleration is
dwarfed by other predictors of mortality in subjects with
severe diseases. Hazard ratio estimates remained highly
consistent across all subgroups examined.

We did not observe significant differences in the
estimated hazard ratios across any subgroup (Tables 3
and 4). Specifically, racial/ethnic differences in HR
were not observed (interaction p=0.62 1in age-
adjustment models and p=0.14 in full models). Overall,
these subgroup analysis results confirm that epigenetic
age acceleration is an independent predictor of earlier
mortality even after adjusting for possible confounders
and within major subgroups of the population.

Hazard ratio of death versus follow up time and
median age

The large number of cohorts allowed us to relate cohort
characteristics (such as median age or median follow up
removing time) to strength of association with
mortality. We did not find a statistically significant
relationship between the hazard ratio of death for the
median age of the cohort or the follow up time (Figure
4).

Robustness analysis

To assess the robustness of our findings, we also carried
out a leave-one-out analysis by re-running the
metaanalysis after removing data from individual
cohorts. The resulting p-values are highly robust with
respect to a single data set from the analysis
(Supplementary Table 5). In our study, we used a fixed
effects meta-analysis method for the sake of consistency
with previous analyses [5]. However, our results remain
qualitatively the same after using a random effects
meta-analysis method (Supplementary Figure 4).

DISCUSSION

The current study corroborates previous findings
regarding the predictive power of DNA methylation-
based biomarkers of age for mortality [5,6,8]. We
further examined novel variants of these measures that
are either independent of blood cell counts or are
enhanced by changes in blood cell sub-populations. We
showed that the extrinsic measure FEAA out-performs
previous measures of age acceleration when it comes to
predicting all-cause mortality. Furthermore, the
associations between epigenetic age acceleration and
mortality did not differ significantly across subgroups
of race/ethnicity, sex, BMI, smoking status, physical
activity status, or major chronic diseases. The
consistency of the associations across multiple
subgroups lends support to the notion that epigenetic
age acceleration captures some aspect of biological
aging over and above chronological age and other risk
factors.

The development of suitable measures of biological age
has been a key goal in the field of aging research [13].
Many biomarkers of age have been posited including
epigenetic alterations of the DNA (e.g., DNA
methylation), transcriptomic changes in blood [14],
telomere length [15], whole-body function such as gait
speed (reviewed in [16]). The current study does not
aim to replace existing blood based biomarkers, but
rather, we aimed to demonstrate that it complements
existing markers. Above all, this study shows that
epigenetic age captures an aspect of biological age, as
assessed through lifespan, above and beyond
chronological age, blood cell composition, and a host of
traditional risk factors of mortality.

The measures of epigenetic age acceleration are
attractive because they are highly robust and because
their measurement only involve DNA methylation data.
While actual flow cytometry data will always be
preferable to imputed blood cell count data (based on
DNA methylation data), the measures of age
acceleration do not require the measurement of flow
data. Rather, measures of intrinsic and extrinsic
epigenetic age used blood cell count estimates resulting
from DNA methylation data. The measure of extrinsic
age acceleration EEAA reflects aspects of immuno-
senescence because, by construction, it correlates with
age-related changes in blood cell composition, such as
T lymphocyte populations, which underlie much of the
age-related decline in the protective immune response
[9-12]. Thus, the high predictive significance of EEAA
for all-cause mortality probably reflects the fact that it
assesses multiple aspects of the biological age of the
immune system including both changes in blood cell
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composition and cell-intrinsic epigenetic changes. It has
been known for decades that poor T cell functioning is
predictive of mortality [17].

The findings surrounding the predictive utility of
intrinsic epigenetic age acceleration are biologically
compelling and point to a new frontier in aging
research. Our study strongly suggests /EAA is reflective
of an intrinsic epigenetic clock that is associated with
mortality independent of chronological age, changes in
blood cell composition, and traditional risk factors of
mortality. [EAA probably captures a cell-type
independent component of the aging process for the
following reasons. First, /EAA is moderately preserved
across different tissues and cell types collected from the
same subject (Figure 1). Second, /EAA but not EEAA is
predictive of lung cancer [18]. Third, only /EAA and
AgeAccel relate to centenarian status [8].

Overall, our results inform the ongoing debate about
whether epigenetic biomarkers of age capture an aspect
of biological age. While epigenetic processes are
unlikely to be the only mediators of chronological age
on mortality—in fact, multiple risk factors have
stronger effects on mortality—our results suggest that at
least one of the mediating processes relates to the
epigenetic age of blood tissue and that this process is
independent of age-dependent changes in blood cell
composition. Future studies will be useful for gaining a
mechanistic understanding of this intrinsic epigenetic
aging process.

MATERIALS AND METHODS
Measures of epigenetic age

We used an epigenetic biomarker of age based on 353
CpG markers as one measure of epigenetic age because:
a) it is an accurate measurement of age across multiple
tissues [3]; b) we previously showed that it is predictive
of all-cause mortality [5]; c) it correlated with measures
of cognitive/physical fitness and neuro-pathology in the
elderly [19,20]; and d) it was associated with conditions
that are of interest in aging research including Down's
syndrome [21], Huntington's disease [22], Parkinson's
disease [23], obesity [24], HIV infection [25],
menopause [26], centenarian status [27], ethnicity and
sex [28], and cellular senescence [3,29]. This epigenetic
age estimator not only lends itself to measuring aging
effects in elderly subjects; but also applies to prenatal
brain samples [30] and blood samples from minors [31].
Epigenetic age is defined as the predicted value of age
based on the DNA methylation levels of 353 CpGs.
Mathematical details and software tutorials for
estimating epigenetic age can be found in the additional

files of [3]. All of the described epigenetic measures of
aging and age acceleration are implemented in our
freely available software (https://dnamage.genetics.
ucla.edu) [3].

DNA methylation age estimate by Hannum et al
(2013)

We also used an alternative measure of epigenetic age
developed by Hannum et al (2013) [2]. The resulting
age estimate is based on the 71 CpGs and coefficient
values from the third supplementary table [2]. The
authors developed this age prediction method by using
an elastic net regression model for predicting
chronological age based on DNA methylation levels
from whole blood.

Measures of epigenetic age acceleration

Table 2 provides an overview of our measures of
epigenetic age acceleration. The universal measure of
age acceleration (AgeAccel), which is valid for a wide
range of tissue types, is defined as the residual resulting
from a linear regression model that regresses the
Horvath estimate of epigenetic age on chronological
age. Thus, a positive value for AgeAccel indicates that
the observed epigenetic age is higher than that
predicted, based on chronological age. AgeAccel has a
relatively weak correlation with blood cell counts [25],
but it still relates to estimated blood cell counts, as seen
in Supplementary Table 4.

To estimate "pure" epigenetic aging effects that are not
influenced by differences in blood cell counts
("intrinsic" epigenetic age acceleration, [EAA), we
obtained the residual resulting from a multivariate
regression model of epigenetic age on chronological age
and various blood immune cell counts (naive CD8+ T
cells, exhausted CD8+ T cells, plasmablasts, CD4+ T
cells, natural killer cells, monocytes, and granulocytes)
imputed from methylation data.

Extrinsic epigenetic age acceleration measures capture
both cell intrinsic methylation changes and extracellular
changes in blood cell composition. Our measure of
EEAA is defined using the following three steps. First,
we calculated the epigenetic age measure from Hannum
et al [2], which already correlated with certain blood
cell types [5]. Second, we increased the contribution of
immune blood cell types to the age estimate by forming
a weighted average of Hannum’s estimate with 3 cell
types that are known to change with age: naive
(CD45RA+CCR7+) cytotoxic T cells, exhausted
(CD28-CD45RA-) cytotoxic T cells, and plasmablasts
using the Klemera-Doubal approach [32]. The weights
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used in the weighted average are determined by the
correlation between the respective variable and
chronological age [32]. The weights were chosen on the
basis of the WHI data. Thus, the same (static) weights
were used for all data sets. EEAA was defined as the
residual variation resulting from a univariate model
regressing the resulting age estimate on chronological
age. By construction, EEAA is positively correlated with
the estimated abundance of exhausted CD8+ T cells,
plasmablast cells, and a negative correlated with naive
CD8+ T cells. Blood cell counts were estimated based
on DNA methylation data as described in the next
section. By construction, the measures of FEAA track
both age related changes in blood cell composition and
intrinsic epigenetic changes. None of our four measures
of epigenetic age acceleration are correlated with
chronological age.

based on DNA

Estimating blood cell counts

methylation levels

We estimate blood cell proportions using two different
software tools. Houseman's estimation method [33],
which is based on DNA methylation signatures from
purified leukocyte samples, was used to estimate the
proportions of cytotoxic (CD8+) T cells, helper (CD4+)
T, natural killer, B cells, and granulocytes. The software
does not allow us to identify the type of granulocytes in
blood (neutrophil, eosinophil, or basophil) but we note
that neutrophils tend to be the most abundant
granulocyte (~60% of all blood cells compared with
0.5-2.5% for eosinophils and basophils). To estimate the
percentage of exhausted CD8+ T cells (defined as
CD28-CD45RA-), plasmablasts, and the number
(count) of naive CD8+ T cells (defined as
CD45RA+CCR7+), we used the "Horvath method"
[25], which is implemented in the advanced analysis
option of the epigenetic age calculator software [3]. We
and others have shown that imputed blood cell counts
have moderately high correlations with corresponding
flow cytometric data, e.g. r=0.86 for naive CD4+ T
cells, r=0.68 for naive CDS8+T, and 1r=0.49 for
exhausted CD8+ T cells [28].

Cox regression models and meta-analysis

Here, we used Cox models for analyzing the censored
survival time data (from the age at blood draw until age
at death or last follow-up). We regressed the censored
survival times on covariates using Cox regression
models implemented in the R function coxph in the
survival package. The resulting coefficient values
(interpreted as log hazard ratios) and standard errors
were combined using the R software package metafor
[34]. The meta-analysis was carried out with the R

command rma (with arguments method="FE" to get
fixed effects estimates). The forest plots were created
using the R function forest (with argument atransf=exp
to exponentiate the estimate of the log hazard ratios).

Sample exclusions

In addition to cohort-specific quality checks, we further
excluded individuals who had ever been diagnosed with
leukemia (ICD-9: 203-208), reported receiving
chemotherapy, and whose methylation beta value
distributions deviated substantially from a gold standard
(according to the quality statistic corSampleVSgold
standard<0.80 from the online age calculator [35-37]).
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SUPPLEMENTARY DATA

Supplementary Table 1. Average pairwise correlations between
chronological age, epigenetic age based on the Horvath method, and
epigenetic age based on Hannum.

Age Epigenetic age Epigenetic age
g (Horvath) (Hannum)
Age - 0.74 0.81
Epigenetic age
(Horvath) 0.74 - 0.76
Epigenetic age
(Hannum) 0.81 0.76 -

Supplementary Table 2. Correlations between estimated blood cell abundances and chronological age.

CD8+CD28- CD8+ CD4+ CD8+ CD4+ NK

Cohort Plasmablasts CD45RA- naive naive total total cells B cells Monocytes Granulocytes
ARIC 0.03 0.16 -0.22 -0.13 -0.06 -0.08 0.13 -0.08 0.09 0.04
FHS 0.23 0.36 -0.38 -0.22 -0.19 -0.23 0.20 -0.27 0.17 0.16
InCHIANTI 0.06 0.32 -0.43 -0.34 -0.19 -0.20 0.23 -0.20 0.08 0.11
KORA 0.20 0.48 - -0.37 -0.07 -0.37 0.12 -0.22 0.20 0.16
LBC1921 0.03 0.03 -0.14 -0.09 0.10 0.01 0.05 -0.07 0.10 -0.07
LBC1936 0.11 0.04 -0.05 -0.09 -0.03 0.00 -0.05 -0.13 -0.09 0.05
NAS 0.04 0.28 -0.21 -0.07 0.01 -0.16 0.12 -0.10 -0.01 0.08
RSIII 0.11 0.20 -0.26 -0.16 -0.10 -0.14 0.06 -0.16 0.14 0.11
TwinsUK -0.02 0.21 -0.35 -0.08 -0.14 0.07 0.27 -0.02 0.10 -0.14
WHI White 0.09 0.21 -0.17 -0.13 -0.13 -0.10 0.17 -0.12 0.10 0.04
WHI Black 0.12 0.24 -0.21 -0.13 -0.07 -0.17 0.16 -0.18 0.11 0.07
WHI

Hispanic 0.08 0.26 -0.21 -0.15 -0.11 -0.13 0.17 -0.10 0.03 0.08
MEAN 0.09 0.23 -0.26 -0.16 -0.08 -0.12 0.14 -0.14 0.09 0.06

The values shown are robust correlation coefficients (biweight midcorrelation, which is based on medians). Colors reflect the direction and
magnitude of the correlation coefficients (blue=negative correlation, red=positive correlation).
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Supplementary Table 3. Descriptive statistics of measures of epigenetic age acceleration by cohort.

Epigenetic age Cohort SD Min 25th Median 75th Max
acceleration measure percentile | (50th percentile
percentile)

AgeAccel ARIC 5.081 | -34.380 -3.191 -0.100 3.220 25.620
AgeAccel FHS 4.621 | -16.490 -3.110 -0.367 2.460 35.160
AgeAccel InCHIANTI 4.999 | -33.600 -3.084 -0.338 2.223 29.770
AgeAccel KORA 4937 | -24.810 -3.423 -0.117 2.905 20.660
AgeAccel LBC1921 6.971 | -24.240 -3.884 -0.170 3.943 39.730
AgeAccel LBC1936 6.485 | -30.160 -3.879 0.116 3.801 42.100
AgeAccel NAS 5365 | -16.930 -3.706 -0.498 2.909 32.830
AgeAccel RSIII 6.003 | -18.570 -4.325 -0.046 4276 20.050
AgeAccel TwinsUK 4.108 | -13.760 -2.514 0.274 2.899 13.560
AgeAccel WHI (white) 5.153 | -22.560 -2.843 -0.103 3.443 22.790
AgeAccel WHI (Black) 6.091 | -21.900 -5.424 -1.977 1.824 39.930
AgeAccel WHI (Hispanic) 4494 | -14.080 -3.831 -0.535 2.458 14.790
AgeAccel BLSA 4.828 | -11.620 -2.966 0.290 3.197 25.180
AgeAccel ARIC 5914 | -38.770 -3.766 0.105 3.648 39.350
AgeAccelHannum FHS 5279 | -23.480 -3.303 -0.174 3.001 36.680
AgeAccelHannum InCHIANTI 6.028 | -43.640 -3.152 0.431 3.573 31.490
AgeAccelHannum KORA 4.996 | -30.280 -3.266 -0.314 2.711 37.410
AgeAccelHannum LBC1921 7.203 | -25.140 -4.574 -0.821 3.722 51.840
AgeAccelHannum LBC1936 6.670 | -27.520 -4.172 0.131 4.183 31.650
AgeAccelHannum NAS 5.161 -12.250 -3.310 -0.787 2.511 22.750
AgeAccelHannum RSIII 6.090 | -18.600 -3.825 0.115 4.152 17.970
AgeAccelHannum TwinsUK 5.246 | -17.040 -2.949 0.320 3.821 20.260
AgeAccelHannum WHI (white) 5.557 | -23.460 -3.644 -0.086 3.441 21.760
AgeAccelHannum WHI (Black) 6.317 | -23.490 -4.773 -0.891 3.045 31.480
AgeAccelHannum WHI (Hispanic) 5357 | -12.740 -2.139 1.133 4.469 20.880
AgeAccelHannum BLSA 5.709 | -15.720 -2.942 0.429 3.801 31.730
AgeAccelHannum ARIC 4928 | -34.020 -3.010 -0.057 3.068 23.810
1EAA FHS 4491 | -16.010 -2.901 -0.199 2.547 32.160
1EAA InCHIANTI 4.783 | -30.930 -2.898 -0.374 2.364 29.470
1IEAA KORA 4.647 | -29.350 -3.276 -0.114 2.761 18.740
1EAA LBC1921 6.228 | -22.890 -3.664 0.135 3.554 24.600
1EAA LBC1936 6.162 | -26.310 -3.596 0.035 3.718 34.090
1EAA NAS 4929 | -24.190 -3.019 -0.458 2.694 22.500
1EAA RSIII 5.130 | -16.610 -3.330 -0.026 3.387 15.190
1IEAA TwinsUK 4.016 | -14.590 -2.257 0.234 2.718 13.100
1EAA WHI (white) 4.797 | -21.460 -2.608 0.183 3.287 21.440
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1EAA WHI (Black) 5.588 | -20.320 -3.202 0.067 3.197 42.660
1EAA WHI (Hispanic) 4333 | -13.520 -3.971 -1.397 1.864 12.480
1EAA BLSA 4488 | -10.370 -2.658 0.017 3.330 23.120
EEAA ARIC 6.673 | -32.940 -4.096 0.135 4.149 38.560
EEAA FHS 5.800 | -26.100 -3.607 0.113 3.315 38.250
EEAA InCHIANTI 6.710 | -44.360 -3.327 0.576 4.236 33.630
EEAA KORA 5405 | -26.610 -3.526 -0.339 3.189 37.600
EEAA LBC1921 7.745 | -21.180 -5.262 -0.973 4.306 52.120
EEAA LBC1936 7.116 | -30.590 -4.439 0.168 4.589 31.530
EEAA NAS 5.596 | -13.730 -3.443 -0.579 2.987 23.540
EEAA RSIII 6.861 -22.380 -4.392 0.267 4.794 21.080
EEAA TwinsUK 5.840 | -22.790 -3.409 0.401 4.023 23.020
EEAA WHI (white) 6.089 | -22.710 -3.888 0.015 4.008 22.320
EEAA WHI (Black) 6.906 | -27.600 -5.735 -1.382 2.827 27.900
EEAA WHI (Hispanic) 5779 | -14.310 -1.679 2.371 5.651 23.450
EEAA BLSA 6.256 | -18.040 -3.435 0.921 4.724 29.230

Supplementary Table 4.
counts estimated from

Pairwise correlations (mean and standard error (SE) across cohorts) between blood cell
DNA methylation profiles (rows) and several measures of epigenetic age acceleration

(columns).

AgeAccel IEAA EEAA AgeAccelyunnum IEAA.Hannum
BloodCell average r (SE) average r (SE) averager (SE)  average r (SE) average r (SE)
Plasma Blast 0.02 (0.031) 0 (0.002) 0.28 (0.034) 0.20 (0.033) 0(0.018)
Exhausted CD8+ 0.18 (0.039) 0 (0.009) 0.50 (0.033) 0.29 (0.044) 0 (0.046)
CDS8.naive -0.18 (0.043) 0(0.011) -0.52 (0.04) -0.35 (0.048) 0 (0.05)
CD4.naive -0.09 (0.033) 0.07 (0.017) -0.36 (0.038) -0.28 (0.041) 0.06 (0.046)
CDST 0.19 (0.026) 0(0.023) 0 (0.046) 0 (0.041) -0.01 (0.024)
CDAT -0.20 (0.032) 0 (0.004) -0.46 (0.034) -0.34 (0.036) 0 (0.026)
NK 0.13 (0.026) 0 (0.002) 0.17 (0.042) 0.10 (0.042) 0(0.03)
Beell -0.08 (0.051) -0.11 (0.028) -0.05 (0.068) -0.01 (0.061) -0.02 (0.035)
Monocyte 0.05 (0.026) 0 (0.006) 0.12 (0.042) 0.07 (0.04) 0(0.019)
Granulocyte -0.03 (0.033) 0 (0.005) 0.16 (0.049) 0.14 (0.042) 0(0.018)

AgeAccel=univeral measure of age acceleration based on Horvath estimate. IEAA=intrinsic epigenetic age acceleration based
on the Horvath estimate. EEAA = extrinsic epigenetic age acceleration which is an enhanced version of the Hannum estimate.
AgeAccelyannum=univeral measure of age acceleration based on the Hannum estimate. IEAA.Hannum=intrinsic epigenetic age
acceleration based on Hannum estimate. By design, the intrinsic measures have only weak correlations with blood cell counts.
By contrast, AgeAccelyannum and EEAA have moderately strong correlations with blood cell counts.
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Supplementary Table 5. Leave-one-out analysis by cohort for relating EEAA

to time to death.

Cohort removed

Age-adjusted model

Fully adjusted model

(None) 1.04 (p=1.81x10™*) 1.02 (p=1.94x107)
ARIC 1.04 (p=1.00x10~°) 1.03 (p=1.09x10")
FHS 1.04 (p=1.23x10"") 1.02 (p=5.09x10")
LBC 1921 1.04 (p=1.17x10>%) 1.02 (p=3.21x10)
LBC 1936 1.04 (p=1.94x10™"") 1.02 (p=1.39x107")
WHI (Whites) 1.04 (p=2.61x10™) 1.02 (p=2.77x107)
WHI (Blacks) 1.04 (p=3.46x10™") 1.02 (p=7.42x10"")
WHI (Hispanics) 1.04 (p=4.29x10™") 1.02 (p=6.17x107)
NAS 1.04 (p=3.91x10™) 1.02 (p=2.42x107)
InCHIANTI 1.04 (p=1.98x10™"") 1.02 (p=7.38x107)
Rotterdam 1.04 (p=4.35x10™"") 1.02 (p=2.16x10")
KORA 1.04 (p=1.93x10"") 1.02 (p=3.76x107)
TwinsUK 1.04 (p=3.76x10™"") 1.02 (p=4.66x107)

The table reports hazards ratios and corresponding p-values based on a Cox
regression. The fully adjusted model includes the following covariates: body mass
index, educational level, alcohol intake, smoking pack-years, prior history of diabetes,
prior history of cancer, hypertension status, self-reported recreational physical

activity.
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A Hannum, Univariate B EEAA, Univariate
Meta P=1.4e-34, Heterog. P=0.036 Meta P=7.5e-43, Heterog. P=0.0067

COHORT N (events) HR [95% CI] HR [95% CI]
WHI White 995 309 - 1.017[0.997 ,1.037 ] —a] 1.016[0.998,1.035]
LBC 1921 445 312 e 1.031[1.017,1.045] - 1.030[1.017,1.044 ]
LBC 1936 919 106 i 1.021[0.992,1.050] f—=— 1.031[1.004 , 1.059 ]
NAS 647 221 [ 1.034 [ 1.008 , 1.060 ] f——q 1.039[1.015, 1.063 ]
FHS 2614 236 fm 1.063[1.042,1.085] i 1.063[1.043,1.083]
KORA 1257 42 F—— 1.086[1.042,1.133] v 1.095[1.053,1.138]
INCHIANTI 506 91 =i 1.045[1.009, 1.082] [ E— 1.036 [ 1.004 , 1.070]
Rotterdam 710 32 i 1.084[1.019,1.153] P 1.096[1.034 ,1.161]
BLSA White 317 26 e 1.050[0.986,1.118 ] S 1.043[0.980,1.111]
TwinsUK 805 30 f—=—— 1.104[1.030, 1.184] p———=—— 1.102[1.036, 1.172]
WHI Black 675 176 e 1.035[1.012,1.059] I 1.036[1.014,1.059]
ARIC Black 2768 1075 ] 1.039[1.029, 1.050 ] I 1.041[1.031,1.051]
WHI Hispanic 431 78 —— 1.042[1.002, 1.083 ] P 1.049[1.011,1.088]
Meta (FE) ) 1.038[1.032,1.045] Meta (FE) ¢ 1.040[1.034,1.046 ]

0.900 1.100 1.300 0.951 1.051 1.162
Hazard Ratio Hazard Ratio

Supplementary Figure 1. Univariate Cox regression model analysis of all-cause mortality, contrasting existing and novel
measures of age acceleration. The rows correspond to the different cohorts. Each row depicts the hazard ratio and a 95%
confidence interval. To combine the coefficient estimates from the respective studies into a single estimate, we applied a
fixed-effect model weighted by inverse variance (implemented in the metafor R package [30]). (A) This measure of age
acceleration is based on Hannum et al [1]. Specifically, we estimated the age using the 71 CpGs and coefficient values from
Hannum. Next, the measure of age acceleration was defined as residuals resulting from regressing the epigenetic age
estimate on chronological age. (B) Extrinsic epigenetic age acceleration (EEAA). The sub-title of each plot reports the meta-
analysis p-value and a heterogeneity test p-value (Cochran's Q-test). It is not appropriate to compare the hazard ratios and
confidence intervals of the different measures directly because the measures have different scales/distributions. However,

it is appropriate to compare the meta-analysis p-values (colored in red).

A Hannum, Multiv.Clinical B EEAA, Multiv.Clinical
Meta P=6e-15, Heterog. P=0.15 Meta P=3.4e-19, Heterog. P=0.12
COHORT N (events) HR [95% CI] HR [95% CI]
WHI White 869 268 - 1.018 [ 0.995, 1.040 ] —a—f 1.017 [ 0.996 , 1.038 ]
LBC 1921 424 296 H 1.032[1.016, 1.047 ] - 1.033[1.018,1.047 ]
LBC 1936 908 103 e 1.009[0.981,1.038] ] 1.015[0.988,1.042 ]
NAS 647 221 = 1.029[1.003, 1.056 ] f——ri 1.036[1.012, 1.061 ]
FHS 1437 163 = 1.057[1.029,1.085] f—— 1.053[1.028,1.080]
KORA 1220 40 ——=—+ 1.079[0.998, 1.167 ] p———=—— 1.088[1.005, 1.177]
INCHIANTI 490 85 = 1.038[0.998, 1.079 ] —— 1.028 [ 0.992, 1.066 ]
Rotterdam 652 25 bt 1.045[0.966, 1.131] e 1.071[0.993,1.155]
BLSA White 317 26 ——— 1.085[1.002,1.176] p——=——— 1.086[1.005,1.173]
WHI Black 607 159 i 1.028[1.004 , 1.053 ] f——i 1.029[ 1.006 , 1.053 ]
ARIC Black 2548 975 ] 1.019[1.007,1.030] HEH 1.022[1.011,1.032]
WHI Hispanic 372 63 P 1.070[1.019,1.124] P 1.078[1.029, 1.129]
Meta (FE) ¢ 1.027[1.020, 1.034 ] Meta (FE) ¢ 1.029[1.023,1.035]
0.900 1.100 1.300 0.951 1051  1.162
Hazard Ratio Hazard Ratio

Supplementary Figure 2. Multivariate Cox regression model analysis of all-cause mortality, contrasting existing and novel
measures of age acceleration. The multivariate Cox regression model included the following additional covariates: chronological age,
body mass index (category), educational level (category), alcohol intake, smoking pack years, prior history of diabetes, prior history of
cancer, hypertension status, recreational physical activity (category). The rows correspond to separate cohorts. Each row depicts the
hazard ratio (HR) and a 95% confidence interval. (A) Age acceleration based on Hannum et al [6], (B) Extrinsic epigenetic age acceleration
(EEAA). The sub-title of each plot reports the meta-analysis p-value and a heterogeneity test p-value (Cochran's Q-test).
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Supplementary Figure 3. Multivariate Cox regression analysis of all-cause mortality adjusted for blood cell counts and
clinical covariates. A multivariate Cox regression model was used to relate the censored survival time (time to all-cause mortality) to
(A) the universal measure of age acceleration (AgeAccel), (B) intrinsic epigenetic age acceleration (IEAA), (C) extrinsic epigenetic age
acceleration (EEAA). The multivariate Cox regression model included blood cell counts (exhausted CD8+ T cells, naive CD8+, CD4+ T cells,
natural killer, monocytes, granulocytes, and plasmablasts) and clinical covariates (chronological age, body mass index, educational level,
alcohol intake, smoking pack years, prior history of diabetes, prior history of cancer, hypertension status, recreational physical activity).
The rows correspond to the different cohorts. Each row depicts the hazard ratio (HR) and a 95% confidence interval. Estimates were
meta-analyzed using a fixed-effect model weighted by inverse variance. The sub-title of each plot reports the meta-analysis p-value and a
heterogeneity test p-value (Cochran's Q-test).

A AgeAccel, Univariate B IEAA, Univariate c EEAA.static, Univariate

Meta P=1.5e-06, Heterog. P=0.082

Meta P=8.2e-09, Heterog. P=0.61

Meta P=2.3e-16, Heterog. P=0.0067

Cohort N (events) HR [95% CI] HR [95% CI] HR [95% CI]

WHI White 995 309 i 0.993[0.971,1.016] [ 0.998[0.975, 1.021] - 1.016[0.998 , 1.035
LBC 1921 445 312 - 1.030 [ 1.013, 1.048 ] Faq 1.023[1.004 , 1.042] Y 1.030 [ 1.017 , 1.044 |
LBC 1936 919 106 b 1.030 [ 1.003 , 1.059 ] i 1.022[0.992 , 1.053] i 1.031[1.004, 1.059 ]
NAS 647 221 - 0.999[0.975, 1.023 ] [ 1.010[0.984 , 1.037 ] [ 1.039[ 1.015, 1.063 |
FHs 2614 236 u 1.035[ 1.011, 1.060 ] — 1.028 [ 1.003 , 1.055 ] [ 1.063[1.043 , 1.083 ]
KORA 1257 42 R S 1.033[0.975, 1.093] [H 1.033[0.972,1.098 ] = 1.095[1.053,1.138]
INCHIANTI 506 91 - 1.034[0.992 ,1.078] - 1.034[0.990 , 1.080 ] - 1.036[1.004 , 1.070 ]
Rotterdam 710 32 -+ 1.049[0.993,1.110] ——— 1.028[0.961,1.100 ] 1 1.096[1.034,1.161 ]
BLSA White 317 26 F——1 1.100[1.023,1.183] ————11.114[ 1.025, 1.212] e 1.043[0.980 , 1.111]
TwinsUK 805 30 F——1 1.072[0.988,1.162] -  1.036[0.947,1.134] ———{1.102[1.036, 1.172]
WHIBlack 675 176 -y 1.027[1.004 , 1.050 ] — 1.029[ 1.005 , 1.054 ] . 1.036 [ 1.014 , 1.059 ]
ARIC Black 2768 1075 - 1.024[1.012, 1.037] - 1.023[1.011,1.036 ] ™ 1.041[1.031, 1.051 ]
WHI Hispanic 431 78 i 1.038[0.988 , 1.091] ——— 1.022[0.971,1.076 ] —— 1.049[1.011, 1.088 |
Meta (DL) ‘ 1.025[1.015,1.035]  Meta (DL) + 1.022[1.014,1.029]  Meta (DL) * 1.043[1.033, 1.054 ]

0.800 ' 1.100 ' 1.300 0.905 ' 1.000 ' 1.105 ' 1.221 0951 1051 | 1.162

Hazard Ratio

Hazard Ratio

Hazard Ratio

Supplementary Figure 4. Random effects meta-analysis for univariate Cox models. The figure is analogous to Figure 2 in our
article except that it uses a random-effects meta-analysis (DerSimonian-Laird) instead of a fixed-effects model. A univariate Cox
regression model was used to relate the censored survival time (time to all-cause mortality) to (A) the universal measure of age
acceleration (AgeAccel), (B) intrinsic epigenetic age acceleration (IEAA), (C) extrinsic epigenetic age acceleration (EEAA). To combine the
coefficient estimates from the respective studies into a single estimate, we applied the DerSimonian-Laird random effects model. The
sub-title of each plot reports the meta-analysis p-value and a heterogeneity test p-value (Cochran's Q-test).
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