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ABSTRACT

When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately
leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging
process. Several proposed aging theories were recently combined as the ‘hallmarks of aging’. These hallmarks
describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype.
Sustaining evidence shows a potential role for hydrogen sulfide (H,S) in the regulation of aging.

Nowadays, H,S is acknowledged as an endogenously produced signaling molecule with various (patho-)
physiological effects. H,S is involved in several diseases including pathologies related to aging. In this review, the
known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by

reviewing its actions on the hallmarks of aging and on several age-related pathologies.

INTRODUCTION

Over the past decades the worldwide human life
expectancy has increased substantially [1]. This,
combined with several other factors, led to a dramatic
and ongoing increase in the proportion of the world’s
human population aged over 60 years [2]. As a
consequence, the number of people experiencing age-
related deterioration in health is rising, which will cause
a great burden on the healthcare system [2]. The
deterioration of the physiological integrity leads to an
increased incidence of major human pathologies and
increases the probability of death [1, 3]. Age remains
the main risk factor for the development of debilitating
and life-threatening, age-related pathologies such as
cardiovascular disease, cancer, type 2 diabetes mellitus
and neurodegenerative disorders including dementia [1-
4]. Understanding what causes aging and how aging and
age-related diseases are interrelated is therefore
essential. This led to an increased interest in aging
research and made healthy aging a hot topic in research.

Research on the aging process of sometimes distantly
related model organisms — including yeast, nematodes,
flies, mice and humans — led to the idea that lifespan
regulation and aging are modulated by common and
conserved mechanisms in many, if not all species [3, 5].
The discovery that exogenous hydrogen sulfide (H,S)
prolongs the lifespan of the nematode Caenorhabditis
elegans [6] has led to new insights in its role in health
and disease, suggesting a relationship between H,S and
aging [7]. This gaseous molecule was not considered to
be physiologically relevant until the 1990s. Since then,
increasing evidence showed its beneficial effects in
several disease models, including age-related
pathologies [8]. The age-dependent decline in plasma
H,S levels found in human subjects 50 to 80 years of
age supports the link between H,S and aging [9].
However, the precise relationship between H,S and
aging is still largely unknown as both the role of H,S in
the aging process as well as the effects of aging on the
metabolism of H,S are not fully understood yet [8, 10].
This review outlines the current knowledge on the
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relationship between hydrogen sulfide and aging so as
to determine the potential beneficial effects of hydrogen
sulfide in aging and age-related pathologies.

THE AGING PROCESS

Aging is the progressive loss of physiological function
which emerges when organisms grow older, with death
of the organism as the ultimate, inevitable consequence
[1, 3, 11]. Classic symptoms of human aging include
graying and loss of hair, loss of hearing and eyesight,
reduced fertility, immune system failure and loss of
cognition [2]. These classical symptoms decrease the
quality of life of most elderly, but are generally
accepted as inevitable consequences of aging. These
symptoms are believed to result from time-dependent
accumulations of cellular damage leading to a gradual
loss of function at the molecular, cellular, tissue and
organismal level [12, 13]. A variety of molecular,
biochemical and metabolic alterations occurring at the
cellular level are thought to cause these functional
losses [2]. For many years, aging research was largely
focused on identifying the underlying cellular
mechanisms as to find novel drug targets to modulate
the aging process and to attain healthy aging by
delaying the onset of age-related pathologies [3]. This
approach has led to some unsubstantiated and opposing
claims for potential cures as opposed to disease-oriented
research [14]. It turned out that the aging processes are
highly complex with numerous mechanisms and
pathways involved. Several theories and mechanisms
explaining the biology of aging have been proposed [2].

Primary Hallmarks

= Genomic instability
= Telomere attrition
= Epigenetic alterations

= Loss of proteostasis

Antagonistic Hallmarks

= Deregulated nutrient sensing
= Mitochondrial dysfunction

= Cellular senescence

These theories are not mutually exclusive and attempts
to unify them into one theory have not yet succeeded.
Therefore, the molecular and cellular pathways
generally considered to contribute to the process of
aging were categorized and proposed as the ‘hallmarks
of aging’ [15].

Hallmarks of aging

In total, nine hallmarks of aging were proposed which
together are thought to determine the aging phenotype
(Figure 1) [15]. The criteria for the hallmarks are that
each hallmark should be manifested during normal
aging and that its experimental intervention should both
accelerate or retard the normal aging process, depending
on the intervention [15]. However, not all hallmarks
currently meet up to all the criteria as amelioration of
the aging process is not always successful [15]. The
hallmarks are interconnected, making it difficult to
determine the relative contribution of each hallmark to
aging. There is some degree of hierarchy between the
hallmarks of aging and therefore they are divided into
three categories: primary, antagonistic and integrative
hallmarks [15]. Primary hallmarks, including genomic
instability, telomere attrition, epigenetic alterations and
loss of proteostasis, are considered to be the primary
cause of damage at cellular level which progressively
accumulates with time. In response, antagonistic
hallmarks that are principally beneficial and mitigate
damage may become deleterious themselves,
progressively contributing to aging. Deregulated
nutrient sensing, mitochondrial dysfunction and cellular

Integrative Hallmarks

= Stem cell exhausion

= Altered intercellular communication

Figure 1. Overview of the Hallmarks of Aging and their functional interactions. The proposed nine hallmarks of
aging are categorized based on common characteristics and their contribution to aging. Left panel: The primary hallmarks
of aging are the hallmarks regarded as the primary cause of cellular damage. Middle panel: The antagonistic hallmarks of
aging are those hallmarks considered to be part of compensatory or antagonistic responses to damage. These hallmarks
initially mitigate the damage, but eventually can become deleterious themselves. Right panel: The integrative hallmarks
of aging are the end result of the two previously described categories and are ultimately responsible for the functional
decline associated with aging. The interactions between the categories are indicated at the top of the panels.
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senescence belong to this category. Finally, the
integrative hallmarks arise when the tissue homeostatic
mechanisms cannot compensate for the damage caused
by the previous two categories. The integrative hall-
marks, stem cell exhaustion and altered intercellular
communication, are ultimately responsible for the age-
related functional declines [15]. All nine hallmarks of
aging and the effects of H,S on each hallmark will be
comprehensively discussed in this review.

GASOTRANSMITTERS

As research on aging is as old as the hills, it has
witnessed the emergence of several new fields of
research. Among them is the investigation on
gasotransmitters: small, labile and endogenously-
generated gaseous transmitters that mediate physiology
and disease. Nitric oxide (NO) and carbon monoxide
(CO) were the first two identified gasotransmitters and
based on their biology several criteria to classify
gasotransmitters were proposed [16]. Gasotransmitters
diffuse freely across membranes and have well-defined
functions in signal transduction, acting on specific
cellular and molecular targets at physiologically
relevant concentrations. Their endogenous production is
regulated by specific substrates and enzymes in
mammalian cells and their function can be mimicked by
exogenously applied counterparts or obtained from the
diet [16].

Nowadays, hydrogen sulfide (H,S) is acknowledged as
the third gasotransmitter [8, 16]. The biological and
medical importance of the gasotransmitters NO, CO and
H,S is now widely recognized. Whereas the endogenous
concentrations of each gasotransmitter in the circulation
or in tissues are relatively low, these concentrations are
sufficient to execute their specific physiological actions
[17-19]. Recently, other small gaseous molecules were
evaluated for their candidacies as gasotransmitter and as
ammonia (NH3;) did meet all criteria for
gasotransmitters it should be classified as the fourth
gasotransmitter [17]. Over the past decade, evidence
demonstrating the importance of gasotransmitters to the
human body mounted as their regulatory capacities in
controlling important physiological functions, like
vascular tone, defense against pathogens, neuro-
modulation, apoptosis and energy metabolism, were
shown [20].

Despite the fact that all gasotransmitters have their own
specific functions and targets, it is plausible that
interactions take place between their signaling roles
[21]. Indeed, gasotransmitters share several targets and
functions with one another [16, 20]. The activities of
these shared targets are, however, modulated through

different mechanisms [8, 22, 23]. Another possibility is
that the eventual outcome of the actions of
gasotransmitters is the same despite the fact that
different targets and mechanisms were involved [17].
Studies also revealed crosstalk between gaso-
transmitters [22-24] in such a way that “each gas may
antagonize, reciprocally regulate or potentiate the
cellular effects of each other through their production,
downstream molecular targets and direct chemical
interactions” [21]. Their interconnectedness complicates
the search for the specific effects of each individual
gasotransmitter, as observed beneficial effects after the
modulation of one gasotransmitter might be the result of
its crosstalk with other gasotransmitters.

HYDROGEN SULFIDE

Historically, hydrogen sulfide was known as a toxic gas
characterized by the strong odor of rotten eggs. Until
the 1990s, the research on H,S was mainly focused on
its toxicity. Accidents in industrial settings showed the
danger of the gas, as exposure to high concentrations of
H,S caused collapse, unconsciousness and respiratory
paralysis, and ultimately led to death [25]. Since then,
new knowledge has positively transformed the way H,S
is perceived, as studies discovered physiological
functions of H,S in biological systems [26, 27] and
showed endogenous production of H,S in many parts of
the mammalian body [8, 28]. As H,S is soluble in both
water and lipids, it easily penetrates biological
membranes without facilitation of membrane channels
[29]. The term ‘H,S’ in this review refers to H,S and its
anions, as more than 80% of this weak acid dissociates
to hydrosulfide anion (HS’) and proton (H') at the
physiological pH (pH=7.4) in the circulation and the
cells [30]. The contribution of the other sulfide anion
(S%) is negligible at physiological conditions, as the
dissociation of HS™ to S* occurs almost exclusively at
high pH [29, 30]. It is not possible to separate the
effects of H,S and HS™ on physiological functions and
signaling processes since these species coexist at
physiological conditions in cells and in circulation [29,
31, 32].

Endogenous and exogenous sources of H,S

Endogenous production

Hydrogen sulfide is endogenously produced by most
mammalian cells via enzymatic and non-enzymatic
pathways [8, 28]. However, the contribution of the non-
enzymatic pathway, in which elemental sulfur or
organic polysulfides are reduced to H,S, is small [16,
33, 34]. Stressful conditions, like increased oxidative
stress and hyperglycemia, promote H,S production from
this pathway [8].
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The enzymatic production of H,S depends on three
enzymes, namely cystathionine vy-lyase (CSE),
cystathionine p-synthase (CBS) and 3-mercapto-
pyruvate sulfurtransferase (3MST) (Figure 2) [35, 36].
The vitamin Bg-dependent enzymes CBS and CSE are
normally localized in the cytoplasm and translocate to
mitochondria under stressful conditions to promote the
mitochondrial production of H,;S and adenosine
triphosphate (ATP) [37-39]. The other H,S producing
enzyme 3MST is mainly localized in mitochondria and
is found in the cytoplasm to a minor extent [40, 41].

Sulfur-containing amino acids, like methionine and
cysteine, are the main precursors for the enzymatic
generation of H,S. CBS and CSE account for the
majority of the endogenous produced H,S in
mammalian tissues [16]. Their expression is tissue

specific and was identified in liver, kidney and brain
cells, skin fibroblasts and blood lymphocytes among
others [16].

After the conversion of methionine to homocysteine,
CBS is required to form cystathionine from
homocysteine whereupon CSE converts cystathionine to
L-cysteine, the latter being the key substrate in the
generation of H,S. Hydrogen sulfide can also be
generated directly from homocysteine by CSE, but not
by CBS [42]. L-cysteine is used by CBS and CSE to
form H,S and by cysteine aminotransferase (CAT) to
produce 3-mercaptopyruvate, the main substrate for H,S
production by 3MST. In the presence of D-amino acid
oxidase (DAO), 3-mercaptopyruvate can also be
produced from D-cysteine in peroxisomes [43]. The
presence of a dithiol is required for 3MST in order to
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Figure 2. Overview of the endogenous and exogenous H,S production in the mammalian body. Left panel:
The endogenous production of H,S in mammalian cells. Several important enzymes are mentioned along the arrows.
Right panel: The exogenous production of H,S in the gastrointestinal tract by the intestinal microbiota and sulfate-
reducing bacteria, for which the H,S production is endogenous. The dashed lines between the left and the right panel

indicate the transport of molecules between the compartments.
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release H,S [44]. In vivo, H,S is metabolized by
methylation in the cytosol [16] or by oxidation in
mitochondria, whereupon it is secreted as sulfite,
thiosulfate and sulfate [36]. In vivo, hydrogen sulfide
can be re-formed from sulfite and thiosulfate, but not
sulfate [39, 45].

Exogenous production

Aside from endogenous H,S production, H,S can be
produced by bacteria in the mouth and the
gastrointestinal tract (Figure 2). From the perspective of
the host-organism, this H,S production is exogenous as
it is produced by bacteria in the external milieu of the
host and not by that organism itself. Sulfur-reducing
bacteria, for example, are part of the normal intestinal
microbiota in healthy individuals and have been
identified in human feces [46]. Hydrogen sulfide is
synthesized by these bacteria from alimentary as a
consequence of their metabolic activity in which they
use sulfate as a terminal electron acceptor [8, 47]. The
main source of this inorganic sulfate is the aliment,
however the secretion of sulfate by the host
gastrointestinal tract may also be an important source
[48]. As the intestine is highly permeable to H,S [49],
the production of high concentrations of H,S by these
bacteria would be expected to cause severe tissue
damage [50]. The exogenous production of H,S was
also suggested to play a role in several pathologies of
the intestinal tract, like inflammatory bowel disease and
colorectal cancer, but direct links are yet to be
established [51-53]. The intestinal mucosa is thought to
protect the gastrointestinal tract against high
concentrations of H,S by a specialized detoxification
system which rapidly and effectively metabolizes H,S
to thiosulfate and sulfate [8, 50], whereupon sulfate can
be secreted [48]. It is possible that defects in this
detoxification pathway play a part in intestinal
pathologies [49, 50]. The importance of proper H,S
catabolism is demonstrated in patients with ethyl-
malonic  encephalopathy, a disease in which
malfunction of the persulfide dioxygenase ETHEI]
results in multi-organ pathology in the brain,
gastrointestinal tract and peripheral vessels for example
[54]. Due to mutations in the ETHEI gene [55], the
inorganic sulfur catabolism is impaired which leads to
the accumulation of H,S and various H,S-related toxic
effects in different tissues [54, 56, 57]. Decreased
exogenous H,S production, due to treatment with the
antibiotic metronidazole, and improved H,S buffering,
by administration of the glutathione precursor N-
acetylcysteine, caused marked clinical improvements in
patients with ethylmalonic encephalopathy [58]. The
exact role of exogenously produced H,S in (patho-)
physiology still needs to be determined and separated
from the effects of endogenously produced H,S [53].

Exogenous administration

In experimental settings, levels of H,S can be
manipulated by the administration of exogenous H,S or
H,S releasing compounds. Sulfide-sodium salts, exposure
to gaseous H,S, slow-releasing H,S donors, hybrids of
H,S-donors and known substances, thiosulfate, cysteine
analogs and modulation of the expression or activity of
H,S producing enzymes are several options for altering
H,S levels in experimental settings.

HYDROGEN SULFIDE AND (PATHO-)
PHYSIOLOGY

Nowadays, H,S is recognized as an important signaling
molecule with various (patho-)physiological effects and
was shown to be involved in cardiovascular system
diseases, cancer and neurodegenerative diseases [8, 10].
The most widely studied functions of endogenous H,S
relate to its vasodilatory effects [23, 59, 60] and its
ability to reduce and modulate oxidative stress.
Additionally, several other physiological function of
H,S signaling were proposed [10]. These studies
demonstrated that H,S has the potential to provide
beneficial effects on health in many (patho-)physio-
logical processes and age-related pathologies. However,
the effects of H,S on aging are not that commonly
studied. Nevertheless, pathways of most — if not all —
hallmarks of aging are found to be influenced by H,S.
Studies that identified the effects of H,S on these
pathways are thus relevant in the light of aging and are
described next.

HYDROGEN SULFIDE AND AGING
Role of H,S in the primary hallmarks of aging

Genomic instability

Exogenous and endogenous treats continuously
challenge genome integrity and stability [61].
Organisms have evolved a complex network of repair,
damage tolerance and checkpoint mechanisms to
counteract most damage caused to the nuclear genome
[15, 61, 62]. Artificial reinforcements in these
mechanisms extended healthy lifespan in mice [63] and
were suggested to delay aging [15]. In contrast to the
nuclear genome, the protection of mitochondrial DNA
is not that efficient [64] and is heavily dependent on the
machinery of nuclear DNA repair [65]. Besides that,
mitochondrial DNA is more vulnerable to mutations
due to the oxidative microenvironment of the
mitochondria and the lack of protective histones on
mitochondrial DNA [64]. Therefore, aging-associated
mutations and deletions in the mitochondrial genome
may also contribute to the aging process [66].
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Besides the destabilizing effects of alterations in the
nuclear and mitochondrial genome, the stability of the
genome can also be deteriorated by defects in the
nuclear architecture [67]. Alterations in the nuclear
lamina have been detected in disease and during normal
aging [68, 69], causing changes in several stress
pathways [70, 71] and attrition of adult stem cells [72,
73]. The lifespan of progeroid mice was extended after
these pathways were restored [71, 74], indicating their
importance in the aging process.

Effect of H>S on genome stability

Genomic stability can be affected by H,S, but the data
are conflicting. In Chinese hamster ovaries, human
colonic epithelial cells and human lung fibroblasts, H,S
may exert genotoxic actions [75, 76]. Human fibroblasts
treated with NaHS showed a concentration-dependent
increase in the formation of micronuclei, indicating
DNA damage, and were propelled towards cell-cycle
arrest and apoptotic death through DNA damage
responses involving p53, p21 and the apoptosis
regulators, Bax and cytochrome c [76]. H,S was
genotoxic at concentrations of 0.25 mmol/L, which is
similar to the physiological concentration observed in
mouse colon (0.2—1 mmol/L [77]) and human feces
(0.2-3.4 mmol/L H,S [78]) [75]. However, the
genotoxic concentration is much higher than the human
plasma concentration of H,S (10-100 pmol/L) [79, 80].
High, genotoxic H,S concentration in the gut, possibly
due to production by commensal sulfate-reducing
bacteria, may play a role in the genomic instability and
the acquisition of mutations observed in colorectal
cancer [75]. However, it must be noted that the reliable
measurement of H,S is still a topic of discussion, so it is
not known whether these mentioned plasma
concentrations are accurate or comparable between
studies [32, 81-85].

Others point out the positive effects of H,S on genome
stability. Hydrogen sulfide attenuates DNA damage in
human endothelial cells and fibroblasts by increasing
MEK1 S-sulfhydration, ERK1/2 and PARP-1 activity
leading to the activation of DNA damage repair
mechanisms and protection from cellular senescence
[86]. The CSE/H,S pathway is important in genome
stability and cell proliferation, as its inhibition in
hepatoma cells decreased their proliferation, enhanced
ROS production and mitochondrial disruption,
pronounced DNA damage and increased apoptosis [87].
Proliferation was decreased due to downregulation of
ERK1/2 activity [87]. The increased apoptosis after H,S
signal inhibition was associated with the activation of
p53, p21, Bax and other pro-apoptotic factors [87].
Thus, both high [76] as well as low H,S levels [87] can
induce apoptosis. Two other studies showed protective

effects of H,S containing water [88] and a
mitochondrially-targeted H,S donor (AP39) [89] against
oxidative stress and oxidative DNA damage in
peripheral blood mononuclear cells of Alzheimer’s
patients and a murine brain microvascular endothelial
cell line, respectively, again showing the positive
effects of increased intracellular H,S on nuclear and
mitochondrial genome stability. These and other studies
also described improved cell viability [88, 90] and
affected mitochondrial activity [89] after H,S
administration.

Telomere attrition

The genomic stability systems also include specific
mechanisms for maintaining the appropriate length and
functionality of telomeres [91]. Telomere maintenance
is, however, considered as a distinct hallmark of aging.
The unique DNA-protein structure of telomeres is
essential for maintaining genomic integrity, as they cap
the terminal ends of linear chromosomes in order to
prevent appearing as DNA double-strand breaks in need
of repair and to protect these ends from degradation
[92]. Normal aging in mammals is accompanied by the
progressive and cumulative loss of telomere length and
function as a consequence of normal replication, due to
oxidative damage or as a result of replication errors [15,
92, 93]. Telomerase, a specialized DNA polymerase, is
required to elongate telomeres as the replicative DNA
polymerase lacks this capacity. However, most
mammalian somatic cells do not express telomerase,
making telomeres particularly susceptible to age-related
deteriorations [91]. When telomeres become too short
or when too much damage has occurred, they become
dysfunctional. Dysfunctional telomeres are highly
efficient in inducing apoptosis and/or cellular
senescence and accelerate aging in mice and humans
[15, 94, 95]. Experimental stimulation of telomerase
was shown to delay or even reverse aging [15, 96].

Effect of H>S on telomere maintenance

No studies have specifically described the effect of H,S
on telomere maintenance, but the described protective
effects of physiological levels of H,;S on genome
stability might also preserve telomeres and prevent
telomere attrition and dysfunction.

Epigenetic alterations

Along with the genetic components in aging, a role for
non-genetic factors in the aging process is implicated
[97]. Epigenetic alterations such as posttranslational
modification of histones, alterations in DNA
methylation patterns and chromatin remodeling [15, 97-
99], can regulate the accessibility of the DNA and
underlie the differential gene transcription observed
between cell types, developmental stages and disease
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states [100-102]. Several histone modifications are
associated with aging [103, 104], such as the
deacetylase activity of sirtuins. Manipulation of a single
sirtuin gene in several animal models resulted in
noteworthy effects on longevity by slowing down
organismal aging [105]. At least three members of the
sirtuin family, namely SIRTI1, SIRT3 and SIRT6, are
involved in the regulation of longevity and/or healthy
aging in mammals [15]. The underlying mechanisms by
which they affect these processes differ between the
sirtuins [15].

Besides histone modification, DNA methylation also
alters chromatin structure and regulates gene expression
[106]. Alterations in DNA methylation are considered
to be a central mechanism in normal development, some
diseases and in the aging process [107] and accumulate
during life, as was shown in a study in centenarians and
newborns [108]. However, the relationship between
DNA methylation and aging is complex, as both a
global decrease in DNA methylation, as well as specific
age-related hypermethylation at certain developmentally
regulated genes, including various tumor suppressor
genes and Polycomb target genes, were described in
different human tissues during aging [15, 98, 108, 109].
Among the differentially methylated regions, some
were shown to be related with age or were associated
with age-related phenotypes [110]. Nevertheless, direct
experimental evidence showing that organismal lifespan
can be extended by altered DNA methylation patterns
was not found thus far.

Several other key chromosomal protein and chromatin
remodeling factors are diminished in normal and
pathological aged cells [111, 112]. Alterations in their
expression altered the lifespan of flies [113],
demonstrating their role in the aging process.

Effect of H>S on epigenetics

Several studies show epigenetic chromatin modulation
by H,S [114, 115]. Slow-releasing H,S donors inhibit
tumor growth both in vitro and in vivo by a combination
of cell-cycle arrest and apoptosis promotion, which was
related to histone hyperacetylation [116-118]. The
transcription of pro-inflammatory cytokines, like IL-6
and TNF-a, was altered due to histone modifications
and accompanying changes in chromatin structure
[114]. Expression and activity of SIRTI is mediated by
H,S [10, 119, 120]. The protective effects of H,S
against senescence [119, 121], apoptosis [90] and
neurotoxicity of formaldehyde [120] were found to be
modulated through SIRT1 activity and were attenuated
by SIRTT1 inhibition [90, 120]. Direct anti-apoptosis and
antioxidant effects of H,S via the SIRT1 pathway were
demonstrated in cells under oxidative stress [90, 122].

H,S is also associated with altered DNA methylation.
High plasma Ilevels of homocysteine inhibit the
CSE/H,S signaling and trigger mitochondrial toxicity,
endothelial dysfunction and inflammation by increasing
DNA methylation and transcriptional alterations, like
elevation of TNF-o and IL-1B plasma levels and
inhibition of CSE expression [123, 124]. Supply of H,S-
releasing compounds rescued these cells from the
harmful effects of high levels of circulatory
homocysteine [123, 124]. Hydrogen sulfide alters the
epigenetics of the mitochondrial genome, contributing
to the replication of mitochondrial DNA, cellular energy
metabolism and mitochondrial bioenergetics [125].
Exogenous H,S repressed the expression of DNA
methyltransferase in cultured smooth muscle cells and
aortic tissues from mice, resulting in the demethylation
of certain regions of the mitochondrial genome, whereas
CSE deficiencies showed opposite effects [125]. These
studies demonstrate that epigenetics can be changed by
alterations in the transsulfuration pathway.

Loss of proteostasis

Many studies demonstrated the importance of a proper
protein homeostasis or ‘proteostasis’ in health and
disease. Permanent or temporal alterations in
proteostasis, as a result of changes in physiology or
exposure to environmental stresses, are a common
feature of development and cellular and organismal
aging [126, 127]. Several age-related pathologies, like
Alzheimer’s and Parkinson’s disease, are characterized
by the appearance of misfolded or aggregated proteins
with disease-causing, proteotoxic effects [128, 129]. In
order to preserve the integrity, stability and
functionality of the proteome, all cells take advantage of
a network of quality control pathways that coordinate
the synthesis, folding, disaggregation and degradation
of proteins and their posttranslational modifications [15,
127]. This proteostasis network includes the
translational machinery, molecular chaperones, the
ubiquitin-proteasome  system and the lysosomal
autophagy machinery [129]. Several signaling pathways
were shown to assist and modify the proteostasis
network but are not considered as direct components of
that network [127]. Molecular chaperones, like proteins
of the heat-shock family, mediate the folding and
stabilization of correctly folded proteins [126, 130].
Studies showed the importance of chaperones in the
regulation of lifespan in several model organisms [131-
133]. However, the efficacy of protein quality control
by these chaperones declines with aging [134]. Affected
proteins are normally targeted to destruction by the
ubiquitin-proteasome or the lysosomal autophagic
pathways [126, 135]. However, the activities of these
proteolytic systems also decline with aging [136, 137].
Numerous studies showed that the induction of these
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pathways extended longevity in several animal models
[136, 138-141]. Together, these studies support the idea
that collapsing proteostasis contributes to the aging
process.

Effect of H>S on proteostasis

Hydrogen sulfide affects the maintenance of cellular
protein homeostasis. NaHS treatment suppresses the
increased protein synthesis and aggregation in cultured
brain slices from Zucker diabetic rats, normalizing
proteostasis and counteracting oxidative stress [142].
NaHS inhibited the formation of advanced glycation
end products, which disrupt proteostasis, in human
neuroblastoma SH-SY5Y cells exposed to D-galactose
[143]. Exposure to H,S protected animals against
hypoxia-induced disruptions of proteostasis, like protein
aggregation and cytotoxicity, and reversed the
detrimental effects of hypoxia on protein homeostasis
[144]. Cardioprotective effects of heat-shock protein-90
were observed in chemical hypoxia-induced injury to
rat H9c2 cardiomyoblasts after NaHS exposure,
inhibiting oxidative stress and preserving mitochondrial
function [145]. These effects might be a result of
improvement to cellular proteostasis. H,S may also
affect proteins through S-sulfhydration, which is a form
of posttranslational modification, leading to changes in
intracellular signaling [146].

In the premature aging disorder Werner syndrome,
fibroblasts are highly stressed with extensive protein
production and aggregation in the cytosol accompanied
by nuclear dysmorphia [147]. Treatment with NaHS or
rapamycin normalized the morphological phenotype
and restored proteostasis by blocking mTOR activity
and annulling protein aggregations [147]. These studies
demonstrate that H,S can influence the maintenance of
cellular protein homeostasis.

Role of H,S in the antagonistic hallmarks of aging
Deregulated nutrient sensing

Several nutrient signaling pathways have been linked to
aging. Restricting the dietary caloric intake is the most
effective intervention known to slow down aging and
extend lifespan in many species [14, 148]. The
insulin/IGF1 signaling pathway is the most conserved
glucose sensing and the best-characterized aging-
controlling pathway [15]. Attenuations at different
levels in this pathway were associated with lifespan
extension in animals [149-152] and humans [153, 154].
Among the downstream modulators of the insulin/IGF-1
network, the FOXO transcription factors are the most
relevant [149], as they modulate the expression of pro-
longevity genes in the nucleus [155-157]. Their

translocation to the cytosol, due to phosphorylation,
inactivates  these transcriptional targets [150].
Paradoxically, declines in the insulin/IGF-1 network
were shown during both normal and premature aging
[158].

The mTOR pathway is another major nutrient-sensing
pathway with effects on aging [159]. Animal studies
showed that genetic downregulation of mTOR or
treatment with the mTOR inhibitor rapamycin extended
longevity in yeast, worms, flies and mice [160, 161].
Rapamycin also improved and protected against age-
related pathologies in mouse models of Alzheimer's
disease, Parkinson's disease and cardiomyopathy [162,
163]. Along with these beneficial effects, several
harming side-effects of mTOR inhibition, like impaired
wound healing, insulin resistance and cataract, were
shown in mice [161, 164].

AMP-activated kinase (AMPK) is a highly conserved
nutrient and low-energy sensor [15, 165, 166]. Besides
its functions in the maintenance of energy metabolism,
it was suggested that AMPK coordinates a large
signaling network of transcription factors [165, 167],
including pathways involved in aging [166]. Several
studies on model organisms demonstrated the crucial
role of AMPK in the regulation of longevity in worms,
flies and mice [166]. The responsiveness to AMPK
signaling declines with age [168], contributing to many
age-associated diseases [169].

The previously discussed sirtuins are part of the nutrient
signaling pathway, as these NAD-dependent protein
deacetylases respond to cellular low-energy states,
cause epigenetic alterations and contribute to the aging
process [15, 170].

Effect of H>S on nutrient sensing

Contributions of H,S signaling to several nutrient
sensing pathways are described. H,S impairs the
insulin/IGF-1 signaling pathway as it inhibits insulin
secretion by pancreatic beta-cells and insulin secreting
cell lines by stimulating ATP-sensitive potassium
channels [171-173]. Administration of NaHS to
cardiomyocytes increased glucose uptake by these cells
[174, 175], increased the phosphorylation of several
components of the insulin/IGF-1 signal pathway, like
insulin receptor, PI3K and Akt [175], and improved
glucose metabolism [174, 176]. H,S regulated vaso-
relaxation in spontaneously hypertensive rats through
the inhibition of FOXO1 and FOXO3 phosphorylation,
which resulted in their nuclear translocation and their
binding to target gene promotors [177]. H,S was also
shown to function as an endogenous regulator of PTEN,
the main antagonist of the PI3K-Akt axis in the
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insulin/IGF-1 signal pathway, by modifying PTEN
activity through S-sulfhydration [178, 179]. Following
incubation with H,S, oral keratinocyte stem cells
increased their PTEN expression [180]. These studies
indicate a regulatory role for H,S in the insulin/IGF-1
signaling network.

Administration of L-cysteine or Na,S to human U937
monocytes exposed to high-glucose, as a model for
diabetes, increased cellular PIP3, AMPK phosphoryla-
tion and PPARy expression [181]. CSE inhibition
prevented the L-cysteine-induced increase in PIP3
[181]. Various H,S-releasing compounds activated
AMPK signaling, resulting in protective effects on
cultured cells, tissues and whole organisms [182-186].
Interestingly, the well-established AMPK activator
metformin, a widely prescribed insulin sensitizer and a
first-line antidiabetic drug, increased H,S concentration
in various tissues [187], indicating that H,S might
mediate metformin’s effects. H,S was shown to
promote AMPK signaling and inhibit mTOR complex 1
activity in renal epithelial cells [188]. NaHS treatment
blocked mTOR activity in Werner syndrome fibroblasts
[147] and the human colon adenocarcinoma cell line
HR-29 [189]. Contrary, NaHS treatment increased
mTOR phosphorylation in reperfused hearts and
concanavalin A-induced hepatitis [190, 191].

H,S also regulates the activity of the low-energy sensing
sirtuins. Treatment with NaHS enhanced the SIRTI
deacetylase activity in human umbilical vein endothelial
cells [119, 121]. In addition, increases in the expression
of SIRT1 [119, 120], SIRT3 [180, 192] and SIRT6 [180,
193] were shown after treatment with H,S.

Mitochondrial dysfunction

Mitochondrial dysfunction and oxidative stress are
thought to play an important role in aging by affecting
intracellular signaling and interorganellar crosstalk
[194-196]. Several age-related pathologies, like
neurodegenerative diseases, diabetes, cancer, cellular
senescence and impaired stem cell homeostasis were
linked to ROS and dysfunctional mitochondria [197,
198]. Mild mitochondrial toxins, like metformin and
resveratrol, retarded aging by inducing a low-energy
state with increased AMP levels and AMPK activation
[199] and by mediating the master antioxidant regulator
Nrf2 [200]. These studies indicate that mild mito-
chondrial stresses might be preventive against age-
associated pathologies.

Mitochondria are the major producers of ROS, as its
synthesis is an inevitable by-product of oxidative
phosphorylation. The mitochondrial function declines
with age, leading to increased electron leakage and ROS

production and reduced ATP generation [196], which
may, in turn, cause extra damage to the mitochondrial
genome and further decline mitochondrial function.
This vicious cycle, known as the mitochondrial free
radical theory of aging [201], may lead to cellular
energy depletion and ultimately to cell death [202, 203].
Since its proposal, numerous studies were performed to
test the theory, generating inconsistent and conflicting
results [204]. This led to a reconsideration of the role of
ROS in aging [205]. In contrast to what was seen in
severe mitochondrial stress, low physiological levels of
intracellular ROS, maintained within a narrow range
[206], have signaling functions in many cellular and
systemic physiological processes [198, 207], inducing
beneficial long-lasting metabolic and biochemical
changes that may actually improve the cellular fitness
[15, 197, 208, 209]. The phenomenon in which the
exposure to low levels of a stressor induces
compensatory biological processes, whereas higher
levels disrupt homeostasis, is known as hormesis [209,
210]. Thus, dependent on its intracellular level, ROS
can have both pathogenic, aging accelerating as well as
lifespan increasing actions [208, 211, 212].

Effect of H>S on mitochondria

The effects of H>S on mitochondria are well described
and its ability to reduce and modulate oxidative stress is
considered to be one of the principal features of H,S in
physiology. Several studies showed protective effects of
H,S on mitochondrial function, as it increased the levels
of antioxidants [213, 214], reduced the production of
mitochondrial superoxides [215] and activated ROS-
scavengers [216] and the anti-oxidative transcription
factor Nrf2 [217, 218]. NaHS treatment stimulates the
activities of superoxide dismutase and glutathione
peroxidase and upregulated the expression of other
antioxidants in human neuroblastoma cell line SH-
SYS5Y [143]. H,S improves mitochondrial ATP
production in smooth muscle cells with impaired ATP
production, especially following hypoxia [38]. Under
stress conditions, cells can use H,S as an inorganic
energy substrate for the mitochondrial respiratory chain
to sustain ATP production [219-221]. It was proposed
that high concentrations of H,S inhibit mitochondrial
activity and protected organs against
ischemia/reperfusion injury by reversible binding to
cytochrome ¢ oxidase, leading to hypometabolism,
hypothermia and tissue preservation [79, 222-224].

As discussed previously, H,S protects the mitochondrial
genome from damage and thereby preserves the
mitochondrial integrity and the cellular energetics [38,
89, 125, 222]. Together these actions induced by H,S
protect the integrity of mitochondria and prevent
mitochondrial dysfunction.

WWWw.aging-us.com

AGING (Albany NY)



Cellular senescence

The cell-cycle of damaged cells can be arrested and
cells become senescent in order to prevent unrestricted
growth  [225, 226]. Senescent cells undergo
characteristic ~ phenotypic  alterations,  including
activation of tumor-suppressors, epigenetic changes and
changes to their secretome [15, 226, 227]. Cellular
senescence was suggested to be a beneficial
compensatory response to eliminate damaged,
potentially oncogenic cells from tissues in order to
replace them to re-establish cell numbers [15].
Experimental studies support this principle where a
mild enhancement of the senescence pathways extended
longevity in mice [228, 229] and elimination of the
involved pathways was beneficial for mice with
premature aging diseases [70, 230, 231].

Telomere attrition [232], DNA lesions [233], oxidative
stress [234] and activated oncogenes [235, 236] are
examples of stressors shown to induce senescence by
the activation of the DNA damage response, which
arrests cell-cycle through stabilization of p53 and
transcriptional activation of p21 [226]. Other pathways,
such as the pl6™“*/Rb and the p19**"/p53 pathways,
can also induce senescence, independent of the DNA
damage response [226, 237]. These pathways were
genetically linked to the highest number of age-related
diseases [238] and correlated with the chronological age
of essentially all tissues analyzed in both mice and
humans [239, 240]. Other studies underscored the close
relationship between metabolic changes and senescence
[235, 241-243].

The altered secretome of senescent cells, with enhanced
amounts of  pro-inflammatory  cytokines and
chemokines, normally stimulates the innate immune
system to eliminate senescent cells but may also
contribute to or even accelerate the aging process when
the turnover system becomes inefficient [15, 226, 227,
244]. The accumulation of senescent cells was shown in
some, but not all, tissues with age demonstrating that
this process became inefficient [15, 245]. During cell-
cycle arrest, senescence can also be prevented by a
process called assisted cycling, in which the cellular
disabilities are mended [226, 246].

Effect of H>S on cellular senescence

Several lines of evidence indicate the involvement of
H,S in cellular and organismal senescence. NaHS
protects human umbilical vein endothelial cells against
cellular senescence, potentially through the modulation
of SIRT1 activity, and improves the function of
senescent cells [119, 121]. Cellular aging can be
delayed by decreasing oxidative stress. H,S protects
against stress-induced cellular senescence by initiating

the antioxidant responses, for example by S-
sulthydration of Keap1 leading to the activation of Nrf2
[218] and by inhibition of mitochondrial ROS
production, by S-sulfhydration of p66Shc which
prevents its phosphorylation and activation [247].
Others demonstrated that H,S induced the S-
sulfhydration of MEK1, leading to PARP-1 activation
and DNA damage repair, protecting cells from
senescence [86]. Caloric restriction, reported to
decelerate the biological aging process, maintained
normal H,S levels, reduced oxidative stress-induced
cellular senescence and promoted cellular cyto-
protective systems [248]. In addition, deficiency of CSE
in mouse embryonic fibroblasts led to early
development of cellular senescence [218], under-
scoring the regulative role of H,S signaling in
senescence.

Role of H,S in the integrative hallmarks of aging

Stem cell exhaustion

Stem cells regularly replace damaged or missing cells in
tissues in order to maintain tissue homeostasis [249].
Most stem cells remain in their quiescent state and
rarely enter cell-cycle in order to prevent the
accumulation of damage during normal metabolic
respiration and cell division [250]. However, not all
damage can be prevented, resulting in a decline in stem
cell function with age. As a consequence, their
regenerative potential may be adversely affected,
leading to organ failure and diseases of aging [250]. The
previously discussed hallmarks are involved in the
decline of stem cell function with age, as for example
the accumulation of DNA damage [251] and telomere
shortening [252, 253] were shown to attribute to stem
cell exhaustion. In addition, stem cells are extremely
sensitive to the loss of telomerase, which they normally
express in order to maintain their genomic integrity
[254, 255]. Stem cell attrition is thought not to be a
direct result of the DNA damage itself but to be a
product of the cellular responses to the damage, such as
the activation of p53 that initiate DNA repair
mechanisms and cell death programs [256, 257].
Studies also showed that stem cell function could be
improved after calorie restriction [258, 259] or mTOR
inhibition [259-261] in several tissues, resulting in
improved proteostasis and affecting the energy sensing
networks. A study in hematopoietic stem cells showed
that epigenetic dysregulation during aging declined the
regenerative potential and function of stem cells [262].
Besides the need to prevent functional decline of stem
cells, organisms need to prevent the excessive
proliferation of stem cells which could result in
exhaustion of the stem cell compartment and accelerate
aging [15]. Several physiological alterations observed
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during aging are thought to reflect an attempt of the
organism to preserve the quiescence of stem cells [15].

Effect of H>S on stem cell maintenance

Several stem cell populations are affected by H,S.
Endogenous H,S signaling maintains several biological
functions of human periodontal ligament stem cells and
neural stem cells, like the capacity to proliferate and
differentiate [263-265]. Exogenous H,S may protect
against neuronal decline normally observed after
hypoxia [265]. In addition, NaHS increased and CSE
inhibition decreased proliferation of human adipose
tissue derived stem cells [266]. Bone marrow
mesenchymal stem cells produce H,S in order to
regulate their self-renewal and differentiation capacity
[267]. Deficiencies in H,S signaling impaired stem cell
function and bone homeostasis, which could be restored
by H,S application [267]. Mesenchymal stem cells
exposed to hypoxic conditions significantly decreased
their H,S production and underwent apoptosis, whereas
CSE overexpression protected against apoptosis [268].
Modulation of H,S signaling was suggested to be a
potential therapeutic approach by which the viability of
transplanted stem cells and the efficiency of cell-based
therapy could be promoted [266, 268, 269].

Interestingly, the dedifferentiation of several cancer
cells, a process in which cancer cells regain
characteristics of undifferentiated stem cells, was
characterized by the accumulation of H,S and the
upregulation of H,S producing enzymes [270].
Reducing the H,S production in these cells reversed
their ability to dedifferentiate, whereas the
accumulation of H,S induced their dedifferentiation
[270]. Altogether, these studies show that stem cell
maintenance and H,S signaling are connected.

Altered intercellular communication

Whereas the previously discussed hallmarks of aging
mainly focused on age-associated intracellular
alterations, the interaction between cells also changes
with age. As a result of aging, the extracellular
environment of cells may change, altering their
intercellular communication [15]. The changed
secretome of senescent cells is an example of such an
alteration in the paracrine interaction between cells [15,
226, 227, 244]. Senescent cells were also described to
induce senescence in neighboring cells via juxtacrine
signaling and processes involving ROS [271].
Alterations on several other levels of intercellular
communication, like endocrine, neuroendocrine or
neuronal signaling [150, 272-274], during aging have
been described [15]. The age-associated alterations in
the insulin/IGF-1 network are examples of how the
neuroendocrine communication can be altered with age.

Another important example of altered intercellular
communication is ‘inflammaging’, in which mammalian
aging is accompanied by a pro-inflammatory phenotype
[275]. Some age-related pathologies, like obesity, type 2
diabetes [152] and atherosclerosis [276], were
associated with inflammation. Numerous age-associated
alterations, such as the pro-inflammatory secretome of
senescent cells, the activation of NF-kB signaling and a
failing autophagy response during aging, contribute to
inflammaging [196, 275]. The function of the adaptive
immune system declines with age due to immuno-
senescence leading to impaired clearance of infectious
agents and infected, damaged or senescent cells, which
may, in turn, aggravate the aging phenotype [15, 277].
Sirtuins may also contribute to this phenotype by
changing the expression of inflammatory genes [278].

The age-associated alterations in intercellular
communication also explain the interorgan coordination
of aging, in which lifespan-extending manipulations in
one tissue were described to retard the aging process in
other tissues [279-282]. Manipulation of the gut
microbiome was also suggested to retard aging as it
may affect the efficiency and function of the host
immune system and exert systemic metabolic effects
[15, 283, 284].

Effect of H>S on intercellular communication

Several studies showed that H,S treatment alters
intercellular communication. Hydrogen sulfide was
proposed to mediate inflammation, however both pro-
and anti-inflammatory actions are described [8]. At low,
physiological concentrations, H,S is predominantly
anti-inflammatory, whereas high H,S concentrations
may promote inflammation [28, 285]. Pro-inflammatory
cytokines increase endogenous H,S production in
chondrocytes and mesenchymal progenitor cells [286],
whereas L-cysteine or NaHS administration decreased
NF-xB phosphorylation and reduced the secretion of
pro-inflammatory cytokines in human U937 monocytes
treated with high-glucose [181]. Exogenous H,S
protects H9c2 cardiac cells against high glucose-
induced inflammation and injury by inhibiting the NF-
kB/IL-1B pathway [287]. Consistently, NaHS decreased
the secretion of pro-inflammatory cytokines in mice
with severe hepatic ischemia and reperfusion injury, via
mechanisms involving Nrf2 [288]. Neuroinflammation
and vascular inflammation were modulated by H,S, in
part through the activation of AMPK and the reduction
of oxidative stress by H,S [181, 183]. Beside the effects
of H,S on inflammation, H,S depresses gap junction
intercellular communication, which inhibited human
platelet aggregation in vitro [289]. Diffusion of H,S
from an H,S-producing cell into neighboring cells
affects ion management and intracellular processes [8,
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146, 290]. H,S regulates various ion channels and
transporters by sulfhydrating specific cysteine residues
of subunits of these protein complexes [8, 146, 290].
Several calcium and potassium channels associated with
biological processes, such as cardiac contraction,
sensory transduction, inflammation and neuro-
protection, were shown to be manipulated by H,S [8,
146, 290]. These effects of H,S have also been observed
in the cerebral microcirculation in response to hypoxia,
where H,S produced in astrocytes causes vasodilatation
by diffusion into the contractile pericytes that surround
the arterioles [291]. Impaired H,S production might
thus result in wvascular dysfunction and other
pathophysiologies [8, 146]. Taken together, these
studies demonstrate that H2S may have anti-aging
properties by altering intercellular communication.

PERSPECTIVES

The precise relationship between H,S and aging still
remains unknown. However, the findings discussed in
this review strongly support the idea that H,S plays a
role in the process of aging and in age-related
pathologies, as direct effects on pathways related to
aging were shown in all but one hallmarks of aging
(Figure 3). It is possible that not all effects described here

are important in the light of aging, but together they
indicate that the contribution of H,S signaling to normal
physiology and to pathophysiology is not to be neglected.

Treatment with H,S or influencing the transsulfuration
pathways may become an intervention to prevent, delay
or reverse aging and accompanying symptoms and
pathologies. However, both beneficial as well as
detrimental effects of H,S application were shown in
several hallmarks, indicating that administration of H,S
dictates great caution. The underlying pathways of both
the aging process and the (patho-) physiological
processes of H,S signaling need to be studied more
extensively. Combining these studies may shed new
lights on the role of H,S in aging is needed in order to
determine the possible preventive and therapeutic
potential of H,S on the process of aging.
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Figure 3. Overview of the effects of physiological levels of H,S on the Hallmarks of Aging. Hydrogen sulfide
affects at least one pathway involved in almost all hallmarks of aging. A direct effect of H,S on pathways involved in
telomere attrition was not shown, however the effects of H,S on genome stability might also be beneficial for telomere
maintenance, by protecting the integrity of the genome. This is indicated by the interrupted line between H,S and telomere
attrition. Physiological levels of H,S were shown to prevent the dysregulation of the pathways associated with aging.
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