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ABSTRACT

Ischemic stroke is associated with aging. It is possible to predict chronological age by measuring age-related
changes in DNA methylation from multiple CpG sites across the genome, known as biological age. The
difference between biological age and actual chronological age would indicate an individual’s level of aging.
Our aim was to determine the biological age of ischemic stroke patients and compare their aging with controls
of the same chronological age. A total of 123 individuals, 41 controls and 82 patients with ischemic stroke were
paired by chronological age, ranging from 39 to 82 years. lllumina HumanMethylation450 BeadChip array was
used to measure DNA methylation in CpG sites in both groups, and biological age was estimated using
methylation values of specific CpGs. Ischemic stroke patients were biologically an average 2.5 years older than
healthy controls (p-value=0.010). Stratified by age tertiles, younger stroke patients (<57 years old) were
biologically older than controls (OR=1.19; 95%Cl 1.00-1.41, p-value=0.046). The older groups showed no
biological age differences between cases and controls, but were close to reaching the significance level.
Ischemic stroke patients are biologically older than controls. Biological age should be considered as a potential
new biomarker of stroke risk.

INTRODUCTION In recent years, however, incidence of stroke has also

increased among younger adults [2,3]. Approximately
10% of IS occurs in individuals younger than 50 years,
which is called “young stroke” [4,5]. This increase is
often attributed to a high prevalence of unusual, rare
conditions or to nontraditional risk factors such as
migraine, illicit drug use, oral contraceptives, pregnancy

Ischemic stroke (IS) is a complex age-related disease
with high mortality and long-term disability. Despite
current attention to risk factors and preventive
treatment, the number of stroke cases has risen in recent
decades, likely because the aging population has
increased. Stroke pathogenesis involves a number of

different disease processes as well as interactions
between environmental, vascular, systemic, genetic, and
central nervous system factors [1].

and patent foramen oval. In older patients, stroke remains
associated with the traditional risk factors: hypertension,
hypercholesterolemia, diabetes mellitus, and obesity [6].
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The epigenetic marker that has been studied most
extensively is DNA methylation (DNAm), which is
essential for regulation of gene expression. This
mechanism consists of the covalent addition of a methyl
group to a cytosine nucleotide, primarily in the context
of a CpG dinucleotide. This dinucleotide is quite rare in
mammalian genomes (~1%) and is clustered in regions
known as CpG islands. Methylation of the CpG island is
associated with gene silencing. DNAm is dynamic,
varies throughout the life course, and its levels are
influenced by lifestyle and environmental factors, as
well as by genetic variation [7]. Given its dynamic
nature, epigenetics has been referred to as the interface
between the genome and the environment [8].

Age-related changes in DNA methylation are well
documented, and two recent studies used methylation
measured from multiple CpGs across the genome to
predict chronological age in humans [9,10]. Hannum et
al. [9] created an age predictor from whole blood DNA,
based on a single cohort of 656 individuals aged 19 to
101 years. Horvath developed a multi-tissue age
predictor using DNA methylation data from multiple

studies [10]. Both models are based on the Illumina
BeadChip. The difference between chronological age
and methylation-predicted age, defined as average age
acceleration (A,g), can be used to determine whether
the DNAm age is consistently higher or lower than
expected. These age predictors are influenced by
clinical and lifestyle parameters, they are predictive of
all-cause mortality, indicating that they are more
suggestive of biological age than of chronological age
[11-14].

Age is one of the main risk factors for stroke. We
hypothesized that biological age would be even more
closely associated with stroke risk, and that “young
stroke” patients may be undergoing accelerated aging,
with a higher biological than chronological age.

RESULTS

We examined a cohort of 123 individuals, 41 controls
and 82 patients with IS, matched by chronological age.
The clinical and demographic characteristics of the
study population are shown in Table 1.

Table 1. Descriptive characteristics of study participants.
Summary details of DNAm age predicted with Hannum and
Horvath methods and differences between chronological

age and DNAm age.

Controls IS p-value
N=41 N=82

Age* 62.8(14.2) 63.9(10.3)| 0.621
Sex, female, n (%) 20 (48.8) 37(45.1) | 0.701
Hyperlipidemia 20 (48.8) 44 (53.7) | 0.610
Hypertension, n (%) 19 (46.3) 54(65.9) | 0.038
Diabetes, n (%) 7(7.1) 30(36.6) | 0.026
Coronary heart disease, n (%) 124 8(9.8) 0.142
Atrial fibrillation, n (%) 2 (4.9) 24(29.3) | 0.002
BMI, Kg/m*} 28.3(4.8) 29.0(5.2) | 0.523
Smoking habit, n (%):

Current/Former (<5 years) | 20 (48.8) 47 (57.3) 0.370

Never smokers 21(51.2)  35(42.7) ’
Ischemic stroke etiology, n (%)
Large-artery atherosclerosis - 9(11.0)
Small-artery disease - 39 (47.6)
Cardioembolism - 34 (41.5)
Hannum DNAm age (years) 63.9(11.9) 67.2(8.8) | 0.081
Hannum difference 1.1(5.5) 3.3(5.7) | 0.041
Horvath DNAm age (years) 58.2(10.8) 60.7 (10.0)| 0.204
Horvath difference -4.6(5.8) -3.2(7.6) | 0.300
*Mean (Standard deviation)
t Median (Interquartile range)
¥ BMI, Body Mass Index.
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Figure 1. Plots of predicted methylation age (Hannum and Horvath) against chronological age and plots of Hannum versus

Horvath predicted methylation age. r, Pearson correlation.

We initially used two approaches described in the
literature to predict biological age, the Hannum and
Horvath methods. The average biological age of controls
showed a mean Hannum-predicted age higher than their
chronological ages by a mean of 1.1 years (SD=5.5);
their Horvath-predicted age was lower than their chrono-
logical ages by 4.6 years (SD=5.8). In patients with IS,
we observed a Hannum-predicted age higher than their
chronological age by a mean of 3.3 years (SD=5.7),
statistically ~significant compared to controls (p-
value=0.04). Their Horvath-predicted age was lower than
their chronological ages by 3.2 years (SD=7.6) (Table 1).

DNAm age had a strong positive correlation with
chronological age in control samples (0.93 for both
Hannum and Horvath methods, and 0.94 between the
Hannum- and Horvath-predicted ages). In IS cases, the
correlations were lower (0.83 for the Hannum method,
0.72 for the Horvath method, and 0.82 between the two
(Figure 1). Although both age predictors showed high
accuracy in our samples, Hannum DNAm age
performed better, with fewer differences in chrono-
logical age in controls and better correlation in patients
with IS than the Horvath method.
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Regression lines through sample values stratified by IS
cases and controls suggest that IS cases have a higher
DNAm (biological) age than controls using both the
Hannum and Horvath methods (Figure 2-A). Moreover,
we calculated average age acceleration (A,g) for both age
predictor methods, defined by the average difference
between DNAm age and chronological age. A, is not
correlated with chronological age (Aue. Hannum, r=-0.07,

Horvath DNAm Age (years)

p=0.47; Ay Horvath, r=0.009, p=0.92), on the other
hand it is correlated to stroke status with Hannum A,
(r=0.24, p=0.008) and close to significance with Horvath
Agge (1=0.133 p=0.143). ANOVA test showed that
biological age of IS cases was older than controls, with a
significant average Hannum A,4 of 2.5 years (SD=4.9),
p=0.008 and Horvath A,. of 1.7 years (SD=7.0),
p=0.143, close to significance (Figure 2-B).
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Figure 2. DNA methylation Age (A) Hannum and Horvath versus chronological age in blood samples. Grey and black circles
in the scatterplot denote samples from controls and cases, respectively. The grey line represents a linear regression line
through control samples. The black dashed line represents a linear regression line through IS cases. For each subject, age
acceleration is defined as the vertical distance to the grey line. The bottom row (B) shows how mean age acceleration (y-
axis) relates to IS status, with p-value of ANOVA test. By definition, the mean age in controls is zero. Each bar plot reports 1 SE.

Table 2. Logistic models that regress IS status on age acceleration (model 1), adjusted by sex (model 2), adjusted by
sex, diabetes mellitus, hypertension, atrial fibrillation, and smoking habit (model 3) and adjusted by sex, diabetes
mellitus, hypertension, atrial fibrillation, smoking habit and blood cell count associated to Hannum (NK, monocytes,
CD4+ T cells, naive CD8 T cells and CD8+CD28-CD45RA-) and Horvath (NK, monocytes, CD8+ T cells, naive CD8 and

CD4 T) (model 4). OR: Odd Ratio; Cl: confidence interval.

Model 1 Model 2 Model 3 Model 4
Control vs IS| OR (95%CI) p-value | OR (95%CI) p-value | OR (95%CI) p-value OR (95%CI) p-value
AggeHannum | 1.13 (1.03-1.23)  0.010 [1.13(1.03-1.24) 0.010 [1.13(1.02-1.24) 0.015 1.13 (1.003-1.26) | 0.045
A,g Horvath [ 1.05(0.98-1.12)  0.145 |1.05(0.98-1.12)  0.151 [1.07(0.99-1.15) 0.086 1.06 (0.97-1.15) | 0.223
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Four logistic regression models were considered. Model
1 was the raw model with no adjustments. Model 2 was
logistic regression model adjusted by sex, because sex
variable was significantly associated to A,ze Hannum (p-
value=0.029). Finally, model 3 (full model) was
adjusted by sex, smoking habit, atrial fibrillation,
hypertension and diabetes mellitus. According to these
models, IS cases showed a significant Hannum A
effect, being biologically older than controls of the
same chronological age (Table 2). The adjusted model 3
showed OR=1.14 (95%CI 1.03-1.26), p-value=0.015.
Model 4 adjusted by model 3 variables and blood cell
proportion associated Hannum and Horvath DNAm age
(Supplemental Table S1). Hannum A,g. was statistically
significant OR=1.13  (95%CI  1.003-1.26), p-
value=0.045. The Horvath method yielded results close
to statistical significance in all four models, a trend
similar to the Hannum results.
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Figure 3. Hannum DNA methylation Age versus chronological
age of younger adults (<57 years old). Grey and black circles in
the scatterplot denote samples from controls and cases,
respectively. The grey line represents a linear regression line
through control samples. The black dashed line represents a
linear regression line through IS cases, OR=1.13 (95%CI 1.03-
1.23), p-value 0.01.

We stratified the cohort by age tertiles, considering
young individuals those <57 years old, mid-aged
between 58-71 years old and elderly as >72 years old,
and grouped the mid-aged and elderly groups together
as older adults to get more statistical power. The
clinical and demographic characteristics by age group
are shown in Table 3. We continued our study using the
Hannum age predictor because it was statistically
significant in the previous analysis. Logistic analysis
revealed that the biological age of young IS cases was
significantly older than controls for both model 1

(OR=1.19 [95%CI 1.00-1.41], p-value=0.041) and
model 2, (OR=1.19 [95%CI 1.00-1.41], p-value=0.046)
(Figure 3), but not for the fully adjusted model
(OR=1.13 [95%CI 0.97-1.32], p-value=0.131). The
older IS groups were more similar to the control group
in biological age, but the difference was close to
reaching significance (Table 4).

DISCUSSION

The sensitivity analysis evaluating which age predictor
performed better in our study determined that the
Hannum predictor was superior. This is likely because
this method is constructed on the basis of DNA
methylation data from whole blood, like our data, while
the Horvath method is constructed on a range of
different tissues and cell types [11].

A growing body of evidence suggests that many
manifestations of aging are epigenetic [15,16]. In
particular, DNA  methylation associates  with
chronological age over long time scales and changes in
methylation have been linked to complex age-associated
diseases such as metabolic disease and cancer [17-23].
One possible explanation for this association could lie
in the accumulation of environmental exposures that
may contribute to epigenetic changes with age. Changes
in the functionality of epigenetic machinery in addition
to exposure of the genome to environmental factors
could contribute to increasing epigenetic diversity with
age [24,25]. Many studies have found a mean decrease
in blood DNA methylation with increasing age. It has
been reported that DNA obtained from a 103-year-old
donor was more unmethylated overall than DNA from
the same cell type obtained from a neonate, showing
that DNA methylomes differ at the two extremes of the
human lifespan [26,27]. Environmental and stochastic
factors are associated to epigenetic changes with age,
and two events, epigenetic drift and epigenetic clock,
contribute to age-related DNA methylation changes.
Epigenetic drift represents the tendency for increasing
discordance between epigenomes over time but these
differences are not consistent across individuals [27]. In
fact, has been found that methylation marks in identical
twins differ increasingly as a function of age, both in
genome variation and lifetime environmental exposures
[18,28]. On the other hand, the epigenetic clock
represents those sites that are associated with age across
individuals and can be used to predict the age of an
individual [24,29-31].

Incidence of IS has been strongly correlated with
increasing age [32]. Approximately 10% to 15% of all
IS occurs in young adults. The prevalence of standard
modifiable cardiovascular risk factors in young stroke
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patients differs from that in older patients, with the
prevalence of hypertension, diabetes mellitus, obesity,
lipid disorders, congenital heart disease, and smoking
increasing with age [2,32,33]. In this context, the
increase in biological age, compared to healthy controls,
echoes the burden of exposures --vascular risk factors,
lifestyle habits, environment-- that leads to an
epigenetic profile similar to elderly people.

Previous studies have shown that epigenetic age relates
to cognitive status, physical fitness, mortality, HIV
infection, Parkinson Disease and Down Syndrome
[11,34-38]. Our group previously reported a global

hypomethylation in IS cases compared to controls and
age-associated DNA hypomethylation using the LUMA
assay [39]. Now, we find for the first time that epigenetic
age in patients with IS averages 2.5 years older than in
controls, but is especially patenting in young stroke
patients.

A strength of our study is that we evaluated two distinct
epigenetic biomarkers of aging. The association
between age acceleration and IS was stronger for the
blood-based Hannum method, although the multitissue-
based Horvath method showed similar (but
nonsignificant) results. Moreover, this is the first study
to determine the biological age of stroke patients.

Table 3. Descriptive characteristics of the participants by age tertiles, comparing <57 versus >58

years old (the other two tertiles).

Young <57 years Elderly >58 years
Controls IS p-value | Controls IS p-value
N 16 25 25 57

Sex, female, n(%) 7 (43.8) 5(20) 0.103 13 (52.0) 32 (56.1) 0.729
Hyperlipidemia, n(%) 6 (37.5) 14 (56) 0.248 14 (56.0) 30 (52.6) 0.814
Hypertension, n(%) 3 (18.8) 14 (56) 0.018 16 (64.0) 40 (70.2) 0.580
Diabetes, n(%) 1(6.3) 6 (24) 0.141 6 (24.0) 24 (42.1) 0.117
Coronary heart disease, n(%)* 0 1 (4.0) 0.418 1(4.0) 7(12.3) 0.245
Atrial fibrillation, n (%) 0 3(12) 0.150 2 (8.0) 21 (36.8) 0.007
BMI, Kg/m’t (22.236-370.8) (24.2()6-560.9) 0.808 (26.259-;1.8) (25.26%'333.0) 0.690
Smoking habit, n (%):

Current/Former (<5 years) 11 (68.8) 22 (88) 0.129 9 (36) 25 (43.9) 0.506

Never 5(31.3) 3(12) 19 (64) 32 (56.1)

*Mean (Standard deviation)
t Median (Interquartile range)
¥ BMI, Body Mass Index.

Table 4. Logistic models that regressed IS status, stratified by age, on Hannum age acceleration
(model 1), adjusted by sex (model 2), and adjusted by sex, diabetes mellitus, hypertension, and
smoking habit (model 3). Atrial fibrillation is not included in the model because control cohort data
did not show cases. OR: Odd Ratio; Cl: confidence interval.

IS status Model 1 Model 2 Model 3

By Age OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value
All 1.13 (1.03-1.23) 0.010 1.13 (1.03-1.24) 0.010 1.13 (1.02-1.24) 0.015
<57 1.19 (1.01-1.41) 0.041 1.19 (1.00-1.41) 0.046 1.13 (0.97-1.32) 0.131
>58 1.09 (0.98-1.22) 0.111 1.11 (0.99-1.24) 0.083 1.12 (0.99-1.27) 0.064
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Some limitations of the study should be considered.
Although the sample size was appropriate to detect
findings consistently and significantly, the study may be
underpowered to reach statistical significance for some
analyses with the Horvath age predictor or further
stratified sub-analyses. Second, we measured DNA
methylation in peripheral blood cells. Methylation
levels of some CpGs/regions are tissue-specific [40] and
we might have lost some signals by not choosing
specific tissues where biological aging could have a
higher impact on risk for stroke. However, methylation
patterns of whole blood have been reported as a good
proxy for methylation levels from a specific site of
action [41,42].

In conclusion, we found that IS status was associated
with a significant increase in Hannum DNA methyla-
tion, likely as a consequence of the accumulation of
cardiovascular risk factors, and near signification with
Horvath method. Patients with IS were biologically
older than controls, a difference that was more obvious
in young stroke. This could open up the possibility of
useful new biomarker of stroke risk.

METHODS

Study participants

The study included Caucasian patients prospectively
recruited and analyzed retrospectively.

From 2009 to 2012, 82 patients with IS where recruited
in Hospital del Mar in Barcelona, Spain, and were
included in the BASICMAR Register (Ministerio de
Sanidad y Consumo, Instituto de Salud Carlos III; FIS
No. PI1051737) [43,44]. Inclusion criteria in BASICMAR
cohorts were as follows: (1) first-ever IS, (2) brain
imaging with CT or MRI, (3) availability of clinical data
supporting the assigned stroke subtype according to
TOAST classification [45], (4) absence of intracranial
hemorrhage, neoplasms, demyelinating and autoimmune
diseases, and vasculitides. All patients were assessed and
classified by a neurologist and were included in the study
by consecutive order of recruitment.

Control samples (N=41) were obtained from the Girona
Heart Registry (REGICOR, which stands for REgistre
Glroni del COR), a population-based cohort recruited in
the province of Girona, about 100 km from Barcelona.
This register includes a randomized representative
sample of men and women of the province [46].

The study was approved by the local ethics committee,
CEIC-Parc de Salut Mar, and participants gave written
informed consent. The study was conducted according

to the principles expressed in the Declaration of
Helsinki and relevant legislation in Spain.

Demographic and vascular risk factor variables

In accordance with international guidelines, data on
vascular risk factors analyzed were obtained from direct
interview of the patient, relatives and caregivers, and
from medical records. Examinations were performed
and standardized questionnaires administered during the
hospitalization by a team of neurologists and reviewed
by an additional neurologist.

We recorded age, sex, and vascular risk factors using a
structured  questionnaire, as  follows: arterial
hypertension (HT), defined as systolic blood pressure
(SBP) >140 mmHg or diastolic (DPB) >90 mmHg
recorded from more than 2 measurements previous to
the acute event, a physician’s diagnosis, or use of
medication; hyperlipidemia, defined as a physician’s
diagnosis, use of medication, serum cholesterol
concentration >220 mg/dL, low-density lipoprotein
cholesterol (LDL) >130 mg/dL, or serum triglyceride
concentration >150 mg/dL; diabetes mellitus (DM),
defined as evidence of two or more fasting blood
glucose values >126 mg/dl, use of diabetes medication,
or a physician’s diagnosis; coronary heart disease
(CHD),defined as documented history of angina
pectoris or myocardial infarction; atrial fibrillation (AF)
(documented history or diagnosis during hospitalize-
tion); and self-reported smoking habit. During
hospitalization, lymphocyte count and body mass index
(BMI) were recorded and TOAST criteria were used to
classify IS subtype [45], according to standardized
protocol.

Peripheral blood collection and DNA extraction

DNA samples were extracted from whole peripheral
blood collected in 10 mL EDTA tubes. The Chemagic
Magnetic Separation Module I system (Chemagen) and
the Autopure LS (Qiagen) were used for DNA isolation
in the BASICMAR patient cohort; only the Autopure
LS (Qiagen) was used in the REGICOR cohort. In both
cohorts, genome-wide DNA methylation was assessed
using the Illumina HumanMethylation450 Beadchip.
DNA extractions were performed at the same time and
stored together at —20°C. DNA concentrations were
quantified using the Picogreen assay and Nanodrop
technology. The quality of DNA samples was visualized
in agarose gels. We tested whether DNA isolation
method was a confounder in our methylation analysis;
no statistical differences were observed.
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Array-based DNA methylation analysis with
Infinium HumanMethylation 450k

Genomic DNA (1 pg) was bisulfite-converted using the
EZ-96 DNA Methylation Kit (Zymo Research, Orange,
CA, USA) according to the manufacturer’s procedure
and recommended alternative incubation conditions
when using the [llumina Methylation Assay.

Genome-wide DNA methylation was assessed using the
[llumina HumanMethylation450 Beadchip (Illumina
Netherlands, Eindhoven, Netherlands) following the
manufacturer’s protocol with no modifications. The
arrays were scanned with the Illumina HiScan SQ
scanner. These processes were carried out in Progenika
Biopharma in Bizkaia, Spain.

Data pre-processing and normalization

Data were pre-processed using standardized pipelines
[47,48]. Sample and CpG quality controls and the
statistical analysis were performed as described in
Soriano-Tarraga et al [44]. Initial quality control of
sample data was conducted using GenomeStudio
version 2011.1 (Illumina, San Diego, CA, USA). Before
analysis methylation values were corrected for
background values and then normalized by SWAN using
minfi Bioconductor package [48] and then, B values
were transformed using a variance stabilization
transformation to methylation M-values.

We used a previously published Houseman algorithm to
infer white blood cell counts from DNA methylation
data [51] and Horvath online calculator [10].

DNA methylation age and epigenetic clock

DNA methylation (DNAm) age, also known as
“epigenetic age” or “biological age”, was calculated
using the DNA methylation levels of whole blood
DNA. Two measures of DNA methylation age were
calculated. The Horvath method uses 353 probes
common to the Illumina 27 K and 450 K Methylation
arrays using data from a range of tissues and cell types
[10]. Methylation age was determined using the online
calculator (https://labs.genetics.ucla.edu/horvath/htdocs
dnamage/). The Hannum method is based on 71
methylation probes from Illumina 450 K Methylation
array, derived as the best predictors of age using data
generated from whole blood [9]. DNA methylation age
was calculated as the sum of the beta values
multiplied by the reported effect sizes for the
Hannum predictor.

The concept of age acceleration (A,g) is defined as the
residuals from the linear regression of DNAm age on
chronological age in control samples [11]. This measure
of Ay is not correlated with chronological age and
takes on a positive value for samples whose DNAm age
is higher than expected.

Statistical analysis

Baseline characteristics of IS patients and controls were
compared using t-test for continuous variables and chi-
square for categorical variables. We calculated the
Pearson correlation of DNAm age and chronological
age for all the samples and stratified by IS patients and
controls. Sensitivity analysis was carried out to assess
which age predictor performed better in our study, in
order to simplify and improve the statistical model.

Four logistic models were analyzed. In Model 1 (raw
model), IS status was regressed on Hannum age
acceleration. Model 2 was model 1 adjusted by sex.
Model 3 was model 1 adjusted by atrial fibrillation,
diabetes mellitus, hypertension, and smoking habit, and
stratified by age using tertile cut points (<57,58-71 and
>72 years). Moreover, model 4 was performed, adjusted
by previous variables (atrial fibrillation, diabetes
mellitus, hypertension, and smoking habit) and blood
cell proportion associated to Hannum age acceleration
(NK, monocytes, CD4+ T cells, naive CD8 T cells and
CD8+CD28-CD45RA) and Horvath age acceleration
(NK, monocytes, CD8+ T cells, naive CD8 and CD4 T
cells). We tested for differences in DNAm Age using all
four logistic models

All statistical analyses were performed using R
statistical package, version 3.2 [52], STATA and SPSS
version 18.0. The following packages were utilized in
R: minfi, sva and [limma [49,53,54]. Statistical
significance was set at a p-value of 0.05.
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SUPPLEMENTARY MATERIAL

Table S1. Correlation of chronological age, Hannum and Horvath mAge with blood cell types.

Controls (n=41) IS (n=82)

Age mAge mAge Age mAge mAge
Hannum  Horvath Hannum  Horvath

CDAT -0.36 -0.29 0.02 -0.30 -0.38 -0.12
p=0.02  p=0.07 p=0.90 p=0.006  p<0.001 p=0.27

CDST -0.15 -0.08 0.27 -0.02 0.02 0.28
p=0.34  p=0.62 p=0.09 p=0.87 p=0.87 p=0.01

NK 0.50 0.04 0.26 0.16 0.05 0.21
p=0.01 p=0.80 p=0.10 P=0.14 p=0.64 p=0.05

Beell -0.34 0.09 0.14 0.01 P= -0.02 -0.12
p=0.03 p=0.57 p=0.38 0.90 p=0.87 p=0.29

Monocytes 0.17 0.23 -0.09 0.05 0.12 0.20
p=0.30  p=0.14 p=0.56 p=0.66 p=0.29 p=0.07

Granulocytes 0.12 0.22 -0.31 0.04 0.15 -0.12
p=0.45 p=0.17 p=0.053 p=0.69 p=0.19 p=0.28

Naive CDS8 -0.62 -0.15 -0.22 -0.35 -0.40 -0.22
p<0.001  p=0.35 p=0.18 p=0.001  p<0.001 p=0.05

Naive CD4 -0.52 -0.23 0.05 -0.37 -0.38 0.04
p=0.001  p=0.16 p=0.74 p=0.001  p=0.011 p=0.73

PlasmaBlast 0.24 0.13 -0.16 0.07 0.11 -0.13
p=0.125  p=0.41 p=0.33 p=0.55 p=0.34 p=0.25

0.38 -0.16 0.18 0.35 0.23 0.15

CD8+CD28-CDASRA- p=0.02  p=0.33 p=0.27 p=0.001  p=0.037 p=0.18

www.aging-us.com 2666 AGING (Albany NY)



