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ABSTRACT 
 
Populations in developed nations throughout the world are rapidly aging, and the search for geroprotectors, or 
anti-aging interventions, has never been more important. Yet while hundreds of geroprotectors have extended 
lifespan in animal models, none have yet been approved for widespread use in humans. GeroScope is a 
computational tool that can aid prediction of novel geroprotectors from existing human gene expression data. 
GeroScope maps expression differences between samples from young and old subjects to aging-related 
signaling pathways, then profiles pathway activation strength (PAS) for each condition. Known substances are 
then screened and ranked for those most likely to target differential pathways and mimic the young signalome. 
Here we used GeroScope and shortlisted ten substances, all of which have lifespan-extending effects in animal 
models, and tested 6 of them for geroprotective effects in senescent human fibroblast cultures. PD-98059, a 
highly selective MEK1 inhibitor, showed both life-prolonging and rejuvenating effects. Natural compounds like 
N-acetyl-L-cysteine, Myricetin and Epigallocatechin gallate also improved several senescence-associated 
properties and were further investigated with pathway analysis. This work not only highlights several potential 
geroprotectors for further study, but also serves as a proof-of-concept for GeroScope, Oncofinder and other 
PAS-based methods in streamlining drug prediction, repurposing and personalized medicine. 
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INTRODUCTION 
 
A significant rise in the proportion of seniors worldwide  
is underway [1, 2], resulting in increasing rates of 
chronic, debilitating disease and long term residential 
care [3], shrinking the supporting workforce [1, 2], and 
threatening to sink current health care systems.  
Prevention will be crucial moving forward.  If aging can 
be delayed and diseases prevented, productive years can 
be extended and retirement age redefined.  A shift in 
focus from “last mile” treatments to longevity via 
prevention may not only skirt economic collapse but 
also spell unprecedented economic growth [4]; thus the 
search for anti-aging interventions has never been so 
important. 
 
Anti-aging therapies have been sought since the dawn 
of human civilization, but with the rise of modern 
biology, big data, and information sciences, intelligent 
approaches to geroprotector discovery may finally be 
within reach.  Aging is a complex multifactorial process 
involving many often-intersecting pathways, with 
effects uniquely manifested in each tissue and cell type 
throughout an organism [5–9].  Aging research is thus 
highly multidisciplinary [9, 10].  While many questions 
remain unanswered, many details have been elucidated 
and aging theories proposed [11].  The outward features 
of aging, including decline in function and rise in 
susceptibility to stress and disease, are associated with a 
set of structural and functional changes at the cellular 
level.  While these changes vary by tissue, many are 
genetically regulated, and many genes mediating 
longevity, termed gerontogenes, have been identified 
[5].  The identification of these genes and experimental 
manipulation of their products to extend lifespan in 
model organisms [12] has bolstered the notion that 
aging is not just a natural process but a treatable disease 
[8, 13, 14] and added credence to the movement to 
identify drugs or other factors that may also extend 
lifespan, or, more favorably, healthspan, in humans. 
These are termed geroprotectors. 
 
There are now over 200 substances that have shown 
geroprotective effects in model organisms; these are 
continuously indexed at geroprotectors.org [15].  
Human-based studies, however, may turn out to be 
more productive.  Several of the most promising 
attempts at developing geroprotectors have involved 
identifying FDA-approved drugs with life-extending 
qualities and repurposing them as geroprotectors for 
human use.  These include rapamycin [16] and 
metformin [17–19].  However, a number of problems 
still hamper the widespread approval and use of these or 
other drugs for this purpose [20].  Most notably, 
longevity is a difficult parameter to study in humans 

without large, longitudinal designs, and since these 
drugs would presumably be administered to aging but 
otherwise healthy individuals, the effect size would 
have to be substantial and side effects almost non-
existent. In addition, the FDA does not consider aging 
an approved disease indication. At this time, no drug 
has sufficiently met these conditions, and new 
approaches to drug discovery - and drug repurposing - 
are needed. 
 
The drug discovery process is slow and expensive, 
burdened by many projects that dead-end before clinical 
trial or fail thereafter [21, 22].  Improved prediction of 
drug performance prior to lengthy experimentation 
would cut waste [21, 22].  Vast datasets now exist that 
enable such prediction with the help of sophisticated 
computational methods [23, 24].  Two particularly 
valuable datasets in this respect are the literally millions 
of gene expression profiles stored in repositories such as 
GEO [25, 26] and a number of increasingly diverse 
compound screening libraries [27]. While gene 
expression data can be used to pinpoint target pathways 
for a particular disease, compound libraries can be 
screened for drugs that target these pathways.  All of 
this can be done in silico, at relatively little cost. 
 
Recently, a method was developed that would do just 
this - capitalize on existing gene expression data and 
compound libraries to improve prediction of targeted 
drugs [28, 29].  The method involves the use of an 
algorithm termed Oncofinder [29], which performs 
advanced signaling pathway analysis of gene expression 
data.  Signaling pathways play a vital role in every 
biological process, including the process of aging. 
Characterizing pathway activation can elucidate 
mechanisms of aging and anti-aging interventions; for 
example, the lifespan-extending effects of pectins in 
fruit flies have been closely tied to increases in NF-κB 
signalling and activation of stress resistance genes [30]. 
 
Oncofinder quantifies Pathway Activation Strength 
(PAS) in a given sample based on gene expression 
patterns relative to another sample.  Thus PAS values 
can be computed for a disease state in comparison to a 
normal state, old versus young, or any other set of 
physiological conditions.  The net changes in pathways 
in a given condition, or pathway cloud, can then be used 
as a profile against which compound libraries can be 
screened for substances that would best restore it to 
normal levels, based on their known targets [28,29].  A 
shortlist of candidate substances can then be compiled 
and experimentally validated in vitro to select best 
candidates for further study. 
 
Here, we used an aging-based extension of Oncofinder,  
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known as GeroScope [28], in a search for novel 
geroprotective substances.  Using GEO datasets, we 
first quantified activation of age-related pathways in 
hematopoietic and mesenchymal stem cells from “old” 
(vs “young”) human donors.  We then shortlisted 
substances predicted to best target those pathways, 
restore a “young” cellular profile, and extend viability.  
From that list, we proceeded to experimentally test the 
effects of each substance in human fibroblasts. 
 
RESULTS 
 
Profiling of database-extracted transcriptional data 
with GeroScope algorithm 
 
To develop a signature of age-related signaling pathway 
activation and rank candidate geroprotectors, we 
applied the GeroScope algorithm[28] to preprocessed 
transcriptional data extracted from 57 bone-marrow 
derived human hematopoietic and mesenchymal stem 
cell samples (see Methods for details).  Pathway 
activation scores were calculated for “old” samples 
(donor over 60 years of age) compared to “young” 
(donor between 15 and 30 years of age). Then drug 
GeroScore ratings were calculated from a database of 
known geroprotectors and their targets (Supplementary 
Table S2). 
 
The top ten candidate anti-aging compounds, based on 
GeroScores, were selected for further testing; these are 
listed in Table 1. 
 
Incubation with test substances 
 
To verify the predictive potential of the GeroScope 
algorithm, the substances suggested by the program 
were added to non-transformed human embryonic lung 
fibroblasts at the senescence stage (“old”) in 50 μM 

concentrations and incubated for 3 days. Fibroblasts 
from several passages earlier, in a pre-senescent state 
(“young”) served as control. The test conditions 
(cells+substance) were coded with letters A-J (Table 1). 
 
Of the ten substances listed, four were excluded from 
further analysis.  HA-1004 was excluded because it was 
unavailable.  Cells in the 7-Cyclopentyl-5-(4-phenoxy)-
phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine, Stauro-
sporine and Ursolic acid flasks died prior to the main 
experiment; therefore, these conditions were also 
excluded. 
 
Flow cytometry 
 
It is known that older (senescent) cells are typically 
larger than younger ones; they also contain more 
lysosomes and mitochondria, exhibit increasing cell 
granularity, and accumulate lipofuscin, which leads to 
increase in cell autofluorescence [31]. Thus, flow 
cytometry is an ideal tool to investigate the senescence 
of a cell population. After 3 days of incubation with the 
test substances, cells were lifted from flasks and 
analyzed with a flow cytometer. Viable cells were gated 
according to forward scatter (FSC) and side scatter 
(SSC) parameters, and then their concentration, size 
(FSC), granularity (SSC) and autofluorescence (FL1) 
were recorded (Figure 1). 
 
As can be seen from Fig. 1A, the fibroblast culture at 
senescent stage (condition O) had much fewer viable 
cells than the pre-senescent one (condition Y). Most of 
the test substances slightly increased the viability of 
senescent cells, with the exception of 
Nordihydroguaiaretic acid (NDGA), which decreased it. 
Interestingly, N-acetyl-L-cysteine (NAC) increased 
viability to nearly the level of pre-senescent cells. As 
expected, cells in the senescent culture were typically 

Table 1. Letter codes for the test conditions. 
 

Cells Substance Code 
young - Y 
old - O 
old Nordihydroguaiaretic acid (NDGA) A 
old Myricetin B 
old HA-1004 C 
old 7-Cyclopentyl-5-(4-phenoxy)phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine D 
old Staurosporine E 
old Ursolic acid F 
old N-acetyl-L-cysteine (NAC) G 
old Fasudil (HA-1077) H 
old PD-98059   I 
old Epigallocatechin gallate (EGCG) J 

 

https://paperpile.com/c/XfpN82/TTTy
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bigger than pre-senescent ones, and with larger 
variation in size (compare Y and O in Fig.1B). All test 
substances decreased the mean size of senescent cells, 
and most of them also decreased the variation in cell 
size. Notably, PD-98059 and Epigallocatechin gallate 
(EGCG) decreased the mean size of senescent cells 
(SSC) much below the size of the pre-senescent control. 
The changes in cell granularity were comparable to the 
changes in cell size (Fig.1C), with the exception of PD-
98059, which had a stronger effect than EGCG. 
Autofluorescence of senescent cells also behaved 
similarly to cell size, except that Fasudil unexpectedly 
increased autofluorescence (Fig.1D). 
 
Beta-galactosidase staining 
 
To measure the effect of the substances on cellular 
senescence, we followed the conventional method for 
determining cellular senescence, staining for senescence 
beta-galactosidase activity at pH6 [32]. The results of 
staining are presented in Figure 2. 
 
Compared to condition O (senescent cells), all 
substances, except NDGA, strongly reduced beta-

galactosidase staining of senescent fibroblasts. PD-
98059 had the most pronounced effect. Interestingly, 
Fasudil and EGCG changed the cell morphology to 
neuron-like (see Supplementary Figure S1 for higher 
magnification). 
 
Long-term survival 
 
To determine the effects of the test substances on the 
long term survival and division capabilities of senescent 
fibroblasts, we incubated the cells for 3 more passages 
(18 days). With every change of the medium, test 
substances were added again. The morphology and 
density of the cells after the 1st, 2nd and 3rd passage 
can be seen in Figure 3. Cells in the presence of NDGA, 
Myricetin and EGCG substances died prior to the 1st 
passage, so are not shown. 
 
By the 2nd passage, senescent cells in the presence of 
substances G and I divided as well as pre-senescent 
cells (Y). Meanwhile, senescent cells in the presence of 
Fasudil and those without any additives (O) divided 
poorly. Cells in the presence of Fasudil retained neuron-
like morphology.  By the  3rd passage  all  cells  slowed 

 
Figure 1. Flow cytometric characterization of fibroblasts upon incubation with the test substances. (A) Cell 
viability, (B) FSC (Forward-scattered light) - cell size metric, (C) SSC (Side-scattered light) - granularity metric,  (D) FL1 - 
fluorescence metric. Group codes are listed in Table 1. 
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Figure 2. Beta-galactosidase staining of fibroblasts upon incubation with the test substances. Blue 
staining indicates cellular senescence. Images are named according to the letter code of the substance provided in 
Table 1. 

 
Figure 3. Long-term culture of fibroblasts in the presence of test substances for I, II and III passage. 
Images are named according to the letter code of the condition/substance provided in Table 1. 



www.aging-us.com 2132 AGING (Albany NY) 
 

proliferation, and cells in the presence of Fasudil 
became thread-like. 
 
The effects of the test substances on the senescent 
fibroblasts are summarized in Table 2. As can be seen 
from the table, NDGA had almost no effect on 
senescent phenotype, but decreased both short- and 
long-term survival. Myricetin had mild rejuvenating 
effect as judged by cell phenotype, but severely 
compromised long-term survival. NAC had a very mild 
rejuvenating effect but dramatically increased short- and 
long-term survival. Fasudil also had very mild 
rejuvenating effect but did not dramatically affect 
survival. However, it induced strong autofluorescence 
and neuron-like morphology. PD-98059 had a very 
strong rejuvenating effect and increased both short- and 
long-term survival. Finally, EGCG also had very strong 
rejuvenating effect but induced neuron-like morphology 
and dramatically decreased long-term survival. Overall, 
these results indicate that PD-98059 possesses the 
strongest rejuvenating and pro-survival properties of the 
substances tested. 
 
To investigate the mechanism of action of these 
compounds we performed pathway analysis.  For this 
purpose we utilized transcriptional response data 
provided from Library of Integrated Network-based 
Cellular Signatures (LINCS) L1000 dataset. After data 
processing (see Methods) we obtained pathway 
activation scores for 97 age-related pathways 
(Supplementary Table S4).  EGCG showed strong 
upregulation of cAMP pathway and inhibition of 
mitochondrial apoptosis and Ras pathways. Myricetin 
was found to upregulate ILK, DNA repair, cAMP and 
Hypoxia pathways. On the other hand, it severely 

suppressed PAK, IL-6, MAPK, Cellular senescence, 
p38, mTOR and several chemokine pathways. NAC 
showed strongly inhibition of pro-proliferative 
pathways like MAPK, AKT, p38, RAS, PAK, ERK and 
in turn activated p53, EGFR1, SMAD and Caspase 
signaling. 
 
Additionally, to evaluate potential side effects of top 
scored geroprotectors we used a set of deep neural 
networks, trained on drug-induced transcriptional 
response data (see Methods). We estimated the 
probability of 205 side effect classes for 8 compounds 
from this study (Supplementary Table S5). Ursolic acid 
was predicted to have the most side effects collecting 38 
different classes with probability more than 0.9. These 
include gastrointestinal, vascular and muscle disorders. 
EGCG was found to have the smallest number of 
probable side effects, comprising only 7 common 
categories that are shared amongst all 8 geroprotectors. 
 
DISCUSSION 
 
A major goal of aging research has been to identify and 
develop geroprotectors that increase healthspan by 
delaying the onset of aging and disease, but 
geroprotector development has been slow and mostly 
limited to lifespan extension in animal models.  
Improved in silico prediction of geroprotectors (and 
active compounds in other fields) is necessary and now 
possible, and the combination of prediction with in vitro 
validation in human cell lines may be a more promising 
path forward. 
 
Here, we used GeroScope,  a signaling  pathway  activa- 

Table 2. The effects of the test substances on the senescent fibroblasts. 
 

Code Name Viability Size Granularity Auto-
fluorescence 

Beta-
galactosida
se 

Morphology Survival 

A NDGA - -/= -/= +/= -/= normal --- 

B Myricetin +/= - -/= - -- normal --- 

G NAC +++ -/= -/= -/= -- normal +++ 

H Fasudil + -/= -/= +++ -- elongated 
neuron-like 

- 

I PD-98059 + -- --- -- --- normal +++ 

J EGCG = --- -- --- -- round neuron-
like 

--- 
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tion-based algorithm, to screen and rank known 
substances based on their predicted ability to mimic the 
signalome of young (vs old) human donors.  We then 
tested the top-scoring substances’ effects in human 
fibroblasts.  The versatile PAS scoring approach of 
GeroScope and Oncofinder has already shown useful in 
a variety of applications, including defining biomarkers 
for cancer [33] and signatures of signaling pathway 
activation for asthma [34] and primary and metastatic 
melanoma [35]. It has been used to analyze parallels in 
pathway activation between pathological and 
chronological aging in Hutchinson-Gilford Progeria 
Syndrome fibroblasts, a disease-based model of aging 
[36]. It has also been used in evaluating the therapeutic 
viability of pluripotent stem cells [37] and in cross-
species analysis [38], an important aspect of aging 
research [30]. Additionally it has helped determine 
common pathway signatures in lung and liver fibrosis 
[39] and evaluate pro-fibrotic pathway activation in 
trabecular meshwork and lamina cribrosa in glaucoma 
[40]. It has even been applied in the financial sector 

[41] and for model reduction for deep learning 
applications [42, 43].  Perhaps its greatest potential, 
however, may be in the area of drug discovery and 
personalization, where its ability to aid prediction is 
projected to streamline these processes significantly 
[28, 29, 44-46]. 
 
The ten test substances selected from GeroScope output 
have all previously been shown to extend lifespan in 
animal models (Table 3) [15].  They vary from FDA-
approved drugs to naturally occurring dietary 
substances.  FDA-approved drugs included nordihydro-
guaiaretic acid (NDGA, aka masoprocol), a drug tested 
in humans for treatment of prostate cancer [56] and in 
mice in the National Institute on Aging Interventions 
Testing Program (ITP) [57], where it increased lifespan 
in males [48], and N-acetyl-L-cysteine, an FDA-
approved drug and dietary supplement with a large and 
highly variable list of current and potential human 
applications, from treating acetaminophen overdose 
[58] to various neuropsychiatric disorders [59].  

Table 3.  Previously reported lifespan effects of test substances in animal models (compiled from 
geroprotectors.org [15].) 

 
Drug Code Model Organism Lifespan (LS) 

Parameter 
% Increase Ref. 

Nordihydroguaiaretic acid   A D. melanogaster Median LS 23 [47] 

Mus Musculus Median LS 12 [48] 

Myricetin B C. elegans Mean LS 32.9 [48. 
49] 

HA-1004 C D. melanogaster Mean LS 18 [50] 

7-Cyclopentyl-5-(4-phenoxy)phenyl-7H-
pyrrolo[2,3-d]pyrimidin-4-ylamine 

D C. elegans Mean LS 11 [51] 

Staurosporine E D. Melanogaster Mean LS 34.8 [50] 

Ursolic acid F C. elegans Mean LS 39 [52] 

N-acetyl-L-cysteine G Mice Max LS 40 [53] 

Fasudil (HA-1077) H D. melanogaster Mean LS 14.5 [50] 

PD-98059   I D. melanogaster Mean LS 27 [50] 

Epigallocatechin gallate J C. elegans Mean LS 10.1 [54] 

Rattus norvegicus Median LS 13.5 [55] 

 

https://paperpile.com/c/XfpN82/ZUza
https://paperpile.com/c/XfpN82/7gLd
https://paperpile.com/c/XfpN82/KEy5
https://paperpile.com/c/XfpN82/KEy5+KI92
https://paperpile.com/c/XfpN82/KEy5+KI92
https://paperpile.com/c/XfpN82/6z6O
https://paperpile.com/c/XfpN82/hHLC
https://paperpile.com/c/XfpN82/6z6O
https://paperpile.com/c/XfpN82/xaL2
https://paperpile.com/c/XfpN82/xaL2
https://paperpile.com/c/XfpN82/z09o
https://paperpile.com/c/XfpN82/6z6O
https://paperpile.com/c/XfpN82/6z6O
https://paperpile.com/c/XfpN82/KW6E
https://paperpile.com/c/XfpN82/maev
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Another drug on the list, Fasudil (HA-1077), is not yet 
approved in the US but is used abroad in stroke 
treatment [60] and is currently under investigation for 
cognitive enhancement in aging [61] and possible anti-
inflammatory-based protection against Aβ-induced 
hippocampal neurodegeneration in Alzheimer’s disease 
[62].  Non-drug, plant-derived compounds included 
Myrecitin, a naturally occurring flavonol present in 
fruits, vegetables, nuts, and berries [49], and 
Epigallocatechin gallate, a catechin found in green tea 
[54, 55]. 
 
We evaluated the performance of each of these 
substances in human fibroblasts, looking for enhanced 
viability as evidence of life-prolonging qualities and 
reduction in cellular size, granularity, and senescence-
based staining as evidence of mimicry of or 
rejuvenation to a younger cellular state. 
 
Most of the geroprotectors tested complied with the 
recently published criteria for geroprotector [20] The 
top geroprotector, in terms of performance in both 
enhancing viability and rejuvenation was PD-98059, a 
highly selective inhibitor of MEK1 and the MAP kinase 
cascade [63].  MEK inhibition along with PI-3K 
inhibition has been shown to decelerate cellular 
senescence via the mTOR/S6 pathway, a known target 
for anti-aging interventions [64], although not with PD-
98059 [65].  PD-98059 is anti-proliferative in colorectal 
cancer when combined with rapamycin [65, 66].  It has 
also shown therapeutic potential in atherosclerotic 
disease [67] and Alzheimer’s disease, preventing 
fibrillar Aβ-induced tau phosphorylation and neurite 
degeneration in mature hippocampal neurons and 
highlighting the importance of MAPK signal 
transduction in that process [68].  MAPK is one of the 
most important pathways in replicative senescence. It 
mediates the induction of p16INK4A, the key biomarker 
and regulator of cellular senescence [69], and was 
recently targeted to successfully reverse the aging 
phenotype of klotho mice [70]. 
 
Aside from PD-98059, most of the studied gero-
protectors had effects on either cellular viability or 
senescence features. The most significant effects with 
potential synergy were observed for NAC, Myrecitin 
and Epigallocatehin gallate. 
 
Synergistic effects 
 
EGCG is a known flavonoid antioxidant with anti-
cancer [71] and anti-diabetic [72] properties. On the 
pathway level it showed strong activation of cAMP 
pathway, which was recently found to induce anti-aging 
effects characteristic of caloric restriction via up-
regulation of sirtuins [73]. Here we show that EGCG 

decreased the cell size, granularity and fluorescence of 
replicatively senescent fibroblasts. 
 
NAC is known to protect cells from stress and inhibit 
inflammation through suppression of NF-kB, COX-2 
and several pro-inflammatory cytokine pathways [74, 
75]. The NAC geroprotective action predicted and 
observed in this paper is in accordance with several 
other studies showing its positive effect on the 
senescence of other cell models of induced senescence 
[76–78]. Pathway analysis performed here confirmed its 
anti-senescent properties as it inhibited pro-proliferative 
MAPK, p38, AKT, PAK, ERK signalling and activated 
p53 pathway. Among tested compounds, NAC showed 
the best performance in terms of cell viability, reaching 
the properties of young fibroblasts. 
 
The natural flavonoid Myricetin is considered to be a 
very potent antioxidant, anti-inflammatory and anti-
neoplastic agent [79]. Directly interacting with tyrosine 
kinase receptors, particularly JAK1, it influences Insulin 
receptor, EGFR and AR signaling [80, 81]. To the best 
of our knowledge, this is the first demonstration of 
geroprotective properties of Myricetin in human 
replicatively senescent cells. Here we showed that on 
the pathway level it strongly inhibits PAK, MAPK, 
mTOR, cellular senescence and several chemokine 
pathways. PAK pathway activation was linked to 
premature senescence via aforementioned p16INK4A 
and MAPK cascade [82], hence its down-regulation 
may be very beneficial. Myricetin also activates ILK, 
Hypoxia and, similar to EGCG, cAMP signaling. 
 
Each of these three compounds investigated on the 
pathway level covers a particular side of the senescence 
process and some of the effects are shared among 
compounds: EGCG and Myricetin both activate cAMP 
pathway; Myricetin and NAC inhibit pro-proliferative 
signaling via MAPK, p38, PAK and AKT signaling, 
whereas the effect of NAC on these pathways was 
stronger. The combination of these compounds with 
proper dosing may reveal synergistic effects and turn 
out to be even more beneficial than independent use. 
 
On top of pathway analysis, the predicted safety of 
investigated compounds was evaluated with deep 
learned side effects prediction approach. It predicted 
that the most harmless compound out of investigated 
geroprotectors was EGCG, while Ursolic acid 
comprised the highest number of probable side effects. 
 
This study thus not only demonstrated geroprotective 
effects of several known substances but also highlighted 
a new approach to geroprotector prediction and 
discovery with a screening, validation and safety 
estimation of new geroprotectors, illustrating the 
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potential value in pathway analysis, PAS-based 
techniques and deep learning in the areas of drug 
discovery, drug repurposing, and personalized 
medicine. 
 
MATERIALS AND METHODS 
 
GeroScope algorithm and software 
 
The transcriptomic data for bone-marrow derived 
human hematopoietic and mesenchymal stem cells were 
extracted from GEO datasets GSE32719 and 
GSE39540, respectively.  These datasets were profiled 
on Affymetrix Human Genome U133 Plus 2.0 Array 
and Affymetrix Human Genome U133A 2.0 Array, 
respectively  All samples gathered from these datasets 
were divided into two groups: “young” and “old,” 
according to donor age, with “young” donors ranging 
from 15-30 years of age and “old” donors over 60 years 
of age.  Young and old groups consisted of 14 and 8 
samples from GSE32719 and 7 and 28 samples from 
GSE39540, respectively. Each preprocessed gene 
expression dataset was independently analyzed using an 
algorithm called OncoFinder [29] implemented in a new 
platform for analyzing signaling pathways in aging 
called GeroScope [28]. The signaling pathways 
associated with aging were constructed manually from 
available literature[5] and partly came from the database 
OncoFinder utilized in previous studies [35, 36]. 
Results for the 97 age-related pathways were obtained 
for each sample (listed in Supplementary Table S1). 
 
The database of geroprotector drugs with their 
molecular targets used in this study consists of 70 
compounds (Supplementary Table S2). Predicted 
geroprotective efficacy of the drug (GeroScore, GS) is 
calculated as follows: 
 

 
where d – drug, t – protein target, p – signaling 
pathway. 
 
Drug-target index (DTI) equals to -1, 1 and 0 if drug 
activates, inhibits or does not interact with protein target 
t, respectively.  Node involvement index (NII) is a 
boolean variable indicating if target t is present in the 
pathway p (TRUE) or not (FALSE). Activator/repressor 
role (ARR) is indicative of the role of protein t in the 
pathway as described in [29]. Pathway aging role (PAR) 
equals to 1 and -1 for pro- and anti-aging pathways, 
respectively. GeroScore ratings were then calculated for 
“old” individual transcriptomes as compared to young 
(Supplementary Table S3). 

For pathway analysis of several selected compounds we 
utilized transcriptional response data provided by 
LINCS Project (http://www.lincsproject.org/). We 
extracted the level 3 (Q2NORM) gene expression data 
for PC3 cell line perturbed with 10 uM concentration of 
each compound independently for 6 hours. In the 
pathway level analysis, for each given case sample 
group perturbed with a compound, we generated a 
reference group consisting of samples perturbed with 
DMSO that came from the same RNA plate as samples 
from the case group. After that, each case sample group 
was independently analyzed using an algorithm called 
OncoFinder. Taking the preprocessed gene expression 
data as an input, it allows for cross-platform dataset 
comparison with low error rate and has the ability to 
obtain functional features of intracellular regulation 
using mathematical estimations. For each investigated 
sample group it performs a case-reference comparison 
using Student's t-test, generates the list of significantly 
differentially expressed genes and calculates the 
Pathway Activation Strength (PAS), a value which 
serves as a qualitative measure of pathway activation. 
Positive and negative PAS values indicate pathway up- 
and down-regulation, respectively. In this study the 
genes with FDR-adjusted p-value<0.05 were considered 
significantly differentially expressed. Samples with zero 
pathway activation score for all of the pathways were 
considered as insignificantly perturbed and were 
excluded from further analysis. 
 
Deep neural networks (DNNs) were trained with 
transcriptional response data from LINCS L1000 
dataset. Side effects for drugs were derived from 
SIDER database [83]. Side effect categories were 
mapped onto 205 preferred terms from MedDRA v16.0 
ontology [84]. An ensemble of class-specific DNNs 
with binary output was trained in a similar way to the 
methodology described previously [85]. Similarly to 
pathway analysis section, for prediction we chose 
samples of gene expression data for PC3 cell line 
perturbed with 10 uM concentration (or 70.07 uM in 
case of ursolic acid) of compound independently for 6 
hours. Resulting side effect probabilities were averaged 
across replicates. 
 
Cell culture 
 
Non-transformed human embryonic lung fibroblast cell 
line FLECH-104 was purchased at 20th passage in 
Biolot (Saint-Petersburg, Russia, #1.5.9.1). Cells were 
cultured in 75 cm2 Nunc EasYFlasks (Thermo 
Scientific, #156472) in EMEM medium with L-
glutamine and double amino acids (Biolot, #1.3.13), 
10% of HyClone fetal bovine serum (GE Healthcare, 
#SV30160.03) and 50 μg/ml of gentamycin (Biolot, 
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#1.3.16). Flasks with 20 ml of growth medium were 
incubated at 37°C and 5% CO2. Every 6 days, when 
cells nearly achieved monolayer, they were lifted with 
Trypsine-Versene (EDTA) (Biolot, #1.2.7) and 
passaged onto new flasks in a 1:4 ratio. Cells were 
cultured as described until the irreversible division 
block (27th-28th passage). 
 
Cell freezing and thawing 
 
During cell culture, part of the cells from each passage 
was frozen in liquid nitrogen, as follows. Cells lifted 
with Trypsine-Versene were centrifuged at 100xg for 5 
min and resuspended at 106 cells/ml in cold growth 
medium with 20% of serum and 10% of DMSO (Biolot, 
#1.4.7). Then the suspension was aliquoted to 1 ml 
cryotubes, which were placed in a room-temperature 
Mr. Frosty container (Thermo Scientific, #5100-0001). 
The container was then incubated at -80°C for 4 hours, 
and cryotubes were placed in Locator 6 Plus 
cryostorage system (Thermo Scientific, #CY509109) 
directly above liquid nitrogen (in gas phase). When 
required, aliquots were thawed by placing in a water 
bath at 37°C and intensive shaking for 2 minutes. They 
were then immediately mixed with 19 ml of prewarmed 
growth medium and placed in an incubator. On the next 
day, upon cell attachment, the medium was replaced 
with a fresh one. 
 
Experiment preparation 
 
To generate senescent cells (“old”), 18 days before the 
date of the main experiment, frozen aliquots from the 
end of 23rd passage were thawed, and cells were plated 
on flasks. After 6 days, cells were lifted, combined and 
plated on flasks 1:4. After another 6 days, the cells were 
again lifted, combined and plated 1:4 on flasks and 6-
well plates. As a result, on the day of the main 
experiment cells were at the end of the 26th passage 
(approximately 52 population doublings). 
 
To generate pre-senescent cells (“young”), 9 days 
before the date of the main experiment frozen aliquots 
from the end of the 22nd passage were thawed, and 
cells were plated on flasks. After 6 days, cells were 
lifted, combined and plated 1:2 on flasks and 6-well 
plates. As a result, on the day of the main experiment 
cells were at the middle of the 24th passage 
(approximately 47 population doublings). 
 
3 days before the date of the main experiment, 20 mM 
stock solutions of the test substances (all from Sigma 
Aldrich) in DMSO (or DMSO alone as control) were 
added to the cells in a 1:400 dilution. Thus, the final 
concentration of the test substances was 50 μM and 

final concentration of DMSO was 0.25%. Each 
substance was tested in 4 replicates. 
 
The senescence monitoring experiment 
 
On the day of the experiment, cells in each flask were 
lifted and resuspended in 20 ml of growth medium. 1 ml 
of suspension was analyzed in Accuri C6 flow 
cytometer (BD Biosciences, #653118). First, viable 
cells were gated according to forward scatter (FSC) and 
side scatter (SSC) parameters, and then concentration, 
size (FSC), granularity (SSC) and autofluorescence 
(FL1) were recorded. 1 ml of suspension from each 
replicate flask were combined, mixed with 16 ml of 
growth medium with 50 μM of the test substance, and 
plated on the new flask. They were further passaged in 
presence of the test substance after 6, 12 and 18 days. 
 
Before each passage, flasks were photographed on the 
Axio Observer A1 microscope with A-Plan 10x/0.25 
Ph1 objective, AxioCam MRc5 camera with 0.63x 
adapter and Zen Pro software (all from Zeiss). Cells on 
6-well plates were processed with the senescence beta-
galactosidase staining kit (Cell Signaling, #9860) and 
visualized the next day with the Axio Observer A1 
microscope. 
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SUPPLEMENRATY MATERIAL 
 

Supplementary Table S1. Pathway activation analysis results for datasets GSE32729 and 
GSE39540. 

 
  GSE39540 GSE32729 
Pathway name average stdev average stdev 
AKT_Pathway 9.59 4.74 12.75 16.41 
Androgen_receptor_Pathway 5.25 3.24 5.55 3.97 
Antioxidants 0.88 1.13 2.23 3.38 
ATM_Pathway 0.43 0.85 1.24 0.91 
Autophagy -0.42 1.14 0.35 0.71 
Base Excision Repair -0.14 0.51 0.22 0.81 
cAMP_Pathway 8.13 4.15 11.29 9.07 
Caspase_Cascade -4.26 2.68 -4.14 4.29 
CD40_Pathway 0.26 1.28 0.99 1.66 
Cellular Senescence -0.61 1.21 -1.57 1.82 
Cellular_Anti-Apoptosis_Pathway 4.96 3.15 3.50 3.55 
Chemokine_Pathway 3.36 2.17 9.55 9.15 
Chromatin_Pathway 0.15 0.53 0.65 0.54 
Circadian Rhythms 0.38 0.86 0.73 1.00 
Circadian_Pathway -0.08 0.47 0.05 0.99 
CREB_Pathway 5.85 3.42 6.26 6.15 
Cytokine_Network_Pathway 0.48 0.57 0.86 1.37 
DNA damage response 0.14 0.61 0.41 0.69 
DNA Methyltransferases 0.02 0.15 0.12 0.25 
DNA_Repair_Mechanisms_Pathway 0.99 1.59 1.53 1.74 
Double-Strand Break Repair 0.23 0.79 0.77 1.23 
EGFR1_Pathway 1.06 2.25 5.10 2.84 
eIF4e-p70 S6 -0.02 0.50 0.26 0.56 
ER stress response -0.22 0.50 0.09 0.36 
ErbB_Family_Pathway 1.43 1.49 3.46 2.14 
ERK_Signaling_Pathway 13.29 6.77 15.71 15.06 
Erythropoeitin_Pathway 1.91 2.01 5.59 2.18 
Estrogen_Pathway 5.90 3.98 5.54 3.39 
Fas_m_Signaling_Pathway 0.29 0.64 0.83 1.04 
Fas_p_Signaling_Pathway 0.14 0.66 0.84 1.13 
FLT3_Signaling_Pathway 0.45 1.03 2.00 1.93 
Glucocorticoid_Receptor_Pathway 2.96 2.87 7.95 9.41 
GPCR_Pathway 6.77 2.93 9.30 6.30 
Growth_Hormone_Pathway 0.36 1.10 2.44 1.52 
GSK3_Pathway 6.85 2.60 6.78 3.94 
Heat shock response 0.47 1.00 0.98 0.68 
Hedgehog 0.06 0.98 -0.09 0.85 
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  GSE39540 GSE32729 
Pathway name average stdev average stdev 
Hedgehog_Pathway 0.10 0.61 0.31 0.51 
HGF_Pathway 4.06 2.80 4.71 4.83 
HIF1Alpha_Pathway 0.68 0.93 1.17 1.42 
Hippo 0.09 0.29 0.75 0.88 
Histone Deacetylases 0.06 0.78 0.50 0.81 
Hypoxia 0.13 0.55 0.48 1.90 
Hypoxia-induced_EMT_in_cancer_and_fibrosis_3 0.18 0.47 0.15 0.43 
IGF-1 0.55 1.39 1.19 1.12 
IGF1R_Signaling_Pathway 0.77 1.30 2.90 2.73 
IL_10_Pathway 0.87 1.07 1.49 2.17 
IL_2_Pathway 2.03 2.47 7.29 5.09 
IL_6_Pathway 2.75 3.32 3.80 6.38 
ILK_Pathway 13.72 8.32 15.05 7.54 
Inflammation 0.72 1.27 3.59 3.63 
Integrin_SIgnaling_Pathway 6.77 4.03 7.73 5.90 
Interactions Report 0.01 0.32 0.08 0.76 
IP3_Pathway 2.11 2.11 4.19 6.88 
JAK_mStat_Pathway -0.01 0.27 -0.08 0.96 
JNK_Pathway 6.40 3.34 10.72 12.27 
MAPK_Family_Pathway 3.98 2.62 9.29 11.69 
MAPK_Signaling_Pathway 13.59 6.88 15.35 10.76 
Mismatch Repair -0.25 0.71 0.29 0.92 
Mismatch_Repair_Pathway -0.26 1.06 0.10 0.25 
Mitochondrial_Apopotosis_m_Pathway -3.80 2.50 -3.57 3.40 
mTOR -0.07 0.46 0.05 0.23 
mTOR_Pathway 4.92 2.62 4.82 3.16 
NFkB 0.28 0.94 1.32 1.80 
NGF_m_Pathway -0.15 0.74 0.38 0.55 
NGF_p_Pathway 0.05 1.88 2.66 2.69 
Notch 0.47 1.05 0.67 0.98 
Notch_Pathway 0.33 1.00 0.79 1.51 
NRF2 Oxidative Stress Response 0.02 0.15 0.00 0.00 
Nucleotide Excision Repair 0.01 0.07 0.00 0.22 
Osmotic Stress 0.57 0.77 0.50 0.79 
Oxidative Stress Response 0.39 1.03 0.40 0.74 
p38_m_Signaling_Pathway 9.78 5.02 17.25 20.03 
p53_Signaling_m_Pathway 0.17 1.53 1.11 1.12 
PAK_Pathway 6.46 4.14 8.32 9.30 
PI3K-AKT 0.20 0.98 -0.18 0.64 
Polycomb-Trithorax 0.03 0.87 1.27 0.87 
PPAR_Pathway 5.06 2.89 2.82 4.21 
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  GSE39540 GSE32729 
Pathway name average stdev average stdev 
PTEN_Pathway -0.32 0.66 -1.66 1.44 
RANK_Signaling_in_Osteoclast_Pathway 0.67 1.60 3.22 2.44 
RAS_Pathway 5.09 3.30 9.32 8.66 
RNA_Polymerase_II_Complex_Pathway 0.13 1.90 0.96 1.71 
SMAD_m_Pathway 2.41 3.44 3.30 3.22 
SMAD_p_Pathway 2.41 3.44 3.30 3.22 
STAT3_Pathway 4.12 3.29 10.90 14.73 
TGF_beta_Pathway 0.63 0.71 0.03 0.13 
TNF_m_Pathway 0.11 0.35 0.43 0.94 
TNF_p_Pathway 0.82 1.52 1.48 0.93 
TRAF_m_Pathway 0.10 0.44 0.28 0.35 
TRAF_p_Pathway 1.11 1.43 4.46 3.51 
Transcription_of_mRNA_Pathway 0.29 1.85 0.65 1.54 
Ubiquitin_Proteasome_Pathway -0.72 2.50 3.01 2.11 
Ubiquitination -0.35 1.23 1.58 1.37 
VEGF_Pathway 0.82 1.06 3.19 2.43 
WNT 0.33 1.02 -0.20 1.28 
Wnt_Pathway 3.76 3.23 8.44 3.84 
β-catenin 0.32 0.67 0.30 0.45 

 
 
Supplementary Table S2. List of investigated geroprotectors and their molecular targets. 
 
Compound_Name  Activation Inhibition 
Nordihydroguaiaret
ic acid  

 ALOX12, ALOX15, ALOX5, ATF2, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, 
JUND, CES1, ERBB2, Ces1e, FASN, IGF1R, TGFBR1, IFNG, SMAD2 

Myricetin   ABCC1, AHR, AKR1B1, CSNK2A1, CSNK2A2, CSNK2B, CDK5, COMT, 
CYP1A2, IPMK, ITPKA, ITPKB, ITPKC, PIM1, PLK1, POLA1, POLA2, 
SULT1A1, TOP2A, TOP2B, TTR, PRKCA, PRKCB, PRKCD, PRKCE, PRKCG, 
PRKCH, PRKCI, PRKCQ, PRKCZ, PRKD1, PRKD2, PRKD3, PRKACA, 
PRKACB, PRKACG, MYLK, MYLK2, MYLK3, INSR, CSNK1A1, 
CSNK1A1L, CSNK1D, CSNK1E, CSNK1G1, CSNK1G2, CSNK1G3 

HA-1004   AKAP4, CAMK2A, CAMK2B, CAMK2D, CAMK2G, PRKCA, PRKCB, 
PRKCD, PRKCE, PRKCG, PRKCH, PRKCI, PRKCQ, PRKCZ, PRKD1, 
PRKD2, PRKD3 

7-Cyclopentyl-5-(4-phenoxy)phenyl-7H-
pyrrolo[2,3-d]pyrimidin-4-ylamine  

SRC, CDK1, EGFR, LCK, PRKCA, PRKCD, PRKCE, PRKCH, PRKCG, 
PRKCI, PRKCQ, PRKCZ, TEK, KDR, ZAP70 

Staurosporine   AKT1, AURKA, ABL1, SRC, CSNK2A1, CSNK2B, CDK1, CDK2, CDK4, 
CHEK1, PRKCA, PRKCB, PRKCG, EEF1A1, EGFR, SLC29A1, MAPK3, 
MAPK1, FYN, GSK3B, IKBKB, INSR, LCK, CSF1R, MAP2K1, PDPK1, PIM1, 
PRKACA, PRKACB, PRKACG, PRKCA, PRKCB, PRKCD, PRKCE, PRKCG, 
PRKCH, PRKCI, PRKCQ, PRKCZ, PRKD1, PRKD2, PRKD3, PRKD1, PREP, 
PRKG2, SYK, FLT1, KDR, HTR3A 

Fasudil   MYLK, MYLK2, MYLK3, PRKACA, PRKACB, PRKACG, PRKCA, PRKCD, 
PRKCE, PRKCG  

Aspirin   ELANE, ASIC3, ALOX5, PTGS1, PTGS2, IKBKB, SLC22A6, CAPN2 
Ursolic acid   PTGS2, SLCO1B1 
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Compound_Name  Activation Inhibition 
N-acetyl-L-cysteine   AKR1B10, AKR1B1, VKORC1, CSF2RB, MMP2, MMP9, CASP3, CYC1, 

CHUK, IKBKB, JAK2, MAPK10, NFKB1, NFKB2, REL, RELA, RELB, 
MAPK11, MAPK12, MAPK13, MAPK14, STAT5A, STAT5B 

SB203580   ARAF, ALOX5, BRAF, BMP2, RAF1, SRC, CSNK1D, CCKAR, SLC29A1, 
GAK, GCGR, MAPK9, LCK, MAPK14, MAPK11, MAPK13, MAPK12, RIPK2, 
AKT1 

Nitrendipine   ADORA1, ADORA2A, ADORA3, CACNA1G, CACNA1I, CACNA2D1, 
CACNB1, CACNB2, CACNB3, CACNB4, CACNG1, GNRHR, KCNH2, 
KCNH5, KCNH1, CACNA1C, KCNN4, SLC10A2, TTR, CYP3A4, CACNA1H 

Cyclosporin A   SLCO1B1, SLCO1B3, ABCB5, ABCC10, ABCG2, PPP3CA, PPP3CB, PPP3CC, 
PPP3R1, PPP3R2, PPIA, PPIB, PPIC, PPIE, PPIG, PPIH, CYP3A4, ABCB1, 
ABCB4, NFATC1, NFATC3, NKTR, PPID, PPIF, PPIL1, YTHDC2, FPR1, 
SLC10A1, SLCO4C1, Abcb1b, ABCC1, ABCG1, ABCB11, NR3C2, ILF2,ILF3 

Wortmannin   MYLK, MYLK2, MYLK3, PLK1, PLK3, AKT1, ATM, PIK3CA, PIK3CB, 
PIK3CD, PI4KB, SH2D1A 

Tyrphostin AG 
1478  

 EGFR, SRC, SLC29A1, FBP1, FBP2, LCK, MAPK14 

PP2 AG 1879   ABL1, SRC, SLC29A1, LCK, MAPK14, WNK1, CSNK1D, EGFR 
Butein   AKR1A1,  ALOX5, SRC, EGFR, IKBKB 
LY294002   AKT1, AKT2, AKT3, CSNK2A1, CSNK2A2, CSNK2B, PRKDC, MTOR, 

PIK3C2B, PDE2A, PDE3A, PDE3B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, 
PIM1, PLK1 

Rosmarinic acid   AKR1A1, FYN 
Fisetin   AKR1A1, CDK1, CDK5, CDK6, COMT, CYP1A2, CYP2C9, CYP3A4, GSK3A, 

GSK3B, HSD17B1, PIM1, PLK1, SULT1A1, TOP2A, TOP2B 
Vinpocetine   SCN8A, PDE1A,PDE1B,PDE1C, SCN5A 
Indirubin   GSK3A, GSK3B 
KN-93   CAMK2A, CAMK2B, CAMK2D, CAMK2G, CAMKK1, CAMKK2, KCNC2, 

KCNH2, KCNA2, KCNA5, KCNB1, KCND2 
1400W   NOS3, NOS2, NOS1 
LFM-A13   BTK 
Lamotrigine   AQP4, HTR1A, KCNH2, SLC22A1, SCN5A 
2-deoxy-D-glucose  PRKAA1,PRKAA

2 
 

2-
mercaptoethylamin
e  

 QPCT, TGM2 

Acarbose   MGAM, SI 
AMN082  GRM7  
Amperozide 
hydrochloride  

 CHRM1, ADRA1A, ADRA1B, ADRA1D, ADRA2B, DRD2, DRD3, DRD4, 
DRD5, HRH1, HTR2A, HTR2C 

Ascorbic acid   SVCT2 
Butylated 
hydroxytoluene  

 CAPN1, LDLR 

Carbonyl cyanide m-chlorophenyl 
hydrazone  

COX4I1, COX4I2, COX5A, COX5B, COX6A1, COX6A2, COX6B1, COX6B2, 
COX6C, COX7A1, COX7A2, COX7B, COX7B2, COX7C, COX8A, COX8C, 
SLC18A1 

Carbonylcyanide-p-
trifluoromethoxyphenylhydrazone  

SLCO1B3 

Creatine   GATM 
DAPH   EGFR 
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Compound_Name  Activation Inhibition 
D-chiro-Inositol   GAA, SI, TREH 
Deprenyl   CYP2C8, CYP3A4 
Dichloroacetic Acid  PPARA PDK3, BCKDK, PDK1 
Didanosine   PNP 
Eliprodil   ADRA1A, ADRA1B, ADRA1D, GRIN2B, SIGMAR1 
Ethosuximide   ADH1A, ADH1B, ADH1C, CACNA1D, CACNA1G, CACNA1H, CACNA1I, 

CACNA1S, CACNA1C 
Ethylene-diamine-tetra-acetic acid  HIVEP1 
Everolimus   FKBP1A, MTOR, SLCO1A2, SLCO1B1, SLCO1B3 
GGTI-298   FNTA, PGGT1B 
Kanamycin   LYZ 
Melatonin  MTNR1A, 

MTNR1B, 
RORA, NOS3, 
G6PD, GPX1, 
GSR, NOS2, 
NOS1 

CALM1,CALM2,CALM3, CYP1A2, AR 

Nicotinamide 
adenine 
dinucleotide  

QDPR, CLOCK, 
NPAS2 

 

Oxaloacetic Acid   DCXR, EGLN1, EGLN2, EGLN3, TST 
Sodium butyrate  PTGIR  
Trehalose  TAS1R3  
Valpromide    EPHX1 
Vitamin D3   ABCB1 
Gallic acid   MMP9, CA1, CA2, CA4, CA9, CA5A, CA5B, DCXR, PNLIP, RAB9A 
Juglone   PIN1 
Minocycline   SLC25A4, SLC25A5, SLC25A6, CYCS, MMP9, SLC22A6, SLC22A7 
1,2,3,4,6-Penta-O-Galloyl-b-D-Glucose  AKR1B10, AKR1B1, AKR1A1, F10, SQLE 
Epicatechin   AKR1B10, AKR1B1, BACE1, COMT, PREP, TOP2A, TOP2B,  RRM2B 
Quercetin-3-O-
glucoside  

 AKR1B1, NQO2 

Phosphonoformic 
acid  

 CA1, CA2, CA4, CA9, CA5A, CA5B, CA6, CA7, CA8, CA12, CA14, POLA1, 
POLA2, POLD1, POLD4, POLD2, POLD3, POLG, POLG2  

Tamarixetin   ABCC1, AKR1A1 
Kenpaullone   CSNK2A1,CSNK2A2,CSNK2B, CDK1, CDK2, CDK5, GSK3A, GSK3B, SIRT2 
AG-490   EGFR, SLC29A1, GRIN1, GRIN2A, GRIN2B, GRIN2C, PDGFRA, PDGFRA, 

CDK2, JAK2, JAK3 
Tannic acid   ATE1, CA2, CYP1A1, CYP1A2, MAPT, PRNP 
SU 4312   EGFR, ERBB2, IGF1R, PDGFRB, FLT1, KDR 
Rapamycin   SLC29A1, ABCG2, FKBP10, FKBP1A, FKBP4, FKBP5, MTOR, MAPKAP1, 

MLST8, MTOR, RICTOR, SLCO1A2, SLCO1B1, SLCO1B3, ABCB11 
Epigallocatechin 
gallate  

 BACE1, SLC2A1, MMP7, KDR, COMT, GLUD1, SQLE, FUT7, HDC, IPMK, 
ITPKA, ITPKB, ITPKC, NAT1, POLA1, POLA2, POLG, PREP, TERT, TOP1, 
TOP2A, TOP2B, UGT1A4, UGT1A6, SLCO2B1, SLCO1B1, SCN5A, MAPK1, 
MAPK3, NFKB1, MAPK11, MAPK12, MAPK13, MAPK14 

PD-98059   MAPK3, MAPK1, MAP2K5, MAP2K1, MAP2K2, MAP2K3, MAP2K4, 
MAP2K6, MAP3K1, MAP2K7 
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Compound_Name  Activation Inhibition 
Tyrphostin AG 
1295  

 KIT, FLT3, PDGFRA, PDGFRB 

SP600125   AHR, JAK1, JAK2, JAK3, MAPK8, MAPK9, MAPK10, CDK2, CHEK1, SGK1 
 
 
Supplementary Table S3. Compound GeroScores for datasets GSE32729 and GSE39540. 
 

Compound_Name  
Average 
score 

Average 
GeroScore 
for 
GSE37219 stdev 

Average 
GeroScore 
for 
GSE39540 stdev 

Nordihydroguaiaretic acid  9.375451485 12.78071429 9.582769 5.970189 9.477559 
Myricetin  4.833814017 7.848571429 6.573648 1.819057 4.115186 
HA-1004  4.678551213 7.617857143 7.044406 1.739245 3.830018 
N-acetyl-L-cysteine  2.511428572 3.852857143 3.885174 1.17 4.945203 
7-Cyclopentyl-5-(4-phenoxy)phenyl-7H-pyrrolo[2,3-
d]pyrimidin-4-ylamine  2.317702157 3.017857143 5.393759 1.617547 3.042617 
Staurosporine  1.841671159 2.114285714 6.47423 1.569057 6.102519 
PD-98059  1.549669812 3.565 7.024809 -0.46566 6.581204 
Ursolic acid  1.237425876 1.284285714 1.291819 1.190566 1.389004 
Fasudil  1.109501348 0.664285714 3.768731 1.554717 2.938064 
Aspirin  1.048861186 0.863571429 1.627994 1.234151 1.480605 
Epigallocatechin gallate  1.041839623 2.545 4.55105 -0.46132 8.188531 
LY294002  1.005896227 1.885 3.464114 0.126792 2.468889 
Wortmannin  0.836940701 1.271428571 3.489664 0.402453 2.558764 
SB203580  0.677493262 0.388571429 1.153715 0.966415 4.255225 
Nitrendipine  0.531799191 0.286428571 2.47638 0.77717 1.53406 
Cyclosporin A  0.389946092 0.348571429 0.780432 0.431321 0.854193 
Fisetin  0.269083558 0.435714286 0.650369 0.102453 0.434721 
PP2 AG 1879  0.253504043 0.132857143 0.353932 0.374151 1.251104 
Tyrphostin AG 1478  0.234555256 0.085714286 0.320713 0.383396 1.220872 
AG-490  0.210323451 0.478571429 0.953107 -0.05792 1.750546 
LFM-A13  0.131785715 0.263571429 0.986194 0 0 
KN-93  0.093463612 0.174285714 0.350663 0.012642 0.091175 
Vinpocetine  0.068315364 0.052857143 0.135273 0.083774 0.225712 
Rosmarinic acid  0.051603774 0 0 0.103208 0.338521 
Kenpaullone  0.037001348 0.099285714 0.20428 -0.02528 0.26893 
Lamotrigine  0.026428572 0.052857143 0.135273 0 0 
Phosphonoformic acid  0.014642857 0.039285714 0.177177 -0.01 0.123464 
Indirubin  0.009386793 -0.015 0.056125 0.033774 0.077114 
1400W  0.002264151 0 0 0.004528 0.03266 
2-deoxy-D-glucose  0 0 0 0 0 
2-mercaptoethylamine  0 0 0 0 0 
Acarbose  0 0 0 0 0 
AMN082  0 0 0 0 0 
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Compound_Name  
Average 
score 

Average 
GeroScore 
for 
GSE37219 stdev 

Average 
GeroScore 
for 
GSE39540 stdev 

Amperozide hydrochloride  0 0 0 0 0 
Ascorbic acid  0 0 0 0 0 
Butylated hydroxytoluene  0 0 0 0 0 
Carbonyl cyanide m-chlorophenyl hydrazone  0 0 0 0 0 
Carbonylcyanide-p-trifluoromethoxyphenylhydrazone  0 0 0 0 0 
Creatine  0 0 0 0 0 
DAPH  0 0 0 0 0 
D-chiro-Inositol  0 0 0 0 0 
Deprenyl  0 0 0 0 0 
Dichloroacetic Acid  0 0 0 0 0 
Didanosine  0 0 0 0 0 
Eliprodil  0 0 0 0 0 
Ethosuximide  0 0 0 0 0 
Ethylene-diamine-tetra-acetic acid  0 0 0 0 0 
Everolimus  0 0 0 0 0 
GGTI-298  0 0 0 0 0 
Kanamycin  0 0 0 0 0 
Melatonin  0 0 0 0 0 
Nicotinamide adenine dinucleotide  0 0 0 0 0 
Oxaloacetic Acid  0 0 0 0 0 
Sodium butyrate  0 0 0 0 0 
Trehalose  0 0 0 0 0 
Valpromide   0 0 0 0 0 
Vitamin D3  0 0 0 0 0 

Juglone  
-

0.000283019 0 0 -0.00057 0.053497 

1,2,3,4,6-Penta-O-Galloyl-b-D-Glucose  
-

0.002075472 0 0 -0.00415 0.029938 

Epicatechin  
-

0.002075472 0 0 -0.00415 0.029938 

Quercetin-3-O-glucoside  
-

0.002075472 0 0 -0.00415 0.029938 

Tamarixetin  
-

0.006981132 0 0 -0.01396 0.05757 

Tannic acid  
-

0.041886793 -0.02 0.074833 -0.06377 0.133462 

SU 4312  
-

0.059245283 0 0 -0.11849 3.861833 

Butein  
-

0.085923181 
-

0.420714286 1.070388 0.248868 0.911943 

Gallic acid  
-

0.129642857 
-

0.259285714 0.765973 0 0 

Minocycline  
-

0.147506739 
-

0.291428571 0.763694 -0.00358 0.042341 
Rapamycin  -0.20833558 - 0.168531 -0.39453 1.430597 
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Compound_Name  
Average 
score 

Average 
GeroScore 
for 
GSE37219 stdev 

Average 
GeroScore 
for 
GSE39540 stdev 

0.022142857 

SP600125  
-

0.382378706 0.550714286 1.113998 -1.31547 4.282954 

Tyrphostin AG 1295  
-

0.509811321 0 0 -1.01962 2.648521 
 
 

Supplementary Table S4. Pathway activation analysis results of cellular transcriptional response  
to NAC, Myricetin and EGCG. 

 
Pathway MYRICETIN NAC EGCG 

PAK_Pathway -2.94 -1.95 1.77 
IL_6_Pathway -2.46 -0.65 0.29 
MAPK_Family_Pathway -2.28 -3.80 0.87 
Cellular Senescence -2.12 -0.60 0.00 
TGF_beta_Pathway -2.10 0.15 1.12 
IL_10_Pathway -1.79 -0.20 0.31 
p38_m_Signaling_Pathway -1.46 -3.72 1.71 
ErbB_Family_Pathway -1.40 0.13 0.15 
GSK3_Pathway -1.38 0.49 1.27 
mTOR_Pathway -1.33 0.09 0.95 
VEGF_Pathway -1.31 -0.36 0.97 
Cellular_Anti-Apoptosis_Pathway -1.17 -0.17 0.66 
AKT_Pathway -1.15 -3.76 1.59 
ERK_Signaling_Pathway -1.10 -2.24 0.41 
Chemokine_Pathway -1.07 -0.58 0.37 
TRAF_p_Pathway -0.94 0.65 0.27 
SMAD_m_Pathway -0.92 1.24 -0.25 
SMAD_p_Pathway -0.92 1.24 -0.25 
Growth_Hormone_Pathway -0.92 -0.20 0.00 
Inflammation -0.91 0.49 0.00 
NFkB -0.91 0.00 0.27 
Cytokine_Network_Pathway -0.91 -0.22 0.00 
FLT3_Signaling_Pathway -0.89 -0.30 0.45 
Erythropoeitin_Pathway -0.83 -1.06 0.23 
p53_Signaling_m_Pathway -0.79 1.57 -0.44 
STAT3_Pathway -0.73 -1.46 0.78 
Integrin_SIgnaling_Pathway -0.72 -2.61 -0.06 
EGFR1_Pathway -0.64 1.55 0.00 
JNK_Pathway -0.58 -0.59 1.52 
HGF_Pathway -0.57 -0.90 -0.27 
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Pathway MYRICETIN NAC EGCG 
GPCR_Pathway -0.49 -1.18 1.29 
TRAF_m_Pathway -0.48 0.00 0.00 
Heat shock response -0.43 -0.57 0.00 
RANK_Signaling_in_Osteoclast_Pathway -0.42 0.49 0.00 
WNT -0.39 0.10 -0.42 
PI3K-AKT -0.37 0.00 0.00 
Estrogen_Pathway -0.35 -1.17 0.52 
IP3_Pathway -0.34 -0.65 1.19 
Mismatch_Repair_Pathway -0.33 -0.34 -0.46 
ER stress response -0.32 -0.24 0.00 
CD40_Pathway -0.31 -0.21 0.00 
NGF_p_Pathway -0.29 -0.54 0.39 
NRF2 Oxidative Stress Response -0.28 -0.49 0.35 
Fas_m_Signaling_Pathway -0.24 -0.57 -0.37 
IGF-1 -0.23 0.38 0.00 
Circadian_Pathway -0.20 -0.53 0.00 
Nucleotide Excision Repair -0.17 0.00 0.19 
Hedgehog_Pathway -0.16 -0.25 0.31 
MAPK_Signaling_Pathway -0.16 -2.57 1.77 
Polycomb-Trithorax -0.10 -1.33 0.00 
CREB_Pathway -0.05 -1.41 1.67 
Androgen_receptor_Pathway -0.01 -0.34 1.28 
Notch 0.00 0.00 1.20 
Hypoxia-induced_EMT_in_cancer_and_fibrosis_3 0.00 0.00 0.81 
DNA Methyltransferases 0.00 0.00 0.00 
Interactions Report 0.00 0.00 0.00 
β-catenin 0.00 0.00 0.00 
Double-Strand Break Repair 0.00 -0.04 0.00 
Histone Deacetylases 0.00 -0.19 0.22 
Mismatch Repair 0.00 -0.34 0.21 
Notch_Pathway 0.00 -0.35 1.03 
NGF_m_Pathway 0.00 0.37 0.27 
Fas_p_Signaling_Pathway 0.02 0.00 0.50 
Hippo 0.10 0.00 0.33 
TNF_m_Pathway 0.10 -0.57 0.29 
Chromatin_Pathway 0.11 -0.39 0.00 
JAK_mStat_Pathway 0.15 0.00 0.00 
Hedgehog 0.21 -0.25 0.20 
Autophagy 0.22 0.47 0.00 
Caspase_Cascade 0.24 0.97 -0.37 
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Pathway MYRICETIN NAC EGCG 
Osmotic Stress 0.32 -0.18 0.00 
Ubiquitination 0.36 0.26 0.24 
Glucocorticoid_Receptor_Pathway 0.37 -0.50 0.90 
DNA damage response 0.46 0.00 0.00 
Mitochondrial_Apopotosis_m_Pathway 0.48 0.78 -1.16 
eIF4e-p70 S6 0.50 0.00 0.00 
mTOR 0.50 0.00 0.00 
ATM_Pathway 0.58 -0.31 0.61 
PTEN_Pathway 0.63 0.57 0.00 
IL_2_Pathway 0.64 1.01 -0.07 
TNF_p_Pathway 0.67 0.49 0.50 
Circadian Rhythms 0.68 -0.53 0.00 
RAS_Pathway 0.75 -2.36 -0.64 
Oxidative Stress Response 0.76 -0.52 0.00 
Base Excision Repair 0.85 0.00 0.00 
PPAR_Pathway 1.05 -0.97 0.34 
Transcription_of_mRNA_Pathway 1.06 -0.20 0.26 
RNA_Polymerase_II_Complex_Pathway 1.06 -0.20 0.00 
Wnt_Pathway 1.12 -1.69 2.22 
Antioxidants 1.28 -0.15 0.00 
Ubiquitin_Proteasome_Pathway 1.39 -1.16 0.42 
IGF1R_Signaling_Pathway 1.40 -0.23 0.43 
HIF1Alpha_Pathway 1.50 0.26 0.35 
Hypoxia 1.72 -1.02 0.00 
cAMP_Pathway 1.75 -1.17 2.70 
DNA_Repair_Mechanisms_Pathway 1.79 0.14 -0.29 
ILK_Pathway 2.38 0.94 2.35 

 
 
Supplementary Table S5.  DNN-based side effects probabilities of investigated compounds. 
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Supplementary Figure S1. High magnification images of cell morphology of young, old, Fasudil- and 
EGCG-treated senescent fibroblasts. Group letter codes are listed in Table 1. 


