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ABSTRACT

Alterations of specific genes can modulate aging. Myc, a transcription factor that regulates the expression of
many genes involved in critical cellular functions was shown to have a role in controlling longevity. Decreased
expression of Myc inhibited many of the deleterious effects of aging and increased lifespan in mice. Without
altering Myc expression, reduced levels of Mtbp, a recently identified regulator of Myc, limit Myc
transcriptional activity and proliferation, while increased levels promote Myc-mediated effects. To determine
the contribution of Mtbp to the effects of Myc on aging, we studied a large cohort of Mtbp heterozygous mice
and littermate matched wild-type controls. Mtbp haploinsufficiency significantly increased longevity and
maximal survival in mice. Reduced levels of Mtbp did not alter locomotor activity, litter size, or body size, but
Mtbp heterozygous mice did exhibit elevated markers of metabolism, particularly in the liver. Mtbp"/' mice also
had a significant delay in spontaneous cancer development, which was most prominent in the hematopoietic

system, and an altered tumor spectrum compared to Mtbp

** mice. Therefore, the data suggest Mtbp is a

regulator of longevity in mice that mimics some, but not all, of the properties of Myc in aging.

INTRODUCTION

Aging is a complex biological process controlled by
both environmental and genetic factors [1]; however,
twin studies suggest 20-30% of lifespan variation is
genetic [2, 3]. Altering the activity or expression of
specific genes significantly impacts lifespan in animal
models [4]. For example, increased expression of the
protein deacetylase Sirtl is known to slow the effects of
aging and increase lifespan [5]. In contrast, reduced
levels of the oncogenic transcription factor c-Myc
(Myec), due to heterozygosity, was recently reported to
significantly increase longevity in mice [6-8].

Myc is estimated to transcriptionally regulate 10-15%
of the genome [9, 10]. While Myc has been implicated
in processes such as stem cell maintenance, differentia-
tion, and apoptosis, Myc transcriptional activity is
closely linked to cell-cycle progression and the vast
metabolic machinery required for cellular proliferation

[6, 7, 11]. Notably, Myc regulates mitochondrial
biogenesis through expression of genes such as Pgcl/a
and Pgclf (peroxisome proliferation activated receptor
gamma coactivator 1l-alpa and beta), providing
sufficient mitochondria to maintain increased cellular
metabolism [12]. Myc increases overall cellular energy
flux by upregulating glycolysis and glutaminolysis
through transcriptional activations of target genes like
hexokinase 2 (Hk2) and glutaminase (Gls; [13-16]). The
energy generated from these metabolic pathways is then
utilized by downstream pathways regulated by Myc to
generate critical macromolecules. For example, Myc
regulates urea cycling and pyrimidine synthesis, via
transcriptional regulation of ornithine decarboxylase
(Odc) and carbamoyl-phosphate synthetase 2/aspartate
transcarbamylase/dihydroorotase (Cad), respectively
[17, 18]. Myc also increases overall protein synthesis
[19], a known modulator of longevity [20], through
regulation of genes like nucleolin (Nc/) that control
ribosomal assembly [21].
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Based on the broad control Myc exerts over cellular
processes relevant to aging and the recent publication
directly linking Myc to longevity [8], proteins that
regulate Myc represent potential modulators of the
aging process. We recently reported that Mtbp is a Myc
transcriptional  co-factor [22]. In mice, Mtbp
heterozygosity resulted in reduced Mtbp protein
expression without altering Myc levels, and this
inhibited Myc-mediated transcriptional activation of
target genes, proliferation, and B cell lymphoma
development [23]. Knockdown of Mitbp expression
delayed cell cycle progression through S and G2/M
phases of the cell cycle [24, 25]. In contrast, elevated
Mtbp expression increased the number of cells in S-
phase and enhanced Myc-mediated transcription and
tumor development [22]. These data indicate Mtbp is a
positive regulator of Myc transcriptional activity and
downstream biological functions. Thus, we tested
whether reduced Mtbp expression would alter aging in
similar ways to decreased Myc expression [§].

RESULTS

Mtbp”” mice have increased longevity

Since Myc+/ " mice have increased longevity [8] and we
have shown that Mtbp is a positive regulator of Myc
[22, 23], we investigated the contribution of Mtbp to
longevity using a cohort of littermate-matched Mrbp™*
and Mitbp"" mice. Mitbp heterozygous mice had
increased longevity compared to wild-type controls,
exhibiting a median survival of 785 days compared to
654 days (p=0.0013; Figure 1A, Supplemental Figure
S1), a 20% increase. This significant difference in
lifespan was represented in both male and female
populations (Figure 1B and 1C). Mtbp heterozygous
males had a median survival of 774 days, compared to
672 days for wild-type control males (p=0.0166,
Supplemental Figure S1), a 15.2% increase. Mtbp "
females had a median survival of 790 days, compared to
650.5 days for Mibp"" females (p=0.0439), a 21.4%
increase (Supplemental Figure S1).

In addition to median lifespan, Mtbp heterozygosity also
increased maximum lifespan.  Specifically, Mtbp+/ .
mice were overrepresented in the longest living decile
and quartile of mice with 9 of 11 (81.8%) and 19 of 26
(73.1%) of the mice, respectively (Figure 1D). The
trend was not affected by gender, as the longest living
decile and quartile of mice were 4 of 5 (80.0%) and 9 of
12 (75.0%) heterozygous males, respectively, and 4 of 5
(80.0%) and 10 of 13 (76.9%) heterozygous females,
respectively. In contrast, Mtbp wild-type mice (all mice
and both male and female) were disproportionally
represented in the shortest lived decile and quartile of
mice 90.9% and 80.8%, respectively (Figure 1D). This
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Figure 1. Mtbp heterozygosity increases longevity. (A-C)
Kaplan-Meier survival curves of Mtbp™* (+/+) and Mtbp*" (+/-)
mice with the number of mice in each group denoted by n. p
value determine by log-rank tests. (D) All, male, and female
Mtbp”’ mice in the indicated decile or quartile of the mouse
cohort. (E) Instantaneous death rate plotted; log-rank p=0.0013,
Chi-sq=10.27, df=1; number of mice in each group denoted by n.

was also reflected in the observation that Mtpr " mice
have a significantly decreased instantaneous death rate
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compared to Mtbp+/ " littermate-matched controls (log-

rank p=0.0013, Chi-sq=10.27, df=1; Figure 1E). Both
Mtbp heterozygous males and females have a
significantly reduced instantaneous death rate (log-rank
p=0.0166, Chi-sq=5.74, df=1 and log-rank p=0.0439,
Chi-sq=4.06, df=1, respectively; Supplemental Figure
S2). Therefore, an Mtbp haploinsufficiency confers
increased median and maximum survival.

Delay in tumorigenesis and a change of tumor
spectrum in Mtbp heterozygous mice

As is commonly seen in C56B1/6 mice [26, 27], gross
and histopathological tissue analysis at time of death of
representative mice demonstrated the majority had
cancer (17 of 23 Mthp"" mice and 29 of 34 Mibp'"
mice). Notably, 32.4% (11 of 34) of Mtbp™™ mice had
lymphoma, which was twice the incidence of lymphoma
in Mtbp'" mice (17.4%, 4 of 23; Figure 2A). The
lymphomas were detected at an average age of 840 days
in heterozygotes, compared to 682.3 days in wild-type
controls, a significant delay (p=0.0320, Supplemental
Figure S1). Similarly, Mtbp”' mice developed
carcinomas later in life at 848 days (3 of 34, 8.8%)
compared to 694 days for Mtbp"™" mice (3 of 23, 13.0%)
and the tissue distribution of the carcinomas differed
between the two genotypes. Specifically, two
carcinomas that developed in the wild-type mice were
hepatocellular carcinoma and one was a carcinoma of
the small intestine, whereas two of the Mtbp hetero-
zygous mice developed aural squamous cell carcinoma
and one had pulmonary adenocarcinoma. The difference
in age of carcinoma development and the type of
carcinoma that emerged between the two genotypes was
not statistically significant likely due to the small
number of carcinomas that developed (p=0.1412;
Supplemental Figure S1, Figure 2B). In contrast,
Mtbp”+ and Mtpr' mice had a similar frequency and
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age of onset of sarcoma. Approximately half of the
cancers that developed in both genotypes of mice were
sarcoma [10 of 23 (43.5%) for Mtbp"" and 15 of 34
(44.1%) for Mthp™"; Figure 2C], occurring at a mean
age of 806 days for Mthp™" and 743 days for Mibp™"
mice (p = 0.1547, Supplemental Figure S1). The vast
majority of the sarcomas in both the wild-type and Mrbp
heterozygous mice were histiocytic sarcomas. One
Mtbp wild-type mouse developed both a sarcoma and a
carcinoma, and all Mtbp”' mice that were diagnosed
with a malignancy had only one tumor type. Although,
twice the proportion of Mthp wild-type control mice
were cancer free at time of death (7 of 23, 30.4%)
compared to Mtbp heterozygous mice (5 of 34, 14.7%;
Figure 2D), the Mtbp"™ mice lived an average of 836.4
days compared to 640.3 days for wild-type controls
(Supplemental Figure S1). This difference in Mibp™”
mice represents a significant delay in mortality among
cancer free mice (p=0.03340). These data collectively
indicate a decrease in Mtbp expression alters the tumor
spectrum and age of onset as mice age, as well as
extends overall survival independent of cancer
development.

Mtprr/Jr and Mtbp+/' mice move, reproduce, and
develop similarly

Long-lived mouse models will often retain elevated
motor function compared to controls, particularly as
they age. To determine if Mthp heterozygosity
improved locomotor activity, open field testing was
performed for 1 hour on two days with a cohort of old
(1.5 year) littermate matched mice. Although there was
a trend for Mthp heterozygotes to travel a greater
distance (5737.7 cm) compared to wild-type controls
(4551.0 cm), this difference did not reach statistical
significance (p=0.1142; Figure 3A). When locomotor
function was actively challenged using a rota-rod en-
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Figure 2. Altered tumor spectrum in Mtbp+/' mice. Pathological/histological evaluation of tissues at time of death
of Mtbp”‘ n=23 and Mtbp*/' n=34 littermates analyzed. The percentage of mice with each diagnosis plotted (A-D).
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durance test, the Mtbp ™ mice (78.0 seconds) performed
similarly to Mtbp+/+ mice (73.6 seconds) after
training (Figure 3B; p=0.3923). Analogous results
were also obtained with younger mice (Supplemental
Figure S3).
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In nature, many animal species with increased longevity
have reduced reproductive capacity to limit
overpopulation. This trend has been reported in some
long-lived mouse models [28]. Thus, we compared the
reproductive efficiency of Mtbp“+ and Mrbp"" female
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Figure 4. Long-lived Mtbp heterozygous mice exhibit normal systemic physiology. (A) The mean

number of pups birthed from Mtbpa'/+ X Mtbp+/' crosses by each female Mtbp"/+ (+/+; n=20 females; 328 total
pups; black) and Mtbp"/’ (+/-; n=25 females; 569 total pups; gray) mouse was recorded and averaged (p=0.2247).
(B-H) Healthy long-lived (29 months) +/+ (n=5) and +/- (n=8) male mice were starved for 5 hours. (B) The nose-to-
rump length was recorded and averaged (p=0.9999). (C) After sacrifice, the femurs were isolated and their length
measured with electronic calipers and averaged (p=0.7160; n=7 for +/- group due to loss of one femur from
bilateral fracture from collection). (D-H) Blood was collected and serum isolated. Circulating levels of (D) IGF-1
(p=0.4175), (E) cholesterol (p=0.3572), (F) triglycerides (p=0.4037), (G) blood glucose (p=0.7116) and (H) insulin
(p=0.6963) were measured. P values calculated with student’s t-tests, and error bars are SEM.
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mice. Only the number of pups per birth from crosses
between Mtbp™" and Mtbp”™ mice were quantified, as
deletion of Mtbp is embryonic lethal and would
artificially lower the number of pups birthed [29]. This
examination did not reveal a significant difference in
the average number of pups per litter birthed by Mtpr+
(6.6) and Mtbp'" (7.3) females (p=0.2247; Figure 4A).

Some long-lived mouse models reported to have reduced
growth, resulting in smaller body size [30]. We detected
no size differences in mature Mbp™ mice. Specifically,
Mz‘prr/+ and Mtbp+/' mice had similar nose-to-rump
lengths of 9.89 cm and 9.74 cm, respectively (p=0.9999;
Figure 4B) as well as femur lengths of 15.0 mm and 14.8
mm, respectively (p=0.7160; Figure 4C) at the time of
sacrifice. Given this observation, it was not surprising
that analysis of serum isolated and frozen at time of
sacrifice did not show a statistically significant difference
in the level of circulating insulin- like growth factor-1

>
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)
O

(IGF-1; p=0.4175; Figure 4D), a major growth-promot-
ing factor [31]. Therefore, an Mtbp haploinsufficiency
did not impact locomotion, birth rates, or bone size.

Long-lived Mtbp"”" mice exhibit signs of increased
cellular metabolism

Many long-lived mouse models have changes in
metabolism detectable at a systemic level. To determine
if Mtbp expression modulates levels of circulating
metabolic markers, serum was isolated and frozen
immediately after sacrifice of long-lived mice starved
for 5 hours. The analysis revealed Mtbp”+ and Mtbp” i
mice had similar levels of serum cholesterol (p=0.3572;
Figure 4E) and triglycerides (p=0.4037; Figure 4F).
Moreover, the circulating level of glucose (p=0.7116;
Figure 4G) and insulin (p=0.6963; Figure 4H) were also
similar, reflecting no major changes in physiologic
glucose regulation.
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Figure 5. Old Mtbp heterozygous mouse livers exhibit global elevated metabolic markers. (A-H) Healthy

+/+

Mtbp

(+/+; n=5; black) and Mtbp”’ (+/-; n=9; gray) mice at 29 months were starved for 5 hours, sacrificed, and livers

frozen with Wallenburg clamp. qRT-PCR for (A) glutaminase (Gls, p=0.1147), (B) hexokinase 2 (Hk2, p=0.1401), (C) ornithine
decarboxylase (Odc, p=0.0736), (D) carbamoyl-phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase, (Cad,
p=0.1393), (E) nucleolin (Ncl, p=0.1412), (F) peroxisome proliferation activated receptor gamma coactivator 1-alpha (Pgcla,
*p=0.0106), (G) Pgcl-beta (Pgc1f, *p=0.0499), and (H) sirtuin-1 (Sirt1, p=0.1529) was performed. Values are relative to f-
actin levels. P values calculated using student’s t-tests and error bars are SEM.
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Figure 6. Skeletal muscle in old Mtbp”‘ mice lack global metabolic marker increase. (A-H) Healthy
Mtbp+/+ (+/+; n=5; black) and Mtbp+/' (+/-; n=8; gray) mice at 29 months were starved for 5 hours, sacrificed,
and gastrocnemius muscle frozen with Wallenburg clamp. qRT-PCR for (A) glutaminase (Gls, p=0.5591; +/- n=7
due to RNA loss), (B) hexokinase 2 (Hk2, p=0. 9792), (C) ornithine decarboxylase (Odc, p=0.5115), (D)
carbamoyl-phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase, (Cad, *p=0.0202), (E) nucleolin
(Ncl, p=0.9116, +/- n=7 due to insufficient RNA), (F) peroxisome proliferation activated receptor gamma
coactivator 1-alpha (Pgcla, p=0.0736), (G) Pgcl-beta (Pgc1f, p=0.0710), and (H) sirtuin-1 (Sirt1, p=0.8417) was
performed. Values are relative to factin levels. P values calculated using student’s t-tests and error bars are SEM.

Although systemic changes in cholesterol, triglyceride,
and glucose metabolism were not observed, we
examined markers of cellular metabolism in tissues of
long-lived mice to determine if decreased Mtbp
expression modulates metabolism at a molecular level.
Using flash frozen tissue at the time of sacrifice, mRNA
was isolated from the liver, skeletal muscle
(gastrocnemius) and brown fat pad of long-lived mice.
In the liver, Mtbp” mice exhibited a global trend
toward, and at times significantly, increased expression
of metabolic markers (Figure 5), similar to previous
reports for Myc” mice [8]. Mtbp heterozygosity
resulted in a trend toward increased expression of basic
metabolic genes such as Gls, Hk2, Ncl, Cad, and Odc
that control cellular energy flux, protein translation, and
macromolecule synthesis (Figure SA-E). Most notably,
the livers of Mtbp"™ mice showed a nearly 2-fold and
statistically significant increase in the expression of

Pcglo (p=0.0106; Figure 5F) and Pcgif (p = 0.0499;
Figure 5G) compared to wild-type controls. This
increase suggests elevated mitochondrial biogenesis and
function in long-lived Mtbp heterozygous mice. These
increased levels of metabolic markers in Mtbp™™ livers
also coincided with a nearly 60% increase in the
expression of Sirtl (p=0.1529; Figure 5H), a well-
known anti-aging gene linked to caloric restriction [32].

The global increase in metabolic markers observed in
the livers of Mtbp heterozygous mice was largely not
recapitulated in skeletal muscle (Figure 6) and brown
fat (Figure 7). In skeletal muscle for example, there
was only a statistically significant increase in the level
of Cad in Mtbp™"™ mice (p=0.0202), but analogous levels
of Gls, Hk2, Odc, and Ncl compared to Mtbp“+ mice
(Figure 6A-E). There was a trend toward significantly
decreased expression of Pcgla (p=0.0736; Figure 6F)
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and PcglP (p=0.0710; Figure 6G), but similar levels of
Sirtl (Figure 6H) in Mtbp heterozygous skeletal muscle.
In brown fat, levels of Gls, Hk2, Odc, Cad, and Ncl
were similar between wild-type and heterozygous Mtbp
mice (Figure 7A-E). However, the brown fat of Mibp™"
mice exhibited a trend toward increased expression of
Pcglo (p=0.0531; Figure 7F), but equivalent levels of
Pcglp (p=0.8492; Figure 7G). The levels of Sirtl were
analogous between the two genotypes (Figure 7H).
Therefore, the data show Mrbp heterozygosity alters
markers of cellular metabolism in disparate tissues,
although the effects are more pronounced in the liver.

DISCUSSION

We reported that Mtbp is a positive regulator of Myc
transcriptional  activity, promoting Myc-mediated
proliferation and malignant transformation [22, 23].
Yet, it was unclear if Mtbp expression contributed to
Myc-modulation of aging that was recently reported [8].
Here, we determined Mtbp heterozygosity, like Myc
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heterozygosity, significantly increased the median and
maximum lifespan of mice and delaying cancer
development compared to wild-type littermate-matched
controls. The increase was observed regardless of
gender. These results indicate Mtbp has a significant
role in aging.

While cancer was the cause of death in the majority of
mice, reduced Mtbp expression was associated with an
increased, but significantly delayed, incidence of
lymphoma. We observed a similar delay in lymphoma
development in Ep-myc transgenic mice that were
Mtbp"™™ [23]. Interestingly, Myc”' mice, also had an
increase in the rate of lymphoma, although to a much
less degree, along with significantly reduced
progression of disease at time of death [8]. In addition
to delayed lymphoma development, there was also a
trend for Mibp”™ mice to have delayed carcinoma
development. However, Mtbp heterozygous and wild-
type mice had a similar age of onset of sarcoma
development. Therefore, the development of specific
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Figure 7. Absence of global elevation of metabolic markers in brown fat in old Mtbp heterozygous mice. (A-
H) Healthy Mtbp™* (+/+; n=5; black) and Mtbp™" (+/-; n=8; gray) mice at 29 months were starved for 5 hours, sacrificed,
and brown fat frozen. qRT-PCR for (A) glutaminase (Gls, p=0.4982), (B) hexokinase 2 (Hk2, p=0.4555), (C) ornithine
decarboxylase (Odc, p=0.8677), (D) carbamoyl-phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase,
(Cad, p=0.9700), (E) nucleolin (Ncl, p=0.2668), (F) peroxisome proliferation activated receptor gamma coactivator 1-alpha
(Pgcla, p=0.0531), (G) Pgcl-beta (Pgc1f, p=0.8492, +/+ n=4 due to insufficient RNA), and (H) sirtuin-1 (Sirt1, p=0.4146)
was performed. Values are relative to factin levels. P values calculated using student’s t-tests and error bars are SEM.
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cancer types appears to be more impacted than others
by Mtbp heterozygosity. Specifically, the data suggest
the hematopoietic compartment may be more sensitive
to changes in Mtbp expression than other tissues.
However, in human cancer, MTBP is amplified and/or
overexpressed in a range of malignancies, including
lymphomas, carcinomas, and sarcomas, suggesting it is
oncogenic in multiple tissue types [22, 23, 33]. Future
studies of Mtbp function comparing different normal
and cancerous tissues should clarify those cell types in
which altered Mtbp levels have a significant impact.

Our data that sarcomas present at a similar age suggest
the overall survival difference between Mrbp™™ and
Mibp"" mice does not appear to be due to an overall
delay in cancer development. Additionally, fewer
Mtbp+/' mice were cancer-free at the time of death, a
result not predicted had Mtbp only impacted longevity
by decreasing and/or delaying cancer development.
Notably, cancer-free Mtbp”™ mice lived significantly
longer than their cancer-free wild-type littermates,
suggesting that in the absence of cancer, reduced Mtbp
expression conferred a survival benefit. These data
suggest that the delayed presentation of lymphoma may
reflect increased vitality of the Mtpr' mice, as
lymphoma development occurred at younger ages in the
wild-type cohort.

In addition to increased longevity and modulated cancer
development, long-lived Mthp heterozygous mice
exhibited a global trend toward elevated cellular
metabolism in the liver. While this may coincide with
an overall increase in metabolism reported for Myc"”
mice [8], specific ties to aging have also been described.
For example, caloric restriction, well known to improve
longevity, has been previously shown to increase
hepatic Gls expression [34]. Odc expression is elevated
in younger livers and been implicated in the capacity for
hepatic repair and regeneration [35]. We also observed
increased expression of Pgcla and Pgclf, which
regulate mitochondrial biogenesis and function. Their
reduced expression with aging has been associated with
many age-related pathologies [36]. Collectively,
increased expression of these metabolic markers
suggests retained vitality in the livers of old Mtbp”'
mice, which coincides with the elevated expression of
the well-known anti-aging gene Sirt! [5].

The increased expression of metabolic genes observed
in aged Mtpr' livers was largely sporadic or nearly
absent in skeletal muscle and brown fat. Interestingly,
the absence of global metabolic changes in the skeletal
muscle and brown fat of Mibp"" mice compared to the
global increase observed in the liver also matches with a
lack of elevated Sirtl expression observed in these
tissues. Moreover, the lack of increase in metabolic

markers and the downward trend in Pgcl/a and Pgclf
expression in skeletal muscle of Mtbp™™ mice support
their similar performance in open field and rota-rod
testing compared to wild-type controls. This is in
contrast to Myc”" mice, which showed metabolic
changes in skeletal muscle and improved rota-rod
performance [8]. The reasons for the differential
response to decreased Mtbp expression in the liver
compared to skeletal muscle and adipose tissue is
unclear at this time. However, a microarray analysis of
liver, skeletal muscle, and adipose tissue in old Myc"”"
and Myc” " revealed the highest number of differentially
expressed genes occurred in the liver [8]. Thus, future
studies focused on the tissue-specific benefits of
reduced Mtbp and/or Myc expression would be
important.

Collectively, the data suggest Mtbp impacts longevity
and cellular metabolism, particularly in the liver. These
results are in line with a recent report on Myc [8] as
well as our previous reports indicating Mtbp is a
positive regulator of Myc transcriptional activity [22,
23]. However, the effect of Myc heterozygosity appears
broader than the effects observed for Mthp
heterozygosity. For example, decreased Myc expression
resulted in smaller body size, improved rota-rod
performance, reduced circulating IGF-1, and lower
serum cholesterol [8]. The precise reason for these
differences is unclear at this time, although we have
previously demonstrated Mtbp expression does not alter
protein expression of Myc [22, 23], but did change the
transcriptional activity of Myc. Part of the downstream
effects of Myc are mediated through direct binding to or
displacement of other factors at DNA, such as Mizl,
NFY, C/EBPB, SP1, and Foxo3A [7, 37, 38]. Myc also
regulates transcriptional elongation through recruitment
of P-TEFb [39, 40]. It is unknown how Mtbp
expression impacts these functions of Myc or whether
these functions of Myc change as animals age.
Moreover, it is possible Mtbp may only orchestrate a
sub-set of Myc’s overall transcriptional activity and
may have Myc-independent functions.  Therefore,
additional research is needed on the interaction between
Mtbp and Myc, and Mtbp itself, to better understand the
contribution of Mtbp to aging.

METHODS
Mice

Mitbp*” [29] and littermate-matched Mibp™* C57Bl/6
mice of both genders were generated through
interbreeding and were housed together. For survival
analysis, mice were sacrificed after meeting humane
end-of-life criteria. Necropsy with tissue collection was
performed and tissues were evaluated by a board-
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certified veterinary pathologist (K.B.) in a blinded
manner. For analysis of healthy aged mice (29 months-
old), the mice were starved for 5 hours and crown-to-
rump length was measured. Blood was collected and
analyzed for blood glucose levels with Accu-chek test
strips (Roche Diagnostics, Indianapolis, IN, USA; [41],
centrifuged and plasma frozen for later analysis. Mice
were sacrificed by cervical dislocation. Liver and
gastrocnemius muscle were frozen with a Wallenburg
clamp pre-cooled in liquid nitrogen as previously
described [42]. Brown fat pads were collected and
frozen. Tissues were kept at -80°C until analysis.
Femurs were collected and measured with electronic
calipers. Experiments were approved by the Vanderbilt
Institutional Animal Care and Use Committee and
followed all federal and state rules and regulations.

Quantitative real-time PCR (RT-PCR)

Total RNA was isolated from frozen tissues, cDNA was
generated, and qRT-PCR was performed as previously
described [23]. Primer sequences are listed in
supplemental material.

Serum analysis

Analysis of serum was performed by the Mouse
Metabolic Phenotyping Center in the Hormone Assay
and Analytical Services and the Lipids and Lipoproteins
Subcores at Vanderbilt University. Insulin levels were
measured with a radioimmunoassay (SRI-13K, EMD
Millipore, Billerica, MA, USA). IGF-1 levels were
measured using a magnetic Luminex screening assay
(LXSAMSM-01, R&D Systems, Minneapolis, MN,
USA). Triglyceride and cholesterol levels were
measured using Raichem reagents (R80035 and
R84098, Cliniqa, San Marco, CA, USA).

Locomotion analysis

Explorative locomotion or open field testing was
performed using a 48 channel IR controller (ENV-520,
Med Associates Inc., St. Albans, Vermont) on young (6
months-old) and aged (21 months-old) mice. On two
different days, mice were placed in the open field, the
total distance traveled was recorded for 1 hour and the
average of the two measurements was reported.
Additionally, on three consecutive days, mice were
placed on a five-lane accelerating rota-rod (47600, Ugo
Basile, Varese, Italy) for three sequential trials
separated by 10 minutes of rest. The rota-rod
accelerated from 4 to 40 rpm over 3 minutes with a cut-
off time of 3 minutes. Time running on the rota-rod
was determined by using pressure sensors to detect falls
or by observing >3 consecutive rotations of the mouse

around the rod. The average times from day 3 were
recorded [43].

Statistical evaluation

A log-rank test was used to calculate significance in
Figure 1 and Supplemental Figure S1. Analysis for
Figure 1E and Supplemental Figure S1 was performed
with JMP statistical software (v12.2.0). Student’s t-test
was used to calculate significance for data in Figures 2-
7 and Supplemental Figures S2 and S3.
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SUPPLEMENTAL MATERIAL

METHODS
Real Time PCR Primers

Cad-F - AACTGCGTAGGCTTCGACCATACA
Cad-R - AATCAATGCGGGTGAGCTCGTAGA
Gls[1]

Gls-F - TTCGCCCTCGGAGATCCTAC

Gls-R - CCAAGCTAGGTAACAGACCCT

Hk2 [2]

Hk2-F - TGATCGCCTGCTTATTCACGG
Hk2-F - AACCGCCTAGAAATCTCCAGA
Ncl-F - ACTGGAAAGACCAGCACTTGGAGT
Ncl-R - CCCTTTAGGTTTGCCATGTGGGTT
Odc-F - GCATGTGGGTGATTGGATGCTGTT
Odc-R - TTGCCACATTGGCCGTGACATTAC
Pegla-F - GGATGAATACCGCAAAGAGC
Pegla-R - GGTAGGTGATGAAACCATAGC
Peglb [3]

Pcglb-F - TCCTGTAAAAGCCCGGAGTAT
Peglb-R - GCTCTGGTAGGGGCAGTGA

Sirtl [4]

Sirt1-F - ACCTCCCAGACCCTCAAGC
Sirt]-R - TTCCTTCCTTATCTGACAAAGC
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Figure S1. Indicators of increased longevity in Mtbp+/- mice. Ages of the events indicated in the key for
Mtbp+/- mice compared to littermate matched Mtbp+/+ mice plotted. P values determined by student’s t-tests.
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Figure S2. Male and female Mtbp heterozygous mice
have a decreased instantaneous death rate. Instantaneous
death rate plotted for males (A), log-rank P = 0.0166, Chi-
sq=5.74, df=1) and females (B), log-rank P = 0.0439, Chi-sq=4.06,
df=1). The number of mice in each group denoted by n.
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