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ABSTRACT

Neurovascular integrity plays an important role in protecting cognitive and mental health in aging. Lifestyle
interventions that sustain neurovascular integrity may thus be critical on preserving brain functions in aging
and reducing the risk for age-related neurodegenerative disorders. Here we show that caloric restriction (CR)
had an early effect on neurovascular enhancements, and played a critical role in preserving vascular, cognitive
and mental health in aging. In particular, we found that CR significantly enhanced cerebral blood flow (CBF) and
blood-brain barrier function in young mice at 5-6 months of age. The neurovascular enhancements were
associated with reduced mammalian target of rapamycin expression, elevated endothelial nitric oxide synthase
signaling, and increased ketone bodies utilization. With age, CR decelerated the rate of decline in CBF. The
preserved CBF in hippocampus and frontal cortex were highly correlated with preserved memory and learning,
and reduced anxiety, of the aging mice treated with CR (18-20 months of age). Our results suggest that dietary
intervention started in the early stage (e.g., young adults) may benefit cognitive and mental reserve in aging.
Understanding nutritional effects on neurovascular functions may have profound implications in human brain
aging and age-related neurodegenerative disorders.

INTRODUCTION profound fashion in neurodegenerative disorders,

including  Alzheimer’s  disease  (AD) [9-12].

Neurovascular functions, including cerebral blood flow
(CBF) and blood-brain-barrier (BBB) function, play an
important role on determining cognitive capability and
mental health [1]. Studies have shown that
neurovascular risk is highly associated with accelerated
decline in language ability, verbal memory, attention
and visuospatial abilities [2, 3]. Reduced CBF is linked
to anxiety and depression [4-6], and impaired BBB is
associated with neuroinflammation and synaptic
dysfunction [7]. These neurovascular deficits are
exacerbated with age [8] and in a more rapid and

Interventions that are able to maintain neurovascular
integrity are thus considered crucial for impeding age-
related neurological disorders.

Caloric restriction (CR), without malnutrition, is the
most studied intervention that has been shown to extend
the longevity of a broad range of species [13-15]. In the
central nervous system, CR has also been shown to
induce anti-inflammatory mechanism, reduce oxidative
stress and promote synaptic plasticity [16]. In aging, CR
protects mitochondrial function, neuronal activity, brain
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volume size and white matter integrity [14, 17, 18].
Enhanced memory in elderly humans and aging animals
has also been reported with CR [19-22]. In animal
models of AD, CR reduces amyloid beta (AP)
deposition and preserves memory [23, 24]. However,
the impact of CR on CBF and BBB, and the interplay
between in vivo neurovascular functions, cognitive
aging, and mental health, remain unknown.

In this study, our primary goal was to identify age-related
changes of neurovascular integrity in response to CR. We
previously showed that CR is protective for CBF in old
adult rodents [25]. Here we further determined whether
CR shows early effects on neurovascular functions, and
the potential changes in vascular signaling markers
thereof, in young adult animals. Our secondary goal was
to determine the correlation between neurovascular
function, cognitive integrity, and mental health across the
young and old mice. We hypothesized that CR has
significantly protective effects on CBF and BBB, which
may contribute to preserved neurovascular integrity,
learning and memory, and reduced anxiety in aging. We
used magnetic resonance imaging (MRI) to quantify in
vivo CBF and confocal imaging to measure BBB
function, and biochemical assays to determine
neurovascular signaling markers. Behavioral tests were
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used to assess cognition, anxiety of the mice, and the
correlation between behavioral and neurovascular
outcomes. The findings from this study will enhance our
understanding regarding the effectiveness of nutritional
intervention on brain functions in aging.

RESULTS
neurovascular

Caloric restriction enhances
functions in young mice

We firstly determined the CBF and BBB changes in
response to CR in young adult mice (5-6 months of
age). We used MRI to measure CBF in mice fed with
either ad libitum (AL) or 40% CR (N = 12 per group).
Fig. 1A shows the group-averaged CBF images of AL
and CR mice. The CBF level is colorized in a linear
scale, indicating that CR mice have overall higher CBF
compared to the AL mice. We did further CBF analyses
in brain regions associated with cognitive functions
(e.g., memory and learning) based on MRI structural
imaging and mouse brain atlas. We found that young
CR mice had significantly higher CBF in frontal cortex
(» < 0.01; Fig. 1B) and hippocampus (p < 0.01, Fig.
1C), compared to young AL mice.
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Figure 1. Caloric restriction enhances neurovascular functions in young mice. (A) CBF maps superimposed on structural
brain images; the color code indicates the level of CBF in a linear scale. Quantitative CBF (ml/g/min) obtained from (B) Frontal
Cortex and (C) Hippocampus. (D) Representative confocal images showing increased luminal accumulation of NBD-CSA fluorescence
(green) in brain capillaries isolated from young CR mice; shown in arbitrary fluorescence units (scale 0-255). (E) Corresponding
quantitative fluorescence data. Data are mean + SEM. **p < 0.01; ***p < 0.001; n.s.: non-significant; AL: ad libitum; CR: caloric
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Figure 2. Caloric restriction enriches vascular signaling markers and shifts metabolism in young mice.
(A) Western blotting (WB) of mTOR, eNOS, P-gp and GLUT1 from the cortical vasculature, B-Actin was used as
loading control; corresponding values of (B) mTOR, (C) eNOS, (D) P-gp, and (E) GLUT1 between the young AL and
CR mice. All the WB data were normalized to B-Actin and compared to young AL (100%). (F) Blood glucose and (G)
Blood Ketone levels of the mice. *p < 0.05; **p < 0.01; ***p < 0.001; AL: ad libitum; CR: caloric restriction.

BBB function was determined by measuring P-
glycoprotein (P-gp) transport activity from cortical
capillaries. P-gp is an ATP-driven transporter highly
expressed at the BBB that facilitates clearance of AP, a
hallmark of AD. We previously established a confocal
imaging-based assay to assess P-gp transport activity in
freshly isolated brain capillaries from mice [26, 27].
This assay measures within capillary lumens
accumulation of [N-g(4-nitro-benzofurazan-7-yl)-D-
Lys(8)]-cyclosporin A (NBD-CSA), a fluorescent P-
glycoprotein substrate. Fig. 1D shows representative
confocal images of capillaries incubated to steady state
in medium containing 2 pM NBD-CSA; the intensity of
fluorescence in the capillary lumen reflects the amount
of NBD-CSA transported by P-gp. The corresponding
quantitative results are shown in Fig. 1E. Young CR
mice had enhanced P-gp transport activity (2.4 fold
increase; p < 0.0001) compared to AL mice.

Caloric restriction enhances vascular signaling
markers and shifts metabolism in young mice

Caloric restriction has been shown to inhibit mammalian
target of rapamycin (mTOR), a nutrient sensor, in
response to cellular energy status and growth factors [28,
29]. We and others have previously showed that
inhibiting mTOR signaling activates endothelial nitric

oxide synthase (eNOS) and releases nitric oxide, a
vasodilator, which in turn causes increased CBF [30,
31]. To determine whether the enhancement of
neurovascular functions in the young adult mice is also
associated with mTOR signaling, we measured the
protein levels of mTOR and eNOS in capillaries
isolated from young CR and AL mice (Fig. 2A). We
found that, compared to AL mice, CR mice had
significantly lower level of mTOR (decrease to 71.1 +
1% over 100% controls; p < 0.01; Fig. 2B), but higher
level of eNOS (increase by 146.5 = 11.6% over 100%
controls; p < 0.001; Fig. 2C), consistent with our
previous findings [30]. We also measured P-gp protein
expression levels (Fig. 2A). Similar to the results of P-
gp activity, we found that CR mice had significant
enhancement in P-gp protein levels compared to the AL
mice (increase by 168.4 = 23.1% over 100% controls; p
<0.001; Fig. 2D).

Reduced mTOR also implies metabolic status changes,
we thus measured levels of the glucose transporter 1
(GLUT1) using Western blot (Fig. 2A). We observed a
significant decrease of GLUT1 in young CR mice
compared to the young AL mice (decrease to 70.9 +
7.5% over 100% controls; p < 0.01; Fig. 2E). This is
consistent with blood glucose results, showing that CR
mice had significantly reduced blood glucose levels
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relative to the AL mice (p < 0.01; Fig. 2F). In contrast,
CR mice had significantly higher levels of blood ketone
bodies compared to the AL mice (p < 0.05, Fig. 2G).
This is consistent with our previous findings that caloric
restriction shifts metabolism from glucose to ketone
bodies utilization [17, 25].

Caloric restriction decelerates the rate of decline of
cerebral blood flow in aging mice

We further determined the CBF and BBB function
changes in response to CR in old adult mice (18-20
months of age; 12 AL and 12 CR mice). Similar to the
findings in the young mice, we found that old CR mice
had significantly higher CBF compared to the old AL
mice, both in the frontal cortex (p < 0.01; Fig. 3A) and
hippocampus (p < 0.01, Fig. 3B). However, we did not
observe a difference in P-gp activity between the two
groups (p > 0.05, Fig. 3C).

We calculated the age-related changes in CBF and BBB
function. We found that in the frontal cortex, old AL
mice had 43.13% group averaged decline of CBF
compared to the young AL mice (no variation was
available due to cross-sectional comparison); In
contrast, the old CR mice had only 22.28% averaged
reduction compared to the young CR mice (Fig. 3D).

Similar pattern was found in hippocampus — old AL
mice had 45.10% averaged decreases in CBF, whereas
old CR mice had 28.13% averaged reduction, compared
to their young littermates (Fig. 3E). On the other hand,
we found that there was a higher reduction rate of P-gp
activity in the CR group (-75.33%) compared with the
AL group (-45.45%; Fig. 3F). Collectively, we found
that caloric restriction impeded the age-dependent
decline of CBF but not P-gp activity (BBB function).

Caloric restriction preserves learning and long-term
memory of aging mice

We used radial arm water maze (RAWM) to evaluate
learning and spatial memory of the mice [32, 33]. Fig.
4A illustrates the RAWM assessment. The task for the
mice was to identify the arm which contains a hidden
platform. Wrong entries of the arms were recorded as
errors. The protocol consisted of a two-day testing
paradigm. Day 1 was the “learning” phase where mice
went through three blocks (Blocks 1-3; 5 trials in each
block) to test learning and short-term spatial memory.
Day 2 was the “recall” phase where mice went through
three additional blocks (Blocks 4-6) to test long-term
memory after a 24-hour retention period to locate the
platform. It is expected that after the two-day training,
the mouse with intact memory could find the platform
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Figure 3. Caloric restriction decelerates the rate of decline of cerebral blood flow in aging mice. Old CR mice had
significantly higher CBF in (A) Frontal cortex and (B) Hippocampus; however (C) P-gp activity did not show significance
when compared with old AL mice. The age-dependent changes between AL and CR mice in (D) CBF within frontal cortex,
and (E) hippocampus, and (F) Difference in cortical P-gp activity, between AL and CR mice. Data are mean + SEM. **p <

0.01; n.s.: non-significant; AL: ad libitum; CR: caloric restriction.
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with minimal errors. In young mice, we saw no
significant difference between AL and CR groups (Fig.
4B). In old mice, however, AL group made significantly
more errors in the initial learning phase (Block 1; p <
0.01) and the initial recall phase (Block 4; p < 0.01),
compared to the CR group (Fig. 4C). In addition, we
found that old CR had similar performances in both
Block 1 (Fig. 4D; p > 0.05) and Block 4 (Fig. 4E; p >
0.05) compared to the young mice (both AL and CR),
suggesting that old CR mice had preserved learning and
long-term memory abilities.

We used combined errors from Blocks 1 and 4 to further
identify the correlation between cognitive function and
CBF. We found that the errors made in RAWM had
51§n1ﬁcantly inverse correlations with hippocam gal CBF

0.29, p <0.001; Fig. 4F) and frontal CBF (r" = 0.27,
p < 0.001; Fig. 4G), indicating that level of CBF in
cognition-associated brain regions is highly associated
with learning and spatial memory performances.

Caloric restriction reduces anxiety of aging mice

We used elevated plus maze (EPM) to evaluate anxiety
of the mice (Fig. SA) [34]. The EPM consists of two
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open and two closed arms. Closed arms are perceived as
safe zones, and thus mice with higher anxiety had
tendency to stay in the closed arms. We determined the
anxiety-related behavior by measuring the time spent in
the closed arms over the 5 min. test session. For the
young mice, we did not find significant differences
between the CR and AL groups (p > 0.05; Fig. 5B),
though CR mice had a trend of less time in the closed
arms. In contrast, old AL mice spent significantly
longer time in the closed arms compared to the old CR
mice (p < 0.01; Fig. 5C), indicating higher anxiety of
the old AL mice. Consequently, when comparing the
age-related performances, the AL group showed higher
increases in anxiety (31.43% group averaged) compared
to the CR mice (12.54% group averaged) (Fig. 5D). We
also found it had significant and inverse correlations
between closed arm duration and CBF in hlppocampus
(r* = 0.40, p < 0.0001; Fig. 5E) and in frontal cortex (1’

=0.39, p<0.0001; F1g. SF).

DISCUSSION

To our knowledge, this is the first study to investigate
the interplay between CR-induced changes of
neurovascular integrity, cognitive function, and mental
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Figure 4. Caloric restriction preserves learning and long-term memory of aging mice. (A) An illustration of the Radial
Arm Water Maze. Mice were trained to locate the hidden platform through a 2-day, 30 trials testing (3 blocks each day, 5 trials
each block). Wrong entries were recorded as errors. (B) Young AL and CR mice did not have significantly different performances
across the 6 blocks. (C) Old AL mice performed worse in Block 1 (initial learning phase) and Block 4 (initial recall phase) compared
to the old CR mice. The comparison among the four groups for (D) Block 1 and (E) Block 4. Significant inverse correlation between
errors made in Blocks 1 and 4 and CBF in (F) hippocampus (r2 =0.29, p < 0.001) and (G) frontal cortex (r2 =0.27, p < 0.001). Color
codes indicate the four groups of mice. Data are mean = SEM. **p < 0.01; AL: ad libitum; CR: caloric restriction.
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health in aging using neuroimaging, behavioral
assessments, and biochemical assays. In this study, we
demonstrate (i) in young mice, CR enhanced CBF and
BBB function, (ii) inhibited mTOR, which was
associated with increased eNOS, reduced glucose
metabolism, and increased blood ketone level; (iii) in
the aging mice, CR preserved CBF, learning, long-term
memory, and reduced anxiety; (iv) hippocampal and
frontal CBF exhibited high association with cognitive
performance and inversely correlated with anxiety level.

Our results indicate that young CR mice had significant
enhancement of CBF and BBB function, which in turn
may be associated with mTOR signaling changes
induced by CR. In addition to modulating eNOS, we
previously demonstrated that mTOR inhibition reduces
proinflammatory cytokine that breaks down BBB, and
thus restores BBB integrity and CBF in mice that
carries human APOE4 gene [35]. Furthermore, mTOR
is able to clean up misfolded proteins (such as AP and
cerebral amyloid angiopathy) via regulation of
autophagy [36], therefore, it can further reduce athero-
sclerosis and preserve neurovascular integrity, e.g.,
vascular density [30]. mTOR signaling also integrates
the effects of brain-derived neurotrophic factor, which

w0

A

elevated plus maze (EPM)

works with insulin/insulin-like growth factors and
serotonin, to exert beneficial effects on vascular system
by decreasing blood pressure, atherogenic lipids,
inflammatory cytokines and oxidative stress, and
increased cellular stress resistance [37, 38]. As shown in
the present and previous studies, mTOR inhibition leads
to metabolic shift from utilizing carbohydrate (e.g.,
glucose) to fatty acid (e.g., ketone bodies produced
from fatty acids) [17, 25, 39, 40]. Increased levels of
ketone bodies have shown to evoke CBF response, and
reduce oxidative stress, neuroinflammation and A [39,
41-44].

Increased CBF and ketone bodies metabolism suggest
increased oxidative metabolism within the brain of
young mice. Basal CBF is tightly coupled with cerebral
metabolic rate of oxygen [45] and utilization of ketone
bodies significantly elevate the oxygen utilization in
mitochondria through beta-oxidation of fatty acid [40,
46]. This is supported by evidence from isolated
mitochondria, showing CR enhances mitochondrial
function and induces bioenergetic efficiency (7,19).
This is also consistent with our previous imaging
findings that old animals with chronic CR diet had pre-
served oxidative metabolism, mitochondrial functions
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Figure 5. Caloric restriction reduces anxiety of aging mice. (A) An illustration of the Elevated Plus Maze. The maze consists of
four arms (two enclosed arms and two open arms) elevated 100 cm above the floor. Anxiety level was determined the time spent in
the closed arms (conceived as a safe place) over a 5 minutes testing session. Closed arm duration (in seconds) of (B) Young AL and CR
mice, and (C) Old AL and CR mice. (D) The age-dependent changes of anxiety level between AL and CR mice. Significant inverse
correlation between closed arm duration and CBF in (E) hippocampus (r2 = 0.40, p < 0.0001) and (F) frontal cortex (r2 =039, p<
0.0001). Color codes indicate the four groups of mice. Data are mean + SEM. **p < 0.01; AL: ad libitum; CR: caloric restriction.
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(TCA cycle flux and ATP production), and neuronal
activity (neurotransmission rate) compared to the old
AL animals [18]. The increased oxidative metabolism,
particularly in brain regions associated with cognition
(e.g., frontal cortex and hippocampus), may also play a
crucial role for neuronal and cognitive protections.
Previous studies showed that cognition-associated brain
regions have non-oxidative glycolysis exceeding the
required needs of oxidative phosphorylation, a
phenomenon known as aerobic glycolysis (AG) [47].
Excessive AG (or the "Warburg effect") is a key process
that sustains T cell activation and differentiation and is
involved in inflammatory-mediated conditions [48]. In
line with this, the distribution of AG in normal young
adults is spatially correlated with AB deposition in AD
patients and cognitively normal individuals with
elevated AP [49, 50]. Animal studies further
demonstrated that AR plaque formation is an activity
dependent process associated with AG [49, 51].
Therefore, increased oxidative metabolism in cognition-
related regions may decrease AG and thus reduce the
risk for AD, consistent with the findings in CR mice
[23, 24].

The early-life neurovascular and neurometabolic
changes may play a critical role in protecting
physiological functionality and enhancing cognitive
reserve with age [52]. Recent studies reported that
lifestyle factors act as moderators for cognitive reserve
to protect against AD in the elderly [52, 53]. The study
suggested that neuroprotective mechanisms play a
major role during early stages and compensatory
mechanisms in later stages of the disease. In line with
this, we observed that the CR mice had a slower
reduction rate in CBF with age compared with the AL
mice. As a result, the old CR mice had comparable
levels of CBF compared to the young AL mice, similar
to our previous findings in rats [25]. The preservation of
hippocampal and frontal CBF were associated with
improved cognition in the old CR mice. This is also
consistent with our previous findings that restoration of
CBF in young mice modeling human AD could
potentially prevent their cognitive decline in aging [30,
35].

We further identified that CR reduced anxiety levels in
aging mice. Similar findings were reported in a recent
study, showing rhesus monkeys on a 30% CR diet
demonstrated less anxious behavior than controls in
different arousing contexts [54]. These results are
consistent with other studies, indicating that mTOR
inhibition is playing an important role on anxiety- and
depressive-like behaviors [55]. Treating mice with
rapamycin, an mTOR inhibitor, Halloran et al. observed
reduced anxiety-like behavior, e.g., reduced thigmotaxis
(swimming in close proximity to the pool wall), in mice

with AD-like pathology. They also found a reduction in
depressive-like behavior in the mice, e.g., floating
during training phase of the Morris water maze and
reduced time spent immobile on the tail suspension test.
Similar effects have been reported for genetically
modified mice with autistic-like behavior, showing that
mTOR inhibition attenuated anxiety, hyperexcitability,
abnormal social interaction, repetitive behavior and
vocalizations of the mice [56, 57]. It has been shown
that the changes in anxiety- and depressive-like
behavior were correlated with increased levels of
dopamine and dopamine metabolites in the midbrain
[55]. Our study found that CBF was highly correlated
(inversely) with anxiety level, which is consistent with
previous findings [4-6].

We demonstrated that CR had beneficial effects on
aging brain functions, potentially via the mTOR
pathway. Genetic or pharmacological inhibition of
mTOR signaling has shown to slow aging and extend
lifespan in various species, and confer protection
against many age-related pathologies [58]. Here we
further show that activating the mTOR pathway could
potentially protect brain function (both cognitive and
non-cognitive types of behavior) in healthy aging by
preserving neurovascular function. Specifically, mTOR
inhibition was associated with increased eNOS, which
may contribute to CBF enhancements in young CR
mice and preservation in old CR mice. In AL mice
(control), we found decreased P-gp protein expression
and activity with age, which is consistent with previous
literature findings in different mouse models [59-61]. In
CR mice, however, calorie restriction did not preserve
P-gp expression and activity with age. To this date it is
unknown how blood-brain barrier P-gp activity is
regulated in aging and how it can be preserved. Thus,
more studies are needed to investigate potential
signaling steps that lead to age-mediated reduction of P-
gp at the BBB. Future studies will also need to further
investigate the potential mechanism of CR effects on
BBB function with age.

It has to be pointed out that we used a long-lived animal
model (C57BL/6N) in the study. We recognize,
however, that the CR effects may be strain- and
genetics- dependent. Recent studies showed that CR had
adversely impacted several inbred mice, including
shortening lifespan and impairing fat storage with age
[62, 63]. Therefore, it would be important for future
studies to take into account genetic background to
identify the effects of CR on brain aging. This is also
applicable for humans, where each individual would
have different responses to identical foods due to their
genotype. Recent studies have shown that personalized
diet could be prescribed based on the individual’s
genetic response to post-meal blood sugar changes [64].
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Precision nutrition would be very useful in the future to
slow down brain aging and to prevent AD, and the
progress can be monitored by in vivo neuroimaging and
cognitive testing.

In conclusion, we used neuroimaging, behavioral
assessments and biochemical assays to identify
correlations between vascular integrity, cognitive
functions, and mental health induced by CR in aging
mice. We showed that neurovascular functions were
enhanced in young CR mice, as well as preservation of
CBF, cognition, and anxiety level in aging CR mice.
Our study suggests that mTOR pathway may be
critically involved in the process. These findings imply
that dietary intervention started in the early stage (e.g.,
young adults) may benefit cognitive reserve in aging.
Understanding nutritional effects on brain vascular,
cognitive, and mental functions may have profound
implications in human aging and other age-related
neurodegenerative disorders. In the future, using in
vivo MRI and cognitive assessments, we could be in
a position to identify effective personalized
nutritional interventions and treatment efficacy there-
of to slow down brain aging and/or prevent dementia
in humans.

METHODS
Animals

We used male C57BL/6N mice in the study as they
demonstrated extended longevity with CR [65, 66].
Young (5-6 months) and old (18-20 months) adult mice
were obtained from the National Institute on Aging
Caloric Restriction Colony. At the National Institute on
Aging, all mice were fed ad libitum [National Institutes
of Health (NIH)-31 diet] until 14 weeks of age. The CR
regimen was initiated by incremental caloric reduction
of 10% at week 14, 25% at week 15, and reaching full
40% CR by week 16 with continuation of the diet over
the lifetime. The vitamin-fortified NIH-31 (NIH-31
fortified) diet fed to CR mice provided 60% of the
calories and additional vitamins supplement consumed
by ad libitum mice. After arriving at our facilities, mice
were housed individually (1 mouse per cage) in a
specific pathogen-free facility. We determined the
sample size with power analysis in order to perform the
comparison at a 0.05 level of significance, with a 90%
chance of detecting a true difference of all the
measurements between the four groups. Twelve mice
per group were used in the study. All experimental
procedures were approved by the Institutional Animal
Care and Use Committee (IACUC) at the University of
Kentucky (UK) and in compliance with the ARRIVE
guidelines [67].

Cerebral blood flow measurement

MRI experiments were performed on a 7T MR scanner
(Clinscan, Bruker BioSpin, Germany) at the Magnetic
Resonance Imaging & Spectroscopy Center of the
University of Kentucky. Mice were anesthetized with
4.0% isoflurane for induction and then maintained in a
1.2% isoflurane and air mixture using a nose cone.
Heart rate (90-110 bpm), respiration rate (50-80
breaths/min), and rectal temperature (37 + 1 °C) was
continuously monitored and maintained. T2-weighted
structural images were acquired with field of view
(FOV) =18 x18 mm’, matrix = 256 x 256; slice
thickness = 1 mm, 10 slices, repetition time (TR) =
1500 ms, and echo time (TE) = 35 ms. Quantitative
CBF (with units of mL/g per minute) was measured
using MRI-based pseudo-continuous arterial spin
labeling (pCASL) techniques. A whole body volume
coil was used for transmission and a mouse brain
surface coil was placed on top of the head for receiving.
Paired control and label images were acquired in an
interleaved fashion with a train of Hanning window-
shaped radiofrequency pulses of duration/spacing =
200/200 ps, flip angle = 25° and slice-selective gradient
=9 mT/m, and a labeling duration = 2100 ms [68]. The
images were acquired by 2D multi-slice spin-echo echo
planner imaging with FOV =18 x18 mm®, matrix =128
x 128, slice thickness = 1 mm, 10 slices, TR = 4,000
ms, TE = 35 ms, and 120 repetitions. pCASL image
analysis was employed with in-house written codes in
MATLAB (MathWorks, Natick, MA) to obtain
quantitative CBF [69].

Radial arm water maze

As shown in Fig. 3A, the RAWM task can be used to
measure both spatial working memory and spatial
reference memory [32, 33]. The RAWM task was
conducted in the Rodent Behavioral Core (RBC) of UK
as described previously [17], following a 2-day testing
paradigm. A staggered training schedule was used,
running the mice in cohorts of ten mice, while
alternating the different cohorts through the trials over
day 1 and day 2 of the test. This alternating protocol
was used to avoid the learning limitations imposed by
massed sequential trials and to avoid fatigue that may
result from consecutive trials. Geometric extra-maze
visual cues were fixed throughout the study on three
sides of the curtains. Visual platform trials were
included in the training, and were used to determine if
visual impairment could be a cofounding variable. The
mouse performance was recorded by EthoVision XT 8.0
video tracking software (Noldus Information
Technology). Data were analyzed by the EthoVision
software for the number of incorrect arm entries, which
are defined as errors. The video was reviewed for each
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mouse to ensure that the mice did not employ nonspatial
strategies, such as chaining, to solve the task.

Elevated plus maze

The EPM was also performed at RBC of UK. The maze
consists of four arms (two enclosed arms and two open
arms) elevated 100 cm above the floor (Fig. 5A). The
time that mouse spent in the closed arms and open arms
of the maze were recorded automatically over the 5 min
test session by EthoVision XT 8.0 video tracking
software (Noldus Information Technology).

Blood-brain barrier function determination and
Western blotting

Capillary isolation

Brain capillaries were isolated from mice according to a
previously described protocol [26, 70]. Briefly, mice
were euthanized by CO, inhalation and decapitated;
brains were immediately harvested and collected in ice-
cold DPBS buffer supplemented with 5 mM D-glucose
and 1 mM Na-pyruvate, pH 7.4. Brains were dissected
by removing meninges, choroid plexus and white
matter, and homogenized in DPBS. The brain
homogenate was mixed with Ficoll® and centrifuged at
5,800g for 20 min at 4°C. The capillary pellet was
resuspended in 1% BSA buffer and first passed through
a 300 um nylon mesh and then through a 27 um nylon
mesh. Capillaries retained by the 27 um nylon mesh
were collected and washed with DPBS buffer, and used
for experiments.

P-glycoprotein transport activity

Isolated capillaries were incubated for 1 h at room
temperature with 2 uM NBD-CSA (custom-synthesized
by R. Wenger (Basel, Switzerland)) in DPBS buffer.
Ten capillary images were acquired by confocal
microscopy (Leica TSP SP5 Confocal Microscope with
Environmental Chamber, 63 x D-Water UV objective,
numerical aperture 1.2, 488-nm line of an argon laser,
Leica Microsystems). Confocal images were analyzed
by quantitating luminal NBD-CSA fluorescence with
Image J software (v.1.45s; Wayne Rasband, NIH).
Specific, luminal NBD-CSA fluorescence was taken as
the difference between total luminal fluorescence and
fluorescence in the presence of the P-glycoprotein-
specific inhibitor PSC833 (5 uM, Novartis, Basel,
Switzerland) [71].

Western blotting and quantification

To determine protein expression, isolated brain
capillaries were homogenized in tissue lysis buffer
containing protease inhibitor cocktail. Homogenized
brain capillary samples were centrifuged at 10,000 g for
15 min at 4°C, followed by a centrifugation of the

denucleated supernatants at 100,000 g for 90 min at
4°C. Pellets (crude brain capillary plasma membranes)
were resuspended and protein concentrations were
determined using the Bradford protein assay. Western
blots were performed using the NuPage™ electro-
phoresis and blotting system from Invitrogen. Blotting
membranes were incubated overnight with antibody to
P-gp (C219; MAI1-26528, ThermoFisher, 1pg/ml),
mTOR (ab134903, Abcam, lpg/ml), GLUT1 (ab652,
Abcam, lpg/ml), and B-actin (ab8226 from Abcam,
1:1000, 1 pg/ml). Proteins were detected using
SuperSignal® West Pico Chemoluminescent substrate
(Pierce, Rockford, IL, USA) and protein bands were
visualized with a BioRad Gel Doc™ XRS imaging
system.

Blood glucose and ketone bodies measurements

When the mice were sacrificed, blood samples were
collected in 500 pl lithium heparin 12.5 TU Terumo
Capiject Capillary blood collection tubes (Vacutainer
K2 EDTA) to avoid blood coagulation. A total of 1-2 pl
of blood sample were used to measure blood glucose
level using a blood glucose meter and a test strip
(Clarity Plus, Boca Raton, FL, USA). Another 10 pl of
blood sample was used for ketone bodies level
measurement using a STAT-Site M (B-Hydro-
xybutyrate) meter and a test strip (Standbio Ketosite
STAT-Site M- HB, Boerne, TX, USA).

Statistics

Statistical analyses were performed using GraphPad
Prism 6 (GraphPad, San Diego, CA, USA). All data are
expressed as mean + SEM. Results were assessed using
two-way analysis of variance (ANOVA). Tukey’s test
was further used as a post hoc test to detect between-
group differences. Values of p <0.05 were considered
statistically significant.
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