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ABSTRACT

Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone
marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid
leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults.
However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and
molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML
bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation
signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric
AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML
and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only
7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we
found more differences than similarities between the adult and pediatric forms. These findings suggest that the
adult and pediatric AMLs may require different treatment strategies.

INTRODUCTION characterized by the rapid growth of abnormal white

blood cells that accumulate in the bone marrow and
Acute  myeloid leukemia (AML) and acute interfere with the production of normal blood cells [1].
lymphoblastic  leukemia (ALL) are heterogenous AML involves high percentages of dedifferentiated and
diseases of hematopoietic stem cells and progenitor undifferentiated cells, including blasts (myeloblasts,
cells. AML is a cancer of the myeloid line of blood cells, monoblasts and megakaryoblasts) [2]. AML is relatively
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rare in the childhood, but it is the most common acute
leukemia affecting adults, and its incidence increases
with age [3]. As an acute leukemia, AML progresses
rapidly and is typically fatal within weeks or months if
left untreated. AML is cured in 35-40% of people
under 60 and in 5-15% of patients over 60 respective-

ly [2].

Unlike AML, acute lymphoblastic leukemia (ALL) is
most common in childhood, with a peak incidence at 1—
6 years of age [4, 5]. AML is characterized by the
overproduction and accumulation in bone marrow of
immature cancerous white blood cells, referred to as
lymphoblasts [6]. Over 80% of the affected children are
cured, while only 20-40% of the adults achieve
complete remission [4, 7]. Multiple molecular
peculiarities, such as diagnostic mutations and certain
gene expression signatures, have been associated with
AML and ALL in previous studies [8-11].

However, the genetic or gene expression factors
responsible for the age-related manifestation features of
AML and ALL remain uncertain. To date, gene
expression analysis has been performed on a very
limited number of AML/ALL cancer samples,
especially for the pediatric onset. This may be due to
relative rarity of AML/ALL and very limited access to
pediatric cancer patient biopsies [12]. On the other
hand, it is difficult to compare gene expression data
obtained in different experiments and using different
experimental platforms, primarily because of well-
known batch effect, which reflects experimental bias
[13].

In this study, we used microarray hybridization to
compare the gene expression in the two groups of
human pediatric AML and ALL biosamples. We
compared pediatric  onset-specific AML  gene
expression profiles with those characteristic of adult
AML. To analyze the expression data, we used
molecular pathway approach which was shown to
reduce platform-specific bias in various assays [14]. We
identified 36 and 172 characteristic pathway and gene
expression signatures, respectively, clearly
distinguishing ALL, AML and normal cases. We
compared the results for pediatric AML with the adult
AML and normal blood samples to identify molecular
features common and specific for the pediatric and adult
disease onset. As the result, we found 7/2 age-
independent AML gene expression/molecular pathway
signatures and 132/33 those linked with the age-specific
AML onset, respectively. These findings shed light on
the molecular mechanisms governing age-specific onset
of human leukemia and identify novel potential targets
for the molecular therapy of ALL and AML.

RESULTS

Profiling of gene expression in leukemia
samples

The bone marrow biopsy samples were collected and
analyzed for seven pediatric acute lymphoblast
leukemia (ALL) and seven pediatric acute myeloid
leukemia (AML) samples. The mean ages were 7 and 6
years old (y.o.) for the patients in the AML and ALL
groups, respectively. Leukemia samples were compared
with the normal peripheral blood isolated from the three
healthy donors, with the mean age in the group 12 y.o.
(Supplementary dataset S1).

The total RNA preps were extracted, and gene
expression was profiled with microarray hybridization.
We wused original customized microchip system
developed using the CustomArray (USA) technology of
direct electrochemical oligonucleotide synthesis on the
array [15]. Using the CustomArray platform, we
synthesized the arrays with 2228 oligonucleotide probes
corresponding to 2016 human genes involved in 334
intracellular signaling pathways (Supplementary dataset
S2). For the custom microchip, we used original
oligonucleotide probe sequences of the Illumina HT 12
v4 platform. The library preparation and hybridization
protocol is outlined on Supplementary dataset S3. The
microarray  hybridization signals were quantile
normalized according to Bolstad et al. [16], and gene
expression data were deposited in GEO database with
the accession numbers GSE84574 and GSE84575.

For the adult leukemia samples, we took GEO dataset
GSE37307containing 30 AML and 17 peripheral blood
samples profiled using the Affymetrix hgul33a
microarray hybridization platform. The gene expression
data were quantile normalized and further compared
with pediatric samples.

Bioinformatic analysis of gene expression data

We processed the transcriptomic data under
investigation to establish normalized cancer-to-normal
(CNR) expression rates and to build pathway activation
strength (PAS) profiles corresponding to intracellular
signaling pathways for each sample. The analysis
included 334 pathways (Supplementary dataset S2) and
2016 individual gene products. For PAS measurements,
we applied the OncoFinder method which was
previously shown to increase the stability of gene
expression data [14]. In multiple previous studies,
OncoFinder was utilized to analyze human and non-
human samples from a broad range of conditions
including leukemia, solid cancers, fibrosis, age-related
macular degeneration disease, asthma, Hutchinson-
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Gilford disease and cell culture [17-20]. The formula
for PAS calculation for a given pathway (p) is as
PAS, =(D_ARR,,-1g(CNR,))/N

follows: n [21].
The functional role of a gene product in a pathway is
reflected here by a discrete flag activator/repressor role
(ARR), which equals 1 for an activator, —1 for a
repressor, and shows intermediate values -0,5; 0,5 and 0
for the gene products having intermediate repressor,
activator, or unknown roles, respectively. The CNR,
value is the ratio of the expression level of a gene n in
the sample under investigation to the average
expression level in the control sampling. N is the
number of individual gene products in the pathway p.
The positive value of PAS indicates activation of a
pathway, and the negative value - its repression in a
biosample under investigation. The CNR and PAS
values obtained for the normal and leukemia samples
are shown on Supplementary dataset S2.

Comparison of pediatric and adult normal and
leukemia gene expression profiles

The CNR and PAS data were analyzed in two ways to
identify gene expression and PAS signatures that
distinguish (i) pediatric ALL and AML from normal
samples and (if) pediatric AML from the adult AML
samples.

Pediatric ALL-specific features

We compared seven pediatric ALL samples with the
three normal peripheral blood samples. To identify the
characteristic ALL-specific features, we calculated the
“area-under-curve” (AUC) values [22] for the CNR and
PAS scores of each of the gene products and pathways
under investigation. The AUC value is the universal
characteristics of biomarker robustness and it is
dependent on the sensitivity and specificity of a
biomarker. It correlates positively with the biomarker
quality and may vary in an interval from 0.5 till 1. The
AUC threshold for discriminating good and bad bio-

markers is typically 0.7 or 0.75. The entries having
greater AUC score are considered good-quality
biomarkers and vice-versa [23]. We could identify 94
gene products and 47 molecular pathways that had close
to 1 AUC scores for the ALL-normal comparison
(Supplementary dataset S4, Table 1). Among those,
branches of Akt signaling [24], cAMP [25], cytoplasmic
and mitochondrial apoptosis [26], PTEN [27], ATM
checkpoint [28], Hedgehog [29], HGF [30], GSK3 [31],
Estrogen and Glucocorticoid reception [32, 33], IGFIR
[34], IL2 [35], TNF [36], ILK [37], JAK-STAT [38],
JNK [39], mTOR [40], TGF-beta [41], Ras [42], PPAR
[43], NGF [44], VEGF [45], Wnt [46], HIF1 and Notch
signaling [47] were previously reported in the literature
as ALL-associated pathways. However, the identified
GPCR and TRAF-associated apoptosis marker
pathways were new, thus representing ~4% of the total
ALL-specific pathways.

Pediatric AML-specific features

When comparing the seven pediatric AML and three
normal peripheral blood transcriptomes, we identified
148 marker gene products and 31 molecular pathways
with close to 1 AUC scores (Supplementary dataset S5,
Table 1). Among them, one top marker pathway (~3%)
has not been previously linked with AML: a branch of
Inositol-3-phosphate signaling pathway responsible for
gene expression with the transcriptional factors CREB3,
NFATC2 and MEF2D was found to be strongly
upregulated in the AML samples in this study. Of note,
AML cells also demonstrated several upregulated p53-
related apoptosis-promoting pathways: the branch of
Mitochondrial apoptosis pathway related to the
activation of p53-dependent gene expression, the branch
of P53 signaling pathway responsible for promotion of
apoptosis, and the branch of TNF signaling pathway
responsible for apoptosis. However, this enhanced
upstream regulation of apoptosis was blocked by the
strongly  suppressed  downstream  branch  of
Mitochondrial apoptosis pathway responsible for the
irreversible mechanisms such as the DNA fragmentation

Table 1. Statistics of the gene expression and pathway activation markers identified in this study.

Comparison Gene expression | AUC Pathway activation | AUC
markers (GEM) | (GEM) markers (PAM) (PAM)
Pediatric ALL vs Normal 94 ~1 47 0.90-1
Pediatric AML vs Normal 148 ~1 31 0.95-1
Pediatric AML vs Pediatric ALL 139 0.91-1 34 0.92-1
Pediatric AML vs Pediatric ALL vs Normal | 172 0.85-0.98 | 36 0.84-0.96
Adult AML vs Normal 132 0.75-0.95 | 33 0.75-0.86
www.aging-us.com 2938 AGING (Albany NY)



(Supplementary dataset S5). A similar figure was seen
for the ALL cells, were the activation of the upstream
cytoplasmic pathway was compensated by the inhibition
of the downstream mitochondrial apoptosis pathway
(Supplementary dataset S4). This phenomenon most
likely refers to the overall ability of leukemic cells to
block programmed cell death at the downstream
stages.

AML, ALL and normal peripheral blood-specific
Sfeatures

We next identified CNR and PAS biomarker features
that can discriminate between the three classes of
pediatric biosamples under investigation: AML, ALL
and normal peripheral blood cells, with high AUC
scores (Supplementary dataset S6, Table 1). We found
172 such gene products and 36 molecular pathways.
Among them, GPCR, CREB pathways and a branch of
ATM pathway implicated in cell survival mechanisms,
were suppressed in the ALL but upregulated in the
AML cells.

Pediatric ALL Pediatric AML

3

Proteasome.1 )

3

Proteasome.1 )

Comparison of pediatric AML versus ALL samples

To identify the differential molecular features in the
AML and ALL samples, we compared seven ALL
versus seven AML gene expression profiles. At the
level of gene expression, we found 139 biomarkers with
high AUC scores (Supplementary dataset S7, Table 1).
Remarkably, this list was enriched by the genes related
to proteasome target protein degradation (19/139 genes;
Fig.1). All of them were expressed at the high levels in
the ALL, and at the significantly lower levels in the
AML cells, as this was the case for all eleven ubiquitin-
specific peptidase (USP) genes from the list, four
ubiquitin  protein ligase genes (UBR5, UBEZ2T,
UBE2QI1, UBE2L3), and four genes for proteasome
subunit A (PSMA). There were also five genes for
tubulins and associated proteins that were all
significantly upregulated in the ALL compared to AML.
The same trend was observed for the four rumor
necrosis factor (TNF) superfamily genes and their
receptors (TNFSF9, TNFSF13B, TNFRSF10,
TNFRSF11).

Adult AML

Proteasome.1 )

-0.5 -0.4 -03 -0.2 -0.1
nodes activation
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Figure 1. Ubiquitin-dependent proteasome protein degradation pathway shown as an
interacting network. Pathway activation features are shown for the averaged pediatric ALL,
pediatric AML and adult AML transcriptomes. Up-regulated nodes are shown in green, down-
regulated - in purple, color legend is provided at the bottom. Saturation of the color is

proportional to logarithm of cancer-to-normal (CNR) expression rate for each node of the pathway.
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In contrast, all five genes from the list for G protein
subunits (GNA, GNB and GNG family genes), five
genes for fibroblast growth factor (FGF) proteins and
three glutamate metabotropic receptor (GRM) genes
were upregulated in the AML versus ALL samples.

At the molecular pathway level, we identified 34 top
features (Supplementary dataset S7, Table 1), including
TNF signaling pathway, Ubiquitin-proteasome pathway
(Fig.1), branches of ATM, cAMP, Estrogen, GPCR,
HIF-1 alpha, ILK, IP3, MAPK, WNT, and other
signaling pathways.

For the first time, our data clearly suggest, that the ALL
cells are highly enriched in the proteasomal activities
compared to the AML cells. In turn, the AML cells are
enriched in GPCR (G protein-coupled receptor)
signaling. Those molecular differences clearly seen at
both levels of (i) individual gene products and (i7)
molecular pathways, may help to decode the
mechanisms for greater curability of the ALL tumors
and provide avenues for finding new molecular targets
for treating AML in the future. In addition, these data
suggest that using of proteasomal inhibitors like
Bortezomib may be beneficial also for the treatment of
the pediatric patients with the ALL, not only for the
AML patients, as this is the case now in several clinical
studies [e.g., [48]].

Comparison of the adult and pediatric AML-specific
features

We next compared 30 and 17 transcriptomes obtained
for the adult AML and for the adult normal peripheral
blood samples. At the gene expression level, we
identified 132 top ranking biomarkers, and 33 — at the
pathway level (Supplementary dataset S8, Table 1).
These molecular pathways were known to be AML-
related and included branches of the AHR, ATM, cAMP,
FLT3, HGF, ILK, JAK-STAT, Ras, WNT and other
signaling pathways.

In contrast to the pediatric AML samples, where several
pathways promoting apoptosis were activated, but
blocked at the downstream stages (Supplementary
dataset S5), in the adult AML cells the only top
pathway related to apoptosis (mitochondrial apoptosis
pathway) was repressed instead (Supplementary dataset
S8). For the top marker genes, we found seven
coincidences for both AML types (Table 2), which were
all, to our knowledge, not known to be associated with
the AML before: CAMK2B for Calcium/calmodulin-
dependent protein kinase type II beta chain, EIF4B for
translation initiation factor 4B, H4PLNI for hyaluronan
and proteoglycan link protein 1, HISTIH3B for histone
cluster 1, H3b, LIPE for hormone sensitive Lipase E,

MAPK13 for mitogen-activated protein kinase 13, and
SAR 1B for secretion-associated Ras-related GTPase 1B.
Overall, the top expression biomarkers for the pediatric
and adult AML were not highly overlapping, thus
producing only two completely matching commonly
regulated top pathways: a branch of the CD40 pathway
influencing cell survival, and a branch of the Ras
pathway affecting CDC42 pathway, which were
commonly downregulated and upregulated,
respectively, in both types of AML. Both pathways
have been previously reported to be associated with the
AML [49, 50]. In addition, different branches of the
EGF, Glucocorticoid receptor, JAK-STAT,
Mitochondrial apoptosis, Ras and TGF beta pathways
were also regulated congruently.

However, the branches of the ATM pathway, ILK
signaling, NGF, PPAR and VEGF pathways were
regulated oppositely in the adult and pediatric leukemia
samples (Table 2). These data evidence that the
pediatric and adult AML cells differ greatly in gene
expression and in molecular mechanisms used to
suppress apoptosis and cell cycle arrest, and to promote
growth and proliferation.

DISCUSSION

Acute myeloid leukemia (AML) and acute lymphoblast
leukemia (ALL) differ greatly in their behavior,
mortality and curability. While ALL occurs primarily in
the childhood, the incidence of AML increases with
age. The factors that act in an age-dependent manner to
promote AML are poorly understood. Although it is
widely accepted that the cellular physiology, epigenetic
regulation and gene expression of normal hematopoietic
stem cells change with age, molecular grounds of such
age-dependent cancer transformation remain largely
unknown [1]. In the recent review, Karen Keeshan from
the University of Glasgow and coauthors said:
“Treatment is in general extrapolated from adult AML
on the assumption that adult AML and pediatric AML
are similar biological entities. However, distinct
biological processes and epigenetic modifications in
pediatric and adult AML may mean that response to
novel therapies in children may differ from that in
adults with AML. A better understanding of the key
pathways involved in transformation and how these
differ between childhood and adult AML is an
important step in identifying effective treatment” [1].

In this study, we tried to quantize the distinctions and
similarities in pediatric and adult AML at the level of
gene expression and molecular pathways. Among the
top AML-specific pathways for the groups of adult and
pediatric cancers, we identified only three (~9%)
completely matching molecular pathways, of which two
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were commonly regulated (a branch of the CD40
pathway, and a branch of the Ras pathway), and one (a
branch of the ATM Pathway governing control over the
cell cycle checkpoints) was regulated oppositely, being
upregulated in children and downregulated in the adults
(Table 2). When considering regulation of the different

branches of the same large molecular pathways, we
found that there are 14 commonly and 17 oppositely
regulated pathways (Table 2). Taken together, these
results suggest that the molecular landscapes of the
pediatric and the adult AML are very diverse, thus fully
confirming the above hypothesis. Our results also open

Table 2. Statistics of the commonly and oppositely regulated gene expression and pathway activation

markers in the pediatric and in the adult AML.

Matches

Gene expression

markers

Pathway activation markers

Complete matches -

concordant

(7) CAMK2B, EIF4B,
HAPLNI, HISTIH3B,
LIPE, MAPK13,
SARIB

(2) CD40 pathway (cell survival), Ras pathway (CDC42 signaling)

Complete matches -

discordant

(4) BID, F2, JAK3,
PPARA

(1) ATM Pathway (Cell Cycle Checkpoint Control)

Incomplete matches —

concordant

Not applicable

(14) EGF Pathway (Cell Survival), EGF Pathway (IP3 Signaling),
EGF Pathway (Rab5 Regulation Pathway), Glucocorticoid
Receptor Pathway (Cell Cycle Progression),

Glucocorticoid Receptor Signaling Pathway (Gene Expression via
CREB3, STAT5B, SLC22A42, POU2F1), JAK-STAT Pathway, JAK-
STAT Pathway (Nml, SOCS, BCL-XL p21, Myc, Nos2, Gene
Expression via STAT2), JAK-STAT Pathway (Gene Expression via
MYC), Mitochondrial Apoptosis Pathway (DNA Fragmentation),
Mitochondrial Apoptosis Pathway (Apoptosis), Ras Pathway
(Receptor Endocytosis), Ras Pathway (Increased T-cell Adhesion),
TGF-Beta Pathway, TGF-Beta Pathway (Transciption, Arrested
Growth, Apoptosis)

Incomplete matches -

discordant

Not applicable

(17) ATM Pathway, ATM Pathway (S-phase progression), ATM
Pathway (Apoptosis), ATM Pathway (Apoptosis and Senescence),
ATM Pathway (Checkpoint Activation), ATM Pathway (G2-Mitosis
progression), ILK Pathway (Cell Adhesion), ILK Pathway
(Opsonization), ILK Pathway (Cell Cycle, Proliferation), ILK
Pathway (Cell Migration, Retraction), Mitochondrial Apoptosis
Pathway (Gene Expression via TP53), NGF Pathway (Actin
Polymerization, Neurite Outgrowth and Differentiation), NGF
Pathway (Neurite Outgrowth and Differentiation), PPAR Pathway,
PPAR Pathway (Adipocyte Differentiation, Glucose Homeostasis
and Macrophage Function), VEGF Pathway, VEGF Pathway (Actin

Reorganization).
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avenue for further in-depth studies decoding functions
and roles of the molecular processes identified here in
the progression of leukemia and in its age-specific
aspects.

In this study, we compared the original experimental
and the previously published gene expression data
obtained using the custom and the Affymetrix
microarray platforms. It is well known that the raw data
obtained using different experimental platforms may be
poorly compatible with each other [14]. In the future,
the adult and the pediatric leukemia samples may be
compared using the same experimental platform.
However, recently we showed that aggregation of gene
expression data into molecular pathways may help to
solve the problem of poor data compatibility. For
example, deep sequencing and microarray data obtained
for the same RNA samples showed generally low
correlation (<0.2) when examined at the level of
individual genes. However, these correlations improved
dramatically, up to 0.9, when activation of molecular
pathways was analyzed instead [14]. Here, we
compared the experimental and the literature datasets at
both the individual gene expression and at the pathway
activation levels. We may expect that this granted
somewhat greater stability to the results obtained for the
comparison of the pediatric and the adult leukemia cells
at the level of molecular pathways.

In this study, we identified multiple gene expression
and pathway activation markers specific for the AML
(Table 1), among them seven genes (CAMK2B, EIF4B,
HAPLNI, HISTIH3B, LIPE, MAPK13, SAR1B) and one
pathway (branch of [Inositol-3-phosphate signaling
pathway responsible for gene expression with the
transcriptional factors CREB3, NFATC2 and MEF2D),
for which association with the AML was previously
unknown.

For the pediatric acute lymphoblast leukemia (ALL), we
found 97 gene expression markers and 47 characteristic
molecular pathways, of which two (GPCR and TRAF-
associated apoptosis marker pathways) were also new
(Table 1). When comparing the pediatric AML and
ALL transcriptomes, we identified 139/34 gene
expression/pathway biomarkers (Table 1). These results
suggest, that the ALL cells are highly enriched in the
proteasomal target protein degradation activities
compared to the AML cells. In turn, the AML cells are
enriched in GPCR (G protein-coupled receptor)
signaling. In addition, we found 172 / 36 gene
expression/pathway biomarkers that may be used to
distinguish between the normal peripheral blood, AML
and ALL cells with the high AUC scores (Table 1).

Finally, we generated the high-throughput gene
expression profiles for the extremely rare biosamples of
human pediatric leukemia biosamples and mnormal
blood, obtained in a single experiment, thus increasing
quality of gene expression data. These experiments may
contribute to the understanding of molecular grounds
that are responsible for the overall phenotypic
differences between the pediatric AML and ALL cells,
and for their clinical responses.

MATERIALS AND METHODS
Tissue specimens and RNA isolation

Three normal peripheral blood specimens from healthy
donors, seven AML and seven ALL specimens obtained
from patients treated in 2015-16 at the D. Rogachev
Center of Pediatric Hematology, Oncology and
Immunology (CPHOI), Moscow, Russia, were
analyzed. All patients provided written informed
consent to participate in this study. This study was
approved by the local ethical committee at the CPHOL.
The mean age of the ALL patients at the time of
sampling was 5.7 years (range 1-14 years), and 7 years
for the AML patients (range 1-15 years). The mean age
for the healthy donors of peripheral blood at the time of
sampling was 11.7 years (range 10—13 years). Both the
tumors and normal tissues were evaluated by a
pathologist to confirm the diagnosis and estimate the
tumor cell numbers. All tumor samples used in this
study contained at least 90% tumor cells. Mononuclear
cells were extracted shortly after bone marrow or
peripheral blood samples collection. Cells were
obtained by a density gradient centrifugation method
using DiacollTM (Ficoll-1077) (Dia-M, Russia). 2-3 ml
of bone marrow or blood was dissolved in PBS up to 10
ml. Cell suspension was layered on 2.5 ml of Diacoll in
15 ml centrifuge tube and centrifuged at 400 RCF for 40
min. Buffy coat was removed and dissolved in PBS up
to 14 ml followed by centrifugation at 800 RCF for 10
min. PBS wash procedure was performed twice. Pellet
was dissolved in 0,5-1 ml of RNALater solution
(Thermo Fisher Scientific). Cells were counted by
Scepter™ 2.0 Handheld Automated Cell Counter
(Merck Millipore), aliquoted and stored at -20°C till
RNA extraction and microarray hybridization. For RNA
extraction, cell suspensions with RNALater were
centrifuged at 3000 RCF for 5 min. Pellets were
dissolved in TRI Reagent (MRC), Direct-zol™ RNA
MiniPrep (Zymo Research) was used for RNA
extraction. RNA was quantified using Nanodrop (Thermo
Fisher Scientific).For the adult leukemia samples, we
took GEO dataset GSE37307 containing 30 AML and 17
peripheral blood samples profiled using the Affymetrix
HG-U133a microarray hybridization platform.
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Synthesis of microarrays

B3 microarray synthesizer (CustomArray, USA) was
used for forty nucleotides-long oligonucleotide probe
synthesis on CustomArray ECD 4X2K/12K slides.
Synthesis was  performed according to the
manufacturer’s recommendations. Four replicates of
total 2228 unique oligonucleotide probes specific to
2016 human gene transcripts were placed on each chip.
Chip design was performed using Layout Designer
software (CustomArray, USA).

Library preparation and hybridization

Complete Whole Transcriptome Amplification WTA2
Kit (Sigma) was used for reverse transcription and
library amplification. Manufacturers protocol was
modified by adding to amplification reaction dNTP mix
containing biotinylated dUTP, resulting to final
proportion dTTP/biotin-dUTP as 5/1. Microarray
hybridization was performed according to the
CustomArray  ElectraSense™  Hybridization and
Detection protocol. Hybridization mix contained 2.5 ug
of labeleled DNA library, 6X SSPE, 0.05% Tween-20,
20mM EDTA, 5x Denhardt solution, 100 ng/ul
sonicated calf thymus gDNA, 0,05% SDS.
Hybridization mix was incubated with chip overnight at
50°C. Hybridization efficiency was detected electro-
chemically using  CustomArray  ElectraSense™
Detection Kit and ElectraSense™ 4X2K/12K Reader.

Low-level processing of microarray data

Probe signals were geometrically averaged, thus
obtaining expression value for each specific type of the
probe. The whole dataset was next rounded down to
integer values and normalized using the “DeSeq2”
package’s “estimateSizeFactors” function with respect
to the sample type (Normal blood, AML or ALL). The
same geometrical averaging was performed for the
GSE37307 dataset (excluding the normal testis samples)
using the correspondence table from the “hgul33a”
Bioconductor package. Then quantile normalization
[16] was performed using the “preprocessCore”
package, and 2016 genes corresponding to the
experimental custom array design were selected for
further analysis. Gene expression data were deposited in
Gene Expression Omnibus database with the accession
numbers GSE84574 and GSE84575.

Functional annotation of gene expression

The SABiosciences signaling pathways knowledge base
( http : //www.sabiosciences.com/pathwaycentral.php )
was used to determine structures of intracellular
pathways, as described previously [51]. We applied

OncoFinder original algorithm [21] for functional
annotation of the primary expression data and for
calculating pathway activation strength (PAS) scores
and cancer-to-normal ratios (CNRs). CNR,, is the ratio
of the expression levels of a gene » in the sample under
investigation to the average expression in the control
group of samples. In this study, we used normalized
PAS scores (PAS2), where each initial PAS score
obtained according to [21] was divided by the number
of genes in the corresponding pathway in order to
normalize the activation values and balance heatmap
color schemes. Results for the 334 pathways were
obtained for each sample. Statistical tests were
determined using the R software package.

Statistical analysis

Hierarchical clustering heatmaps with Euclidean distance
and complete-linkage were generated using heatmap.2
function from "gplots" package [52]. Pathways which
returned the same PAS scores for all the samples were
removed from the analyses. AUC (area under curve)
values were calculated using the ‘caTools’ package and
cutoff value in each of the comparisons was set to leave
approximately 10% of all the gene transcripts/pathways
that are the best separators with respect to the given
classes. During the triple comparison, three AUC values
were calculated for each gene transcript/pathway: Normal
vs AML, Normal vs ALL, ALL vs AML, and then
averaged to reflect overall separation quality for a given
gene transcript/pathway. Average marker PAS/CNR
values and the corresponding AUC scores were
calculated for each of the sample classes (Normal, AML,
ALL) in each comparison.
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SUPPLEMENTARY MATERIAL

Please browse links in Full Text version of this
manuscript to see Supplementary datasets S1-S8.

Supplementary dataset S1. List of the pediatric
leukemia patients and normal blood donors investigated
in this study.

Supplementary dataset S2. Case-to-normal ratio
(CNR) and pathway activation strength (PAS) data
calculated for the experimental pediatric leukemia
dataset and for the adult leukemia dataset GSE37307.

Supplementary dataset S3. Schematic representation
of library preparation and hybridization.

Step 1. Library synthesis. RNA reverse transcription
was primed using oligonucleotide primers containing
semi-degenerated part at the 3' end and universal
sequence at the 5'end. Single strand cDNA was used as
a template for complementary strand synthesis using the
same oligonucleotide primers. At this step, the library
represented overlapping dsDNA fragments flanked by
the same universal sequence at both ends.

Step 2. Library amplification and labeling. For library
amplification, we used PCR with the universal primers.
Labeling of DNA was performed by incorporating
biotinylated residuals of dU during amplification. The
resulting biotin-labeled dsDNA library was next used
for microarray hybridization.

Supplementary dataset S4. Gene products and
molecular pathways showing high AUC scores for the
pediatric ALL-normal comparison.

Supplementary dataset S5. Gene products and
molecular pathways showing high AUC scores for the
pediatric AML-normal comparison.

Supplementary dataset S6. CNR and PAS biomarker
features that discriminate between the pediatric AML,
ALL and normal peripheral blood cells with high AUC
scores.

Supplementary dataset S7. Differential CNR and PAS
biomarker features in the pediatric AML and ALL
samples.

Supplementary dataset S8. Adult AML-specific CNR
and PAS biomarker features.
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