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INTRODUCTION 
 
One of the central problems in ageing-related studies 
is understanding the processes which underlie 
senescence and revealing the biological functions 
which deteriorate in organisms over the course of their 
lifespan. Ageing is associated with the acceleration of 
mortality expressed by the exponential increase of 
mortality rate over age, as described by the Gompertz 
law. The Gompertz law represents a fundamental 
mortality law and was verified by demographic 
observations across different countries, different time 
periods, and even different species [1]. The analysis of 
available data on mortality rates for various diseases 
also indicates that for most diseases there is a 
considerably wide age range where the mortality rate 
also increases exponentially [2, 3]. 

 

The exponential growth of mortality is not observed at 
young (before sexual maturity) and extremely old ages. 
Many researchers consider the exponential law of 
mortality to be “natural” while the deviations from it 
need to be explained. Initial mortality at age zero is high 
due to the noticeable proportion of deaths amongst 
neonates. The infant and child mortality rate is lower 
than the initial mortality at age zero and reaches its 
lowest level roughly at age 10. During teenage and 
young-adult ages (10-35 years) the mortality trajectory 
produces a peak which is associated with accidental (i.e. 
due to external and other non-biological causes) 
mortality. After the reproductive period, in which the 
accidental hump arises, the mortality rate advances 
exponentially up to very old ages when it slows down.   
 
The observation that the exponential law of mortality 
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ABSTRACT 
 
The heterogeneity of populations  is used  to explain  the variability of mortality  rates across  the  lifespan and
their deviations from an exponential growth at young and very old ages. A mathematical model that combines
the  heterogeneity  with  the  assumption  that  the  mortality  of  each  constituent  subpopulation  increases
exponentially with  age,  has  been  shown  to  successfully  reproduce  the  entire mortality  pattern  across  the
lifespan  and  its  evolution  over  time.  In  this  work  we  aim  to  show  that  the  heterogeneity  is  not  only  a
convenient  consideration  for  fitting mortality  data  but  is  indeed  the  actual  structure  of  the  population  as
reflected by the mortality dynamics over age and time. In particular, we show that the model of heterogeneous
population fits mortality data better than other commonly used mortality models. This was demonstrated using
cohort  data  taken  for  the  entire  lifespan  as well  as  for  only  old  ages.  Also, we  show  that  the model  can
reproduce  seemingly  contradicting  observations  in  late‐life  mortality  dynamics.  Finally,  we  show  that  the
homogenisation of a population, observed by  fitting the model  to actual data of consecutive periods, can be
associated  with  the  evolution  of  allele  frequencies  if  the  heterogeneity  is  assumed  to  reflect  the  genetic
variations within the population.  
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does not apply at older ages was first made by 
Gompertz. In his 1825 paper, Gompertz stated that “The 
near approximation in old age, according to some 
tables of mortality, leads to an observation, that if the 
law of mortality were accurately such that after a 
certain age the number of living corresponding to ages 
increasing in arithmetical progression, decreased in 
geometrical progression, it would follow that life 
annuities, for all ages beyond that period, were of equal 
value; for if the ratio of the number of persons living 
from one year to the other be constantly the same, the 
chance of a person at any proposed age living to a 
given number of years would be the same, whatever that 
age might be;” recognising that the probability of 
surviving (and consequently, the mortality rate) levels-
off at extremely old ages.  
   
The divergence of mortality from its exponential 
increase at extremely old ages is generally accepted as 
valid by the majority of biologists and bio-
demographers [4, 5] although some data do not support 
this observation (see for example [6-8]). Furthermore, 
existing data on mortality dynamics at advanced ages 
are so controversial [5] that up-to-date performed 
studies have not given a definite answer on what 
mathematical function (logistic, quadratic, etc.) can 
describe the data at those ages [9-11]. 
 
The absence of a definite explanation for the trend of 
mortality at very old ages renders the analysis of 
“oldest-old” mortality as an essential area of research in 
demography. Analysing mortality data for old ages is 
challenging as such data are usually unreliable and often 
statistically noisy as the number of survivors at those 
ages is small. The stochastic effects at very old ages are 
often seen as fluctuations in mortality dynamics [12]. 
Observations on the trends of mortality behind these 
fluctuations indicate that the rate of mortality change 
slows down and diverges from the exponential law at 
very old ages. Data on late-life mortality slow-down are 
controversial and fall into three groups: (a) an increase 
in late-life mortality at a slower rate than its exponential 
increase during the adulthood period, called 
deceleration [13-15], (b) a levelling-off, commonly 
called the mortality plateau, which is the saturation of 
mortality trajectory on a horizontal line corresponding 
to constant mortality rate [16-19] or (c) a decline of 
mortality with increasing age [10, 20]. The late-life 
mortality slow-down was observed for human [4, 21] as 
well as non-human populations [16, 22-24]. 
 
Theoretical studies of mortality dynamics are mainly 
devoted to two main problems, namely  how the 
biological processes underlying mortality result into the 
exponential law and what are the causes of deviations 
from the exponential law that are observed at young and 

extremely old ages. Mathematical verifications of the 
exponential law have been performed from different 
points of view ranging from a genetic theory of 
population ageing [25] to the application of reliability 
theory to ageing and longevity [9].  
 
The evolutionary theories that were proposed to explain 
ageing, and to answer the question of why organisms 
grow old and die, are mostly based on the assumption of 
a loss of selective significance of phenotypes developing 
during post-reproductive ages [26-28]. One such theory is 
introduced by Medawar and known as the mutation 
accumulation theory [29, 30]. Medawar’s hypothesis 
states that gene alleles or mutations that are neutral at 
early life but deleterious at later life, escape natural 
selection and are transferred to the next generation before 
their deleterious effects become evident. Such mutations 
can therefore accumulate in the population by a genetic 
drift and reveal themselves via the diseases associated 
with the post-reproductive period. Another evolutionary 
theory, known as antagonistic pleiotropy, states that 
genes, with beneficial effects early in life but with 
deleterious actions later in life, could be favoured by 
selection and accumulate in the population [31]. The 
theory of disposable soma, proposed by Kirkwood [32, 
33], postulates that organisms have a limited amount of 
energy and that specific gene mutations save energy for 
reproductive aspects by reducing the amount of energy 
used for maintenance, leading to non-reproductive 
damages. Ageing is therefore a result of the accumulation 
of damages that are not repaired by the organism [34]. 
These hypotheses take for granted the fact that the length 
of the reproductive period itself may depend on a number 
of genetic determinants associated with environmental 
and population factors. 
 
There are also other attempts to explain the Gompertz 
law which are not based on evolutionary theories. One 
of such theories relates mortality to inadequate 
responses of the organism to energy demands and 
shows that the exponential increase of mortality is 
associated with a linear decrease of vitality (where 
vitality was defined as the capacity of an individual to 
resist damage) [35]. Sacher and Trucco have related the 
Gompertz law to the effect of stochastic and 
homeostatic forces [36, 37], and Shklovskii - to the 
exponentially rare escape of abnormal cells from 
immunological response [38]. Furthermore, Gavrilov 
and Gavrilova have applied the reliability theory to 
explain ageing and the Gompertz law by considering 
age-related failure kinetics of systems (machines) and 
their components [9]. They have shown that the rate of 
machines’ failure as a function of age can reproduce the 
known mortality laws (Gompertz law, compensation 
effect, late-life deceleration) and therefore the reliability 
theory can be used to explain biological ageing.  
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The above mentioned compensation effect is another 
universal law of mortality (in addition to the Gompertz 
law) and refers to the inverse relationship (negative 
correlation) between the scale and shape parameters that 
characterise the Gompertz law. The compensation law 
states that if different populations of the same species 
demonstrate different mortality dynamics, then a high 
initial mortality rate (scale parameter) in a population is 
compensated with a low rate of change of mortality 
with age (shape parameter) or similarly a low initial 
mortality rate is compensated with a high rate of change 
of mortality with age [9, 35, 39]. 
 
Many mathematical models have been introduced to 
reproduce the observed mortality patterns [19, 40-43]. 
Some of them are designed to generate mortality 
patterns over the entire lifespan while others aim to 
reproduce a specific part of those patterns. For example, 
a function that outlines an inverse relationship between 
mortality and age, is used to generate the decline of 
mortality at very young ages [44] whereas the logistic-
type and quadratic functions are used to create the late-
life mortality plateau and the late-life mortality decline, 
respectively [9-11].  
 
A number of studies consider the heterogeneity of 
populations to model and analyse their impact on the 
mortality dynamics [45-47]. The heterogeneity can be 
introduced in different ways. For example it can be 
based on an assumption that the population is comprised 
of cohorts (subpopulations) such that the members of 
each cohort, at a given age, face the same probability of 
death [12, 48]. For the reason that all the individuals of 
each cohort are exposed to identical mortality dynamics, 
each subpopulation is considered as homogeneous. 
However, in reality, each single individual has specific 
genetic, biological and physiological characteristics 
which contribute differently to a lifespan of each 
individual. Therefore, an alternative way to introduce 
the heterogeneity is based on the consideration that each 
single individual in a population has his own specific 
traits and faces certain mortality dynamics. The force of 
mortality acting upon each individual has then a 
cumulative effect on the mortality process in the entire 
population. In this approach, the heterogeneity at 
individual level can be represented in two different 
ways. The first one refers to individual frailty as to a 
measure of the chances of survival [46, 49]. In the 
second, an individual vitality process is used to 
reproduce human mortality patterns [50-53], and thus it 
focuses on the process leading up to death. Under this 
consideration, vitality is defined as a measure of 
survival capacity which declines over age and is subject 
to stochastic changes. The intrinsic mortality is then a 
result of complete loss of vitality (each individual is 
born with an initial level of vitality and dies when his 

vitality declines to zero), while extrinsic mortality 
occurs when an environmental challenge exceeds the 
(non-zero) vitality level. The model of vitality processes 
was used to analyse the time-evolution of intrinsic and 
extrinsic mortality in terms of changes in the parameters 
by fitting the model to consecutive period data [50, 52] 
and also to explore the late-life mortality plateaus [53]. 
Thus, the concept of heterogeneity is used, in all these 
works, to explain the deviations of mortality from the 
exponential growth at young and very old ages [54-57]. 
 
Recently another mathematical model of heterogeneous 
population was proposed and used for the analysis of 
human mortality dynamics across the entire lifespan 
[12] as well as for the analysis of the evolution of 
mortality dynamics in Sweden over the 20th century 
[58]. The main feature of this model (distinguishing it 
from other existing models of heterogeneous 
population), is the assumption that the mortality rate in 
each subpopulation increases exponentially over all 
ages in a similar way to what is described by the 
Gompertz law. This assumption allowed for an accurate 
reproduction of the entire mortality pattern and an 
explanation of certain features of mortality dynamics 
and their evolution over time. It has been shown that the 
best fit to actual human mortality data is generally 
achieved by a four-subpopulation model and that the 
deviations of mortality from the exponential increase 
can be explained by such heterogeneity [12]. 
Furthermore, by fitting the four-subpopulation model to 
actual (Swedish) mortality data for consecutive periods 
over the 20th century, it was shown that the population 
tends to become more homogeneous over time [58]. 
This analysis has also validated the applicability of the 
compensation effect of mortality to each subpopulation 
in the model.  
 
Since the above model of a heterogeneous population 
has been shown to be extremely useful for analysis of 
mortality data, there arises a question of whether this 
model reflects the real structure of the population and, if 
yes, what quality underlies the heterogeneity? The 
present work is devoted to the above question and 
represents a natural extension of the previous studies 
[12, 58] based on this model. We start by comparing the 
considered model [12] with a wide-range of other 
commonly used parametric models and show that it is 
one of the best models when the judgement is made on 
the basis of the quality of fit to the observed data. We 
then show that the model can explain the apparent 
controversial observations for old-age mortality 
(deceleration, mortality plateau and decline) which are 
not in contradiction with one another, but reflect a 
similar and coherent process underlined by the 
heterogeneity of populations. Finally, we tackle the 
problem of the nature of a population’s heterogeneity. 
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Although the heterogeneity of populations can be 
conditioned by various factors such as disparities in life-
style, environmental and socio-economic conditions, we 
analyse the case of genotypic difference between 
subpopulations. We presume that the responses to 
environmental factors are largely shaped by an 
organism’s genetic landscape and certain gene 
polymorphisms can affect the dynamics of ageing and 
mortality. In this work we check whether the population 
dynamics of putative gene variations can be aligned 
with mortality dynamics of suggested distinct 
subpopulations. We assume that individuals belonging 
to different subpopulations differ by genotype and have 
differential resistance to environmental perturbations. 
Changes in the environment would favour different 
subpopulations in different contexts and their resultant 
differential mortality may have an impact on the 
dynamics of the mortality characteristic for a 
population. Furthermore, it was previously shown [58] 
that the evolution of mortality dynamics in Sweden over 
the 20th century was for two reasons: changes in 
mortality dynamics of subpopulations, and changes in 
the structure of populations as represented by the 
fractions made by subpopulations (resulting to 
homogenisation of the population). While changes in 
the mortality dynamics of subpopulations are most 
likely driven by environmental changes [59, 60], the 
change in the population structure can be explained in 
terms of population dynamics. Based on the difference 
in mortality dynamics of subpopulations (and assuming 
that the difference is due to a single gene) we have 
calculated their relative Darwinian fitnesses and 
confirmed that the calculated fitnesses allow for an 
explanation and accurate reproduction of the 
homogenisation process of populations. 
 
The paper is structured as follows. In the next section 
we introduce different mathematical models for 
mortality and describe the technique used for an 
evaluation of allele frequency dynamics in population 
genomics. We then show that the model of a 
heterogeneous population is one of the best models for 
fitting actual cohort mortality data over the entire 
lifespan (Subsection 1 in Results) or for ages over 80 
(Subsection 2 in Results). We emphasise that it can 
explain controversial data on late-life mortality 
(Subsection 3 in Results). Finally, we show (Subsection 
4 in Results) that the homogenisation of the 
heterogeneous population as revealed by the evolution 
of period mortality data in Sweden over the 20th century 
can be explained by changes in allele frequency due to 
different fitnesses corresponding to different 
subpopulations. We conclude with a discussion of the 
obtained results and provide further arguments on 

genotypic differences between subpopulations having 
different mortality dynamics in the Discussion Section.  
  
METHODS 
 
In this section we give a description of a few popular 
models which are commonly used for fitting mortality 
data (these models later will be compared with each 
other in terms of their fit to a given set of data). For the 
scope of this analysis, we use the so-called “parametric” 
models that are models expressing mortality rates across 
the lifespan with fixed (i.e. time-independent) 
parameters. We exclude therefore the models that also 
consider the time dependency of mortality patterns such 
as the notable Lee-Carter model. The description of 
parametric models is followed by a description of the 
method of calculating the selection process in a 
population of diploid organisms which is later used for 
the analysis of the evolution of heterogeneous 
populations.    
  
1. Models of mortality 
 
Exponential functions: Gompertz, Makeham and 
Weibull 
 
The first developed parametric model and the one that 
remains the most notable in the literature is the 
Gompertz model [19]. The Gompertz model (or 
Gompertz law) states the exponential increase of 
mortality with age in a significant portion of lifespan 
(from sexual maturity to extremely old ages). According 
to the Gompertz law, the central death rate at age x, is 
given by 
 
݉௫ ൌ  ఉ௫        (1)݁ߙ
 
where ߙ is the initial mortality rate (scale parameter) 
and ߚ is the rate of change of mortality with age (shape 
parameter). It is remarkable that the Gompertz law does 
not only hold for human populations but also for other 
biological species [39].  
 
The Makeham model [40] is an extension of the 
Gompertz law which represents the death rate as the 
sum of an age-dependent component (the Gompertz 
function) describing deaths due to age-related diseases 
or disorders, and an age-independent component (a 
constant ߛ) describing deaths due to external factors 
such as accidents or certain infectious diseases: 
 
݉௫ ൌ ߛ ൅  ఉ௫.        (2)݁ߙ
 
A third exponential parametric model is the Weibull 
model [61] which expresses the mortality rate as a  
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power function of age:  
 
݉௫ ൌ  ఉ.         (3)ݔߙ
 
According to these three exponential models, mortality 
rates diverge to infinity as age tends to infinity. The 
difference in concavity or convexity of these functions, 
and the difference in their initial values when ݔ ൌ 0 
(݉଴ ൌ for Gompertz, ݉଴ ߙ ൌ ߛ ൅  for Makeham and ߙ
݉଴ ൌ 0 for Weibull), distinguish them in terms of their 
usage. The Gompertz and Makeham models are 
generally used to describe the mortality of biological 
species while the Weibull function is widely used to 
describe the ageing and failure rate of technical systems 
and devices [62, 63].  
 
Logistic functions: Perks, Beard and Kannisto 
 
The logistic-type functions which shape sigmoid curves 
are commonly used in the analysis of mortality dynamics 
at old ages. These curves saturate, reaching horizontal 
asymptote, and can therefore produce the late-life 
mortality plateau [64, 65]. The general form of a logistic 
curve is expressed as a four-parameter function: 
 
݉௫ ൌ ߛ ൅ ఈ௘ഁೣ

ଵାఋ௘ഁೣ
       (4) 

 
which is known as the Perks model. 
 
Different variations of logistic function can be used in 
order to reduce the number of parameters. A three-
parameter logistic function is formed by setting ߜ ൌ  ߙ
in equation (4) or the three-parameter function 
introduced by Beard [66] by setting ߛ ൌ 0. Also, a 
simple two-parameter logistic function used by 
Kannisto [65] is formed by setting ߛ ൌ 0 and ߜ ൌ  in ߙ
equation (4).  
 
The logistic function in equation (4) saturates 
asymptotically to ߛ ൅  as age increases while the ߜ/ߙ
Beard function tends to the constant ߜ/ߙ. The Kannisto 
model has an asymptote equal to one and this model is 
used in a common procedure for the construction of life 
tables in order to smooth the noisy death rates observed 
at ages 80 and above [15]. 
 
The Gompertz and Makeham models could be 
considered as special cases of equation (4). If ߜ ൌ 0, 
equation (4) is transformed into the Makeham model 
and if ߛ ൌ ߜ ൌ 0 – into the Gompertz law. However, in 
both these models, the mortality rate tends to infinity as 
age increases which is in contrast to the logistic-type 
functions and due to the elimination of the denominator 
from the logistic form.  
 

Michaelis-Menten kinetics 
 
Michaelis-Menten kinetics is an outcome of a well-
known model in biochemistry that describes the 
dynamics of catalysed reactions [67]. The kinetics is 
represented by an equation which describes the 
saturation of a reaction rate when the substrate 
concentration is increasing. The Michaelis-Menten 
equation has also been used to model several other 
processes. For example, Monod who was working in the 
field of environmental engineering used this equation to 
model the growth rate of microorganisms as a function 
of the nutrient’s concentration [68]. In this study, we 
suggest using the Michaelis-Menten equation 
(disregarding its parameters and variable terminology) 
to fit mortality data and to be compared with other 
asymptotic mortality functions that reproduce the 
mortality levelling-off at very old ages (i.e. the logistic-
type functions). Following the form of the Michelis-
Menten equation, the mortality at age ݔ can be 
expressed as: 
 
 ݉௫ ൌ ߙ exp ቀ ఉ௫

ଵାఊ௫
ቁ       (5) 

 
Exponential-Quadratic function 
 
An exponential-quadratic function (known also as the 
Coale-Kisker model) is usually used to fit mortality data 
and show the deceleration of mortality rate and its 
decline at very old ages [69]. The exponential-quadratic 
function is given by  
 
lnሺ݉௫ሻ ൌ ߙ ൅ ݔߚ ൅  ଶ,      (6)ݔߛ
 
where for a concave down parabola with a maximum 
point, ߛ should be less than zero. 
 
Heligman-Pollard model 
 
Heligman-Pollard model [43] is an eight-parameter 
function that can reproduce mortality patterns of the 
entire lifespan with sufficient accuracy. The model was 
originally formulated for the ratio of death and survival 
probabilities (ݍ௫/݌௫) and composed of three terms 
where the first term reflects the sharp decline of 
mortality at childhood, the second reflects the accidental 
hump that is observed during the reproductive period 
(ages 15-40), and the third term (which is a Gompertz 
function) reflects the exponential increase of mortality 
at post-reproductive ages: 
 
௤ೣ
௣ೣ
ൌ ሺ௫ା஻ሻ಴ܣ ൅ ாሺ୪୭୥ሺ௫ሻି୪୭୥ ሺிሻሻ మି݁ܦ ൅  ௫.     (7)ܪܩ
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The last term of the Heligman-Pollard model is usually 
modified to the logistic form ܪܩ௫/ሺ1 ൅   ௫ሻ to allowܪܩ
the saturation of mortality at extremely old ages. In 
this study, we used the Heligman-Pollard model to fit 
actual mortality rates (which are best approximated 
by the central death rate, ݉௫) instead of the ratio 
  .௫݌/௫ݍ
 
Model of heterogeneous population 
 
Mathematically, the model of a heterogeneous 
population, which postulates the exponential mortality 
dynamics for constituent subpopulations, expresses the 
mortality rate ݉௫ at age ݔ, as a sum of weighted 
exponential terms:  
 
݉௫ ൌ ∑ ௝݁ఉೕ௫௡ߙ௝,௫ߩ

௝ୀଵ ൌ ∑ ௝,௫ߩ ௝݉,଴݁ఉೕ௫௡
௝ୀଵ      (8) 

 
where the sub-index ݆ indicates the ݆-th out of ݊ 
subpopulation, ௝݉,଴ is the central death rate at age 0 of 
subpopulation ݆, ߙ௝ is the initial mortality rate of the ݆-
th subpopulation, and ߚ௝ is its mortality coefficient 
which gives the rate of change of mortality with age 
[12, 58]. The weights ߩ௝,௫ are fractions formed by each 
subpopulation ݆ at age ݔ in the entire population, and 
their sum is equal to unity at all ages. Finally, the 
mortality rate at age 0 of the subpopulation ݆ is equal to 
௝ and thus we have the relationship ௝݉,଴ߙ ൌ  ௝, whichߙ
leads to the last term in equation (8). For clarity and 
consistency purposes, in the remaining part of this study 
the first subpopulation represents the one with the 
highest initial mortality (݆ ൌ 1), the second is the one 
with the second highest initial mortality level (݆ ൌ 2), 
etc. 
 
2. Model for dynamics of alleles based on diploid 
genetics 
 
Natural selection is an evolutionary process taking place 
within a population and states that individuals with 
certain heritable traits have the ability to survive and 
reproduce offspring more often than individuals 
deficient in those traits. Since these traits are heritable, 
the proportion of individuals carrying genotypes that 
express these traits is gradually increasing over time. 
Hence, natural selection similarly to the other primary 
evolutionary forces (mutation, migration and genetic 
drift) causes changes in allele frequencies in a 
population. The ability of any individual to pass genes 
to the next generation is determined by fitness. The 
more likely an individual is to survive and live long 
enough to mate and reproduce, the higher their fitness 
is. A measure  of  fitness  can  be  given  by  an  average  
 

number of offspring that are born from parents of a 
given genotype [70]. Selection is therefore conditioned 
by the variation of fitness between different genotypes. 
A simple model of natural selection that counts the 
frequencies of alleles (and subsequently the number of 
individuals with specific genotypes) over discrete 
generations is described in this section. 
 
A diploid gene with alleles ܣ and ܤ splits the 
population into three groups of individuals having three 
distinct genotypes: ܤܣ ,ܣܣ or ܤܤ. The notations ݌ and 
 ܤ and ܣ are used to denote the frequencies of alleles ݍ
respectively and the notations ܲ, ܳ and ܴ are used to 
define the frequencies of genotypes ܤܣ ,ܣܣ and ܤܤ, 
where ݌ ൅ ݍ ൌ 1 and ܲ ൅ ܳ ൅ ܴ ൌ 1. After a single 
step of random mating the frequencies of the three 
genotypes are ܲ ൌ ܳ ,ଶ݌ ൌ ܴ and ݍ݌2 ൌ  ଶ satisfyingݍ
the Hardy-Weinberg equilibrium [71]. Each allele 
frequency can also be expressed in terms of genotype 
frequencies. In other words the frequency of an allele is 
equal to the frequency of homozygote genotype formed 
by two duplicates of that allele plus half of the 
frequency of the heterozygote genotype, that is: 
 
݌  ൌ ܲ ൅ ଵ

ଶ
ܳ and ݍ ൌ ܴ ൅ ଵ

ଶ
ܳ.   

 
The absolute fitness of each genotype (denoted as ݓ஺஺, 
 ஻஻ accordingly) is considered here by theݓ ஺஻ andݓ
average number of offspring produced by the 
individuals who carry this genotype. Relative fitness, 
i.e. the fitness of one genotype relative to that of 
another, is given by the ratio of their absolute fitnesses. 
Since this study deals with human populations, certain 
assumptions, i.e. organisms are diploid, reproduction is 
sexual and mating is random, are assured. It is also 
assumed that neither mutations or gene flows take 
place, and that stochastic effects due to genetic drift are 
negligible (the population size is large enough). Based 
on these assumptions the following formulas for the 
change of allele frequencies from generation ݅ to 
generation ݅ ൅ 1 can be derived: 
 
௜ାଵ݌ ൌ ܲ௜ାଵ ൅ ଵ

ଶ
ܳ௜ାଵ ൌ ௪ಲಲ௣మା௪ಲಳ௣௤

௪ഥ
    (9a) 

௜ାଵݍ ൌ ܴ௜ାଵ ൅ ଵ
ଶ
ܳ௜ାଵ ൌ ௪ಳಳ௤మା௪ಲಳ௣௤

௪ഥ
    (9b) 

 
where the denominator in both fractions is the 
normalised factor ݓഥ ൌ ଶ݌஺஺ݓ ൅ ݍ݌஺஻ݓ2 ൅  ଶݍ஻஻ݓ
[71], representing the average number of children per 
individual in the population of interest. The changes in 
genotype frequencies between two subsequent 
generations are shown in Table 1. 
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RESULTS 
 
In this section, the mortality models described earlier 
are fitted to actual mortality data for the entire lifespan 
in Subsection 1 and for very old ages (above age 80) in 
Subsection 2, and comparisons between the fits of the 
models are performed. The data used in this study are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
death rates for Swedish, Norwegian and Japanese 
populations (both sexes combined) taken from the 
Human Mortality Database (http://www.mortality.org, 
assessed July 2016) [72]. Nonlinear least squares 
regression is used to fit the models to the data as 
provided by the tool Solver in Microsoft Excel [73, 
74].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. BIC values for different mortality models fitted to the Swedish 1890‐1900 cohort mortality data.
The  fits  by Gompertz, Makeham,  Perks  and  Heligman‐Pollard models  and  the  fits  by  the model  of  heterogeneous
population consisting of two to seven subpopulations are shown. 

Table 1. Recurrence  relation of genotype  frequencies between  two consecutive generations  in a 
diploid genetics model with random mating. 
 

Genotype ܤܤ ܤܣ ܣܣ 

Frequency of 

genotype at 

generation ݅ 

ܲ ൌ ܳ ଶ݌ ൌ ܴ ݍ݌2 ൌ  ଶݍ

 Absolute fitness ݓ஺஺ ݓ஺஻ ݓ஻஻ 

Frequency of 

genotype at 

generation ݅ ൅ 1 
ቆ
ଶ݌஺஺ݓ ൅ ݍ݌஺஻ݓ

ഥݓ ቇ
ଶ

 2ቆ
ଶ݌஺஺ݓ ൅ ݍ݌஺஻ݓ

ഥݓ ቇቆ
ଶݍ஻஻ݓ ൅ ݍ݌஺஻ݓ

ഥݓ ቇ ቆ
ଶݍ஻஻ݓ ൅ ݍ݌஺஻ݓ

ഥݓ ቇ
ଶ
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A justified version of the Bayesian Information 
Criterion (BIC) [75] is used to evaluate the goodness-
of-fit of the models. The BIC is defined as 
 
ܥܫܤ ൌ ݊ௗ ln൫ߪ௘ଶ෢൯ ൅ ݇ lnሺ݊ௗሻ, 
 
where ݊ௗ is the number of data points, ߪ௘ଶ෢ is the sum of 
squared residuals divided by the number of data points 
and ݇ is the number of free parameters [76, 77]. In 
Subsection 3 the study focuses on mortality at very old 
ages and shows that the model of a heterogeneous 
population can reproduce and explain various old-age 
mortality observations, namely deceleration, plateau 
and decline of mortality rate. In Subsection 4 the 
evolution of mortality dynamics in heterogeneous 
populations and specifically the homogenisation of 
populations over time is derived from the changes in 
genotype frequencies in successive generations through 
the process of natural selection.  
 
1. Comparing mortality models by fitting data over 
the entire lifespan 
 
The model of heterogeneous population with different 
numbers of subpopulations as well as the Gompertz, 
Makeham, Perks and Heligman-Pollard models are fit- 
ted to cohort mortality data over the entire lifespan for 
the total (males and females) Swedish population. The 
BIC values as calculated by fitting the models to the 
1890-1900 Swedish cohort data are shown in Figure 1. 
The model that gives the lowest BIC value provides the 
best fit to the data. The values in Figure 1 indicate that 
Gompertz, Makeham and Perks models are the weakest 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

models in terms of data fitting. The model of 
heterogeneous population gets better with an increase in 
the number of subpopulations from two to six but any 
further increase in the number of subpopulations does 
not result in significant improvements. Also, the 
Heligman-Pollard model fits the data over the entire 
lifespan very well and is competitive to the model of 
heterogeneous population. Heligman-Pollard model fits 
data better than the model of heterogeneous population 
comprised of up to four subpopulations, but worse when 
the number of subpopulations increases to five or 
above. The actual fits of the six-subpopulation and 
Heligman-Pollard models to the 1900 cohort Swedish 
death rates are shown in Figure 2. 
 
The Heligman-Pollard model fits the age-dependent 
mortality patterns very accurately since it imposes a 
pre-defined mortality pattern. Indeed the Heligman-
Pollard model divides the mortality pattern into three 
distinct components observed over the past century, 
namely infant, accidental and adult mortality. On the 
other hand, the model of heterogeneous population is 
more abstract, since it does not impose any pre-
specified pattern: it assumes that the most basic feature 
of biological populations are their heterogeneity and all 
peculiarities of population mortality dynamics are 
conditioned by interplay between mortalities of 
subpopulations. Subpopulations in turn are homo-
geneous and their mortality dynamics simply follow the 
exponential law. The model can then be adapted to any 
dataset and can reproduce very different mortality 
curves. This flexibility allows (i) to fit mortality data 
very well for any part of the lifespan (see for example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. 1900 cohort Swedish mortality data fitted by the model of heterogeneous population composed of
six subpopulations (panel A) and the Heligman‐Pollard model (panel B). The dots represent the observed central
death rates, while the dashed curves in panel (A) indicate the exponential mortality dynamics of each subpopulation in the
model  of heterogeneous  population  and  in panel  (B)  ‐  the dynamics  of  the  three  components  of  the Heligman‐Pollard
model. Note that the plots are given in semi‐logarithmic scale. 
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Subsection 2 on old ages), (ii) to reproduce different 
and potentially controversial observed mortality 
patterns (see Subsection 3 for an example related to old-
age mortality) and (iii) to capture any new and thus un-
expected mortality features (for example the reduction 
of external causes of death may result in the elimination 
of the accidental hump [78]). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Comparing mortality models by fitting data for 
ages beyond 80 
 
In this section we focus on mortality at very old ages 
(above age 80) and analyse the phenomenon of late-life 
mortality divergence from the exponential dynamics. 
For this analysis we use the models designed for old 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Comparison of BIC values for several parametric models fitted to the averaged 1890‐1900 
Swedish cohort data for ages beyond 80.  
 

Model Equation Number of 
parameters BIC ܕܑܔ

∞՜࢞
 ࢞࢓

Gompertz ݉௫ ൌ  ∞ ఉ௫ 2 -153.446݁ߙ

Makeham ݉௫ ൌ ߛ ൅  ∞ ఉ௫ 3 -150.045݁ߙ

Weibull ݉௫ ൌ  ∞ ఉ 2 -156.711ݔߙ

Heterogeneous 
2-subpopulations ݉௫ ൌ෍ߩ௝,௫ ௝݉,଴݁ఉೕ௫

ଶ

௝ୀଵ

 5 -168.653 ∞ 

Heterogeneous 
3-subpopulations ݉௫ ൌ෍ߩ௝,௫ ௝݉,଴݁ఉೕ௫

ଷ

௝ୀଵ

 8 -156.422 ∞ 

Perks ݉௫ ൌ ߛ ൅
ఉ௫݁ߙ

1 ൅ ߛ ఉ௫ 4 -152.169݁ߜ ൅
ߙ
 ߜ

3-parameter Logistic ݉௫ ൌ ߛ ൅
ఉ௫݁ߙ

1 ൅ ߛ ఉ௫ 3 -143.727݁ߙ ൅ 1 

Beard ݉௫ ൌ
ఉ௫݁ߙ

1 ൅  ఉ௫ 3 -155.570݁ߜ
ߙ
 ߜ

Kannisto ݉௫ ൌ
ఉ௫݁ߙ

1 ൅  ఉ௫ 2 -134.444 1݁ߙ

Michaelis-Menten ݉௫ ൌ  ఉ/ఊ݁ߙ ఉ௫/ሺଵାఊ௫ሻ 3 -156.843݁ߙ

Exponential-Quadratic ݉௫ ൌ ݁ఈାఉ௫ାఊ௫మ 3 -156.668 0 
(for ߛ ൏ 0) 

All model parameters are assumed to be greater than or equal to zero except for the parameters ߙ and ߛ  in 
the exponential‐quadratic model where they are assumed to be negative. 
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age mortality described in Methods. All these models 
were fitted to cohort Swedish data for ages 80-109.  We 
have fitted the models to single-year cohort data but the 
obtained results were not conclusive. Due to the scarcity 
of long-lived individuals, the statistical noise of 
mortality rates at old-ages is high and thus, it is difficult 
to draw any conclusions from single-year data as the 
optimal model differs across cohorts (i.e the Gompertz 
model, the logistic-type models or the heterogeneous 
population model reveal the best fit for some cohorts). 
Therefore, we decided to use more data in order to 
reduce the noise present in the data and thus, to be able 
to capture the underlying trend [79]. For model fitting 
we have used the data averaged for eleven birth cohorts 
(from 1890 cohort to 1900 cohort). The BIC values 
calculated by fitting the models to the data are shown in 
Table 2. 
 
The logistic-type models (Perks, 3-parameter logistic, 
Beard and Kannisto) and the Michaelis-Menten-type 
model show convergence to a certain limit as age 
increases and are therefore suitable to explain the late-
life mortality deceleration and the existence of mortality 
plateaus. The exponential-quadratic model can generate 
a concave down parabola and therefore explains the 
decline of mortality at old ages. The exponential models 
by Gompertz, Makeham and Weibull fail to explain the 
late-life mortality slow down, because the death rates 
expressed by these functions tend to infinity as age 
increases. Even if the subpopulation mortality rates also 
diverge as age tends to infinity, the model of hetero-
geneous population appears to be the only model which, 
due to interplay between subpopulations, can reproduce 
all observations (deceleration, plateau and decline) in 
mortality in later life. 
 
From the results shown in Table 2, one can conclude 
that the model of a heterogeneous population composed 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of two subpopulations provides the best fit to the 
mortality data at old ages. For the averaged Swedish 
data, the mortality curve generated by the model of a 
heterogeneous population increases exponentially, 
asymptotically to the level of the dynamics of the 
frailest subpopulation between ages 80 and 90, then 
decelerates to reach the level of the dynamics of the 
most robust subpopulation and then keeps increasing 
exponentially at that level (Figure 3A). Similar results 
and conclusions have been derived by fitting the models 
presented in Table 2 to the death rates of ages 80+ for 
other developed countries, including Norway (Figure 
3B) and Japan (Figure 3C). Interestingly, the Japanese 
data are better fitted by the three-subpopulation model. 
The trajectory of mortality that fits the Japanese data 
increases exponentially along the level of the frailest 
subpopulation then decelerates for a couple of years, 
then creates a plateau and finally re-accelerates after the 
age of 108. Besides, similar results are obtained when 
males and females are analysed separately, as illustrated 
on Figure 4 with Japanese mortality data. 
 
On the basis of the analysis presented in Figures 3 and 4 
we conclude that different observations on mortality 
dynamics at extremely old ages can be explained by the 
heterogeneity of populations, which is further 
developed in the following section. 
 
3. Late-life mortality slow-down due to population 
heterogeneity 
 
Heterogeneity suggests that late-life mortality slow-
down is a result of the variation in robustness between 
sub-cohorts having a significant number of survivors at 
old ages. In addition, heterogeneity permits us to 
explicate three different observations in late-life 
mortality, namely deceleration, saturation and the 
decline of mortality rates. Figure 5 shows that the simple 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3. Model  of  heterogeneous  population  fitted  to  averaged  1890‐1900  cohort  death  rates  for  ages  over  80  for
Swedish  (A), Norwegian  (B)  and  Japanese  (C)  populations.  The  dots  represent  the  observed  central  death  rates, while  the
exponential mortality dynamics of the subpopulations are shown by the dashed lines and the mortality dynamics of the entire population
are shown by the black solid lines. Note that the plots are shown on a semi‐logarithmic scale. 
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model of a heterogeneous population composed of only 
two subpopulations can reproduce all these 
observations. In Figure 5A the frailest subpopulation 
(i.e. the subpopulation that dies out fastest) is the one 
that has the highest mortality rate at age 80, ݉ଵ,଼଴ ൌ
0.08, and the highest mortality coefficient, ߚଵ ൌ 0.11, 
as compared to the most robust subpopulation that has a 
mortality at age 80 of ݉ଶ,଼଴ ൌ 0.04, and a mortality 
coefficient of ߚଶ ൌ 0.09. The variation in the 
proportions of the two subpopulations determines the 
formation of the three different late-life phenomena. For 
example, if the fraction of the frailest subpopulation at 
age 80 in Figure 5A is ߩଵ,଼଴ ൌ 0.5, then the overall 
mortality of population shows a deceleration, if 
ଵ,଼଴ߩ ൌ 0.88 - a plateau and if ߩଵ,଼଴ ൌ 0.98 - a decline.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A mortality cross-section, shown in Figure 5B, occurs 
when one of the subpopulations has a lower mortality 
rate than the other at younger ages, but higher at older 
ages (i.e. it is more robust initially but becomes frailer 
after a cross-section). In particular, the theoretical 
subpopulations presented in Figure 5B have mortality 
rates at age 80 and mortality coefficients ݉ଵ,଼଴ ൌ 0.09, 
ଵߚ ൌ 0.07 and ݉ଶ,଼଴ ൌ ଶߚ ,0.04 ൌ 0.15 respectively. 
The fractions ߩଶ,଼଴ ൌ 0.2, 0.5 and 0.8 for the 
subpopulation with the lowest mortality rate at age 80 
are used to reproduce deceleration, plateau and decline 
respectively. 
 
The mortality trajectories presented in Figure 5 
illustrate that apparently controversial observations in 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Model of heterogeneous population composed of three subpopulations fitted to averaged 1890‐1900 cohort
death rates for ages over 80 for Japanese female (A) and Japanese male (B) populations. The dots represent the observed
central death rates, while the exponential mortality dynamics of the subpopulations are shown by the dashed lines and the mortality
dynamics of the entire population are shown by the black solid lines. Note that the plots are shown on a semi‐logarithmic scale. 

Figure  5.  Theoretical  trajectories  (solid  curves)  of  old‐age  (80‐110)  mortality  dynamics  for  a  heterogeneous
population composed of two subpopulations. Variations in relative sizes of the subpopulations permit the reproduction of
all three observations for late‐life mortality: deceleration, plateau and decline. Once the individuals of the frailest subpopulation
die out, the mortality of the entire population follows the exponential dynamics of the most robust subpopulation. In panel (A)
the  same  subpopulation  remains  frailest  over  all  ages, while  in  panel  (B)  the  subpopulation which  is  frailest  before  age  90
becomes the most robust after age 90. Note that the plots are shown on a semi‐logarithmic scale. 
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mortality dynamics for old ages are not necessarily in 
contradiction with each other and can be explained by 
the heterogeneity of populations. 
 
4. Evolution of mortality dynamics: homogenisation 
and natural selection 
 
The model of a heterogeneous population [12] have 
previously been used to analyse the evolution of 
Swedish period death rates over the 20th century [58]. In 
a view of incompleteness of cohort data for this century 
the analysis was done on the basis of period data. 
Although the model of heterogeneous population is 
designed primary for dealing with cohort data it was 
found that on the basis of period data one can still make 
reliable conclusions. It was shown that the best fit 
model involves four subpopulations: the first 
subpopulation reproduces the initial decline of mortality 
for infants, the second - the mortality at childhood, the 
third - the accidental mortality during reproductive 
period and the fourth - the exponential (Gompertz) 
growth of mortality at adult span. The analysis of mor- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
tality evolution, as examined by using this model, 
showed that the parameters which characterise the 
mortality dynamics of each subpopulation evolve 
through time displaying two remarkable features. The 
first is the confirmation of the compensation effect for 
each evolving subpopulation, and the second is the 
homogenisation of the entire population manifested by 
the reduction in the initial fractions of the first three 
subpopulations (that are also the smallest 
subpopulations) and an increase in the initial fraction of 
the fourth subpopulation (from 67% at the beginning of 
the 20th century to 99% at its end).  
 
An alternative way to examine the evolution of Swedish 
mortality dynamics over the 20th century is to modify 
the model of heterogeneous population by making 
parameters time-dependent and fitting the model to the 
entire set of period mortality data over age and time so 
that the fit will be represented on a three-dimensional 
surface. The death rates for ages 0 to 100 and for the 
one-century period (101 years from 1900 to 2000) 
compose a dataset of 10201 points. On the other hand, 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  6.  Time‐evolution  of mortality  dynamics  in  the mathematical model  of  a  heterogeneous  population.  The
model of a heterogeneous population composed of four subpopulations is modified to contain time‐dependent parameters and is
used  to  fit period Swedish death rates  for ages 0 to 100 and  for  the entire 20th century period  (1900‐2000). The resulting  fitted
surface of  the modified model  to  the age‐ and  time‐related Swedish data  is  shown  in panel  (D). The  initial mortalities and  the
mortality coefficients of subpopulations are assumed to change linearly over time (fits are shown in panels (A) and (B) respectively)
while  their  initial  fractions change exponentially  (shown  in panel  (C)). Note  that  the plot  in panel A  is shown on a semi‐logarithmic
scale.  
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the four-subpopulation model has 12 parameters of 
which 11 are independent (the condition that the sum of 
the fractions ߩ௝,௫ at each age is equal to unity reduces 
by one the number of free parameters). Each of the 11 
parameters is assumed to change linearly or 
exponentially over time according to their trend-lines 
[58]. Each linear or exponential trend is characterised 
by two parameters (a scale and a shape parameter) and 
therefore the modified time-dependent model has 22 
free parameters. Thus, this approach requires the 
estimation of the values of only 22 parameters in order 
to fit the 10201 data points while in order to fit data 
separately for each year [58] one would require to 
estimate the values of 11 unknown parameters for each 
of 101 data points (or in other words, 1111 unknown 
parameters in total to fit the 10201 data points). 
 
The 3-dimensional surface that is reproduced by fitting 
the modified model to age- and time-related Swedish 
data is shown in Figure 6D. The initial mortalities ௝݉,଴ 
and the mortality coefficients ߚ௝ for each subpopulation 
݆ are assumed to change linearly over time as shown in 
Figures 6A and 6B respectively. The negative 
correlation between the initial mortality and the 
mortality coefficient in each subpopulation indicates the 
validation of the compensation law of mortality. The 
initial fractions of the four subpopulations are assumed 
to change exponentially over time (Figure 6C). The 
phenomenon of homogenisation is evident as the initial 
fraction of the most robust subpopulation (red line in 
Figure 6C) increases over time and dominates at the end 
of the century, while the fractions of the other three sub-
populations decrease and these subpopulations almost 
disappear by the end of the century. The most robust 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
subpopulation has the smallest initial mortality rate, and 
more individuals belonging to this subpopulation 
survive to more advanced ages compared to the 
individuals from the other subpopulations. 
 
Further examination of the results shown in Figure 6 
indicates that all individuals from the first two 
subpopulations, reflecting infant and child mortality, die 
before sexual maturity and the reproductive period and 
therefore they do not leave offspring. The other two 
subpopulations have individuals that survive till 
reproductive age and consequently leave offspring who 
contribute to the next generation. However, the most 
robust subpopulation contributes relatively more and if 
we assume that these two subpopulations differ by 
genotype, the evolution of their initial fractions can be 
explained by natural selection. This problem is 
addressed in the following part of our study, namely we 
assume that the third and fourth subpopulations differ 
by a single gene (which has two alleles) and check 
whether the change in the fractions of these 
subpopulations follows the changes in allele frequencies 
over generations due to natural selection. 
 
We use the model for evolution of allele frequencies in 
diploid organisms as described in Methods and assume 
that alleles ܣ and ܤ indicate two distinct traits related to 
mortality dynamics. Choosing from two possibilities we 
pick up on an assumption that the allele ܣ is dominant 
and therefore the heterozygotes ܤܣ have the same 
mortality-related phenotype as the homozygotes ܣܣ. 
Furthermore, the individuals carrying genotypes ܣܣ and 
 are assumed to belong to the third sub-population ܤܣ
while individuals with ܤܤ genotype belong to the fourth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Genotype frequencies and fitnesses in terms of the model parameters.  
 

Subpopulation 3rd 4th  

Genotypes ܣܣ ൅  ܤܤ ܤܣ

Initial fraction ߩଷ,଴ ൌ ܲ ൅ ܳ ൌ ଶ݌ ൅ ସ,଴ߩ ݍ݌2 ൌ ܴ ൌ  ଶݍ

Absolute fitness ݓଷ ൌ ߶ ෍ ଷܰ,଴ exp ൭
݉ଷ,଴

ଷߚ
൫1 െ ݁ఉయ௫൯൱

ସ଴

௫ୀଶ଴

ସݓ  ൌ ߶ ෍ ସܰ,଴ exp൭
݉ସ,଴

ସߚ
൫1 െ ݁ఉర௫൯൱

ସ଴

௫ୀଶ଴

 

Relative fitness ݓଷ/ݓସ 1 

The  absolute  fitness  of  individuals  belonging  to  each  subpopulation  is  calculated  as  a  total  number  of 
person‐years within the reproductive period (assumed to cover ages 20 to 40) multiplied by a probability 
to reproduce, ߶, which is assumed to be age‐independent and constant for all individuals. Note that since 
the  initial mortality and mortality coefficient of each subpopulation change over  time,  the absolute and 
relative fitnesses also change over time.   
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To calculate Darwinian fitness, we make the following 
simple assumptions concerning the reproductive 
behaviour of the individuals who make up the 
population: (1) reproductive behaviour does not depend 
on genotype (note that mortality depends on genotype 
and makes the fitness genotype specific); (2) 
reproductive age is set from the age of 20 to the age of 
40; (3) within this age interval, reproduction takes place 
with the constant probability, ߶, at any age (i.e. it is the 
same for both subpopulations and independent of age). 
We believe that by using these assumptions we can 
obtain a relatively good approximation of the spreading 
process of a favourite allele in the population due to its 
effect on mortality only, and thus the dynamics of the 
relative sizes of two subpopulations. For a more precise 
analysis, one can adjust the model assumptions by 
taking into account real fertility related data, the age 
dependence of reproduction probability, and by 
specifying the reproductive age-interval more accurately 
(which is different for males and females). However, 
here we keep the model as simple as possible and leave 
various extensions to the framework, which we are 
introducing here, for future studies.   
   
Based on the above assumptions we can calculate the 
absolute fitnesses of individuals that belong to the third 
and the fourth subpopulations which will be denoted by 
ଷ ሺൌݓ ஺஺ݓ ൌ ସ ሺൌݓ ஺஻ሻ andݓ  .஻஻ሻ respectivelyݓ
Fitnesses can be evaluated based on mortality dynamics 
and expressed as functions of the parameters that descri- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

be the exponential mortality dynamics of these two 
subpopulations as shown in Table 3. In this table, ௝ܰ,଴ 
represents the number of individuals in subpopulation ݆ 
at age 0. 
 
The absolute and relative fitnesses of subpopulations 
are found using their initial mortalities and mortality 
coefficients which are obtained by fitting the 
heterogeneous model with four subpopulations to the 
Swedish period data. The estimated initial fractions of 
two subpopulations (third and fourth), which are 
involved in reproduction, for the period 1900 (starting 
point of the examined time-interval) are normalised to 
have a sum equal to one (since we do not consider 
subpopulations 1 and 2 which are not involved in 
reproduction) and are then used to calculate the 
frequencies of alleles ܣ and ܤ (or values of ݌ and ݍ) in 
1900.  
 
Possessing all of the above considerations and the 
equations that describe the flow of alleles due to 
selection (equations 9a and 9b), the changes of 
genotype frequencies over generations are calculated 
presuming that each generation corresponds to 25 
calendar years totalling four generations per century. 
Following this, changes in genotype frequencies are 
compared with the evolution of the initial fractions in 
the model of heterogeneous population over the 20th 
century. The outcome of this analysis is shown in 
Figure 7. Thus, assuming that the difference in mortality  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Population homogenisation as a consequence of natural selection. The relative fitnesses of individuals
belonging to the third (blue circles) and the fourth (red triangles) subpopulations, as calculated according to the formulas
in Table 3, are shown in panel (A). The relative fitness of the third subpopulation varies from year to year with an average
value of 0.27 (black dashed line) over the entire century. This average value is used to calculate the changes in genotype
frequencies due to natural selection as shown in panel (B) (black circles), over four generations (each lasting 25 calendar
years as indicated by the vertical lines in panel (B). Calculated genotype frequencies are interpolated linearly (solid lines
connecting circles in panel (B) within each generation to be comparable with the normalised initial fractions of the third
(blue circles) and the fourth (red triangles) subpopulations modeled to fit the Swedish data for the period 1900 to 2000.  
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dynamics of two subpopulations is conditioned by a 
difference in a single gene and taking an average value 
of relative fitness (black dashed line in Figure 7A), we 
calculate how the relative fractions of the 
subpopulations (corresponding to ܣܣ ൅  genotype ܤܣ
frequency for subpopulation 3 and ܤܤ genotype 
frequency for subpopulation 4, black lines in Figure 7B) 
evolve due to natural selection. We can state that the 
obtained result is surprisingly close to the changes of 
the fractions (red triangles and blue dots in Figure 7B) 
in the best-fit model of heterogeneous population. The 
significance of this result is that it serves as a self-
consistency test for the model of heterogeneous 
population [58].  
 
Our further calculations have shown that dividing the 
century into three or five generations (i.e. the time 
interval between generations is 33 or 20 years 
respectively) does not significantly change the genotype 
frequencies observed in Figure 7B (frequencies 
decrease/increase by about 15%). Averaging fitnesses 
of subpopulations over each generation rather than over 
the entire century, does not significantly change the 
obtained results either (note that in the model, where the 
evolving population is discretised into generations, 
consideration of fitnesses for each year or for any 
intervals shorter than the duration of the generation does 
not make sense).   
 
DISCUSSION 
 
The aim of this study was to show the advantages of the 
model of heterogeneous population (introduced in [12]) 
in terms of fitting the mortality data and to give a 
biological justification supporting this model. This was 
done in a few steps. In the first step we compared this 
model with a number of other parametric models which 
were used to fit actual mortality data. We found 
(Subsections 1 and 2 in Results) that the model of 
heterogeneous population is advantageous compared to 
the other models as it has the flexibility to be adapted to 
any dataset and therefore provides the best fit to 
mortality data for the data over the entire lifespan as 
well as for old (over 80) ages. In the second step we 
demonstrated (Subsections 3 in Results) that contrary to 
other considered models, the model of heterogeneous 
population can reproduce and explain controversial 
observations in late-life mortality (deceleration, plateau 
and decline). In the third step we assumed that 
population heterogeneity reflects the genetic variation 
between subpopulations, and showed (Subsection 4 in 
Results) that the natural selection model based on 
differential mortality can explain and quantitatively 
reproduce the homogenisation of the Swedish 
population within a one-century period. Based on these 
results, we conclude that heterogeneity, beyond its 

convenient use in reproducing characteristics of age-
structured populations, has a fundamentally inherent 
role in understanding the mortality dynamics across the 
lifespan and the evolution of these dynamics over time. 
 
The model of Heligman-Pollard is known for its 
excellent fit to the mortality data over the entire 
lifespan. Here we have shown that the model of 
heterogeneous population can provide with even better 
fit to that data. Besides, it is important to note that these 
two models are very different in nature. While the 
Heligman-Pollard model imposes a pre-defined mortali-
ty pattern, the model of heterogeneous population 
allows the mortality pattern to be adapted to the fitted 
data. Both models are thus extremely useful in different 
contexts. The Heligman-Pollard model is better for 
forecasting purposes, as it avoids projecting unrealistic 
patterns far into the future. However, as a wide variety 
of mortality patterns can be modeled using a different 
number of subpopulations, the model of heterogeneous 
population allows us to capture new and unexpected 
patterns, providing a greater flexibility in data 
modeling. In addition to this, in the model of hetero-
geneous population, the model parameters do not lose 
their interpretation in demographic terms, even with an 
increase in the number of parameters in the model. This 
flexibility is important for data analysis as mortality 
patterns evolve through time due to several factors 
(medical improvements, changes in life-style 
conditions, biological evolution, etc.) and this can be 
modeled as some subpopulations die out and some new 
ones become more pronounced in a quantitative sense. 
Furthermore, mortality dynamics of subpopulations 
change over time and these changes can be detected via 
fitting procedures.  
 
The population heterogeneity as defined in [12] is 
significantly different from the heterogeneity as defined 
in other models including those based on vitality 
processes [50-53]. According to [53] the heterogeneity 
results from two components, an evolving one and an 
initial one. A cohort is initially homogeneous if the 
individuals are assumed to have the same vitality at 
birth. In initially homogeneous cohort the heterogeneity 
emerges if the vitality of individuals in the cohort 
changes differently (i.e. has stochastic component). It is 
a form of evolving heterogeneity in survival capacity. In 
contrast, the initial heterogeneity refers to the hetero-
geneity in survival capacity at birth. A distribution of 
the initial vitality is developed and thus the individuals 
of a cohort have different vitality level at birth. The 
heterogeneity in our model is rather similar  to the 
initial heterogeneity, that is the subpopulation fractions 
in our model are the analogue to the initial vitality 
distribution in [53]. While the time-evolution of the 
evolving heterogeneity was discussed in [50, 52], the 
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time-evolution of the initial heterogeneity has not been 
analysed yet. Therefore, the homogenization of the 
population that is discussed within our model 
framework cannot be directly compared to models 
based on vitality processes. However, [50] and [53] 
mention that the initial vitality can, in part, be 
determined by genetic inheritance, which is in line with 
the core assumption used in our paper in order to 
explain the homogenisation of the population. 
 
The introduction of subpopulations with different 
mortality characteristics can easily be justified on the 
basis of biological and medical observations. Certain 
diseases tend to follow others due to strong associations 
at genetic and cellular levels, and connections at the 
cellular level get amplified at the population level when 
a number of diseases emerge as comorbid [80-82]. 
Susceptibility to a particular disease may stratify a part 
of population to having a particular dynamic of age-
related accumulation of other associated diseases, and 
consequently a specific dynamic of mortality. To some 
extent this process is related to one described in the 
reliability theory [9], where age-related failure kinetics 
will be different for particular human physiological 
systems and their components, and will have a different 
impact on different human subpopulations. More 
studies are required on accumulation trends for 
particular diseases with an emphasis on mortality curves 
on one hand, and underlying genomic factors on the 
other. We believe that the complex structure of human 
populations in respect to evolving disease patterns in 
different age-groups will be revealed from these studies 
and more evidence will be available for refining the 
mathematical models. Having this knowledge we may 
be able to understand and better predict mortality 
dynamics in complex human populations by using a 
pallet of primary disease-associated genomic markers. 
 
Our analysis of the evolution of allele frequencies 
(under the assumption that genomic differences are 
responsible for the difference in mortality rates between 
subpopulations) has indicated that the homogenisation 
of the Swedish population in the 20th century can be 
explained by the selection process in favour of a 
particular subpopulation better fitted to a changing 
environment during the studied period. The force of 
selection as calculated on the basis of mortality-related 
heterogeneity of the population is known as the force of 
mortality selection [54]. To provide an intuitive 
explanation of this force we note that the individuals 
belonging to frail subpopulations tend to die at younger 
ages (and more frequently before the reproductive ages) 
than ones from more robust subpopulations. Therefore 
frail subpopulations leave less offspring than more 
robust subpopulations. Consequently, the proportion of 
individuals belonging to more robust subpopulations 

increases through generations. Although we do not aim 
to propose a fully-specified and completely realistic  
evolutionary model, we show that using very simple 
assumptions we can relate the evolution of the 
heterogeneous structure of populations to genetics and 
natural selection. Thus this paper paves the way for 
many potential extensions regarding genetics and 
evolutionary theories. 
 
There are many studies indicating that the currently 
observed increase in longevity is primarily associated 
with environmental changes [83]. In order to link this 
statement with our results on the evolution of allele 
frequencies, we would suggest considering the 
following hypothetical scenario. Consider the 
population carrying a gene with two alleles ܣ and ܤ. 
There are three different kinds of individuals: ܤܣ ,ܣܣ 
and ܤܤ in this population for which we can assume the 
same pattern of mortality and reproduction (three 
identical subpopulations) so that the genetic structure of 
this population is in equilibrium. Now assume that due 
to some environmental change the mortality of 
individuals carrying ܤܤ is reduced. If this reduction hits 
the reproductive period, the frequency of ܤ will tend to 
increase which will result in a change to the structure of 
the population and to gradual change in its mortality 
dynamics causing an increase in longevity. If the initial 
frequency of allele ܣ is small then a jump in mortality 
patterns in cohort data should be observed with no 
further evolution. Contrary to this, if the initial 
frequency of allele ܤ is small, then the jump will be 
replaced by a gradual evolution, associated with an 
increase of allele ܤ frequency. Obviously the period 
data should show a gradual evolution of mortality 
patterns in both cases.  
 
In this paper we focus on two subpopulations whose 
mortality dynamics evolve differently (in response to the 
same environmental changes) and this shows a change in 
the overall mortality pattern. Mortality patterns of both 
subpopulations change over the 20th century but for our 
analysis we have averaged the characteristics of the 
subpopulations by taking their average fitness. Thus we 
have reduced our analysis to the following idealised case: 
environmental change has happened on or before 1900 
and this has changed the mortality patterns for 
subpopulations 3 and 4. The latter causes the changes in 
fitnesses of subpopulations, follow up gradual changes in 
the population structure and consequently lead to gradual 
increase in longevity. We do not address the question of 
why mortality of subpopulations changes in a certain way 
(in response to environmental changes), but taking these 
changes as granted we confirm that the change in the 
structure of populations (represented by fractions of 
subpopulations) correlates with the evolution of 
frequency of the hypothetical allele.  



www.aging‐us.com  3061  AGING (Albany NY) 

The surprising part of this result is the time scale of the 
process: the selection process causes significant changes 
to take place in the population within one century (over 
four generations). In the model we have assumed that 
there is no difference in the reproductive behaviour of 
individuals belonging to different subpopulations and 
thus the difference in fitnesses is only conditioned by 
the difference in mortality patterns of the sub-
populations, namely by their initial mortalities and 
mortality coefficients. As these parameters are time 
dependent, the relative fitnesses of subpopulations also 
change over time. In our study illustrated in Figure 7, 
we have ignored the fact that the fitnesses of the 
subpopulations evolve over time and used the average 
fitnesses over the entire century to calculate changes 
during four generations. This was done for two reasons: 
(1) to illustrate the process in a very simple case when 
the fitnesses do not change over time and (2) to properly 
account for variations in fitnesses from year to year, we 
would have to give up the idea of discrete generations 
and design a much more sophisticated model (i.e. 
design a virtual population). 
 
An interesting question concerning the evolution of 
subpopulations analysed in Figure 7, concerns the 
relationship between them in the 19th century. Our 
preliminary study shows that subpopulation 3 (which is 
almost extinct by the end of the 20th century) had a 
higher relative fitness for most of the 19th century as its 
mortality rate was lower than that of the fourth 
subpopulation and as a consequence the fraction of 
subpopulation 3 was increasing in the 19th century (and 
then decreased in the 20th century).  
 
In this paper we have presented a very simple, almost 
caricature, natural selection model to compare its 
outcome with the evolution of subpopulations in the fits 
of heterogeneous model to mortality data. Surprisingly 
close correspondence between the time evolution of the 
subpopulation in the model of heterogeneous population 
and the evolution of genome frequencies can already be 
highlighted on the basis of this model. This finding 
naturally paves the way for many interesting research 
questions and future research studies associated with the 
development of more realistic models based on genetics 
and natural selection. More complex models should be 
based on more accurate representation of reproduction 
patterns and take into account the effect of more than 
one gene polymorphism and naturally occurring splits 
in frequencies of different gene variants.  
 
Several additional extensions of this work are foreseen.  
The first one is associated with the impact of the 
environment on mortality changes. Indeed, the sharp 
reduction in overall mortality during the 20th century 
and especially the dramatic decline of premature (infant 

and child) mortality in almost all countries is mainly a 
result of environmental changes and improvements [59, 
60] and to a lesser extent, biological evolution. However, 
in our model framework, we do not explicitly account for 
environmental factors. Each subpopulation reacts in its 
own way to the environmental changes, and the mortality 
pattern of each subpopulation (here the scale and shape 
parameters of their exponential dynamics shown in 
Figures 6A and 6B) evolves differently over time. 
Therefore, we should further explore the effects of 
environmental change on mortality dynamics of 
heterogeneous populations (that would be reflected in the 
evolution of the model parameters), on reproductive 
success, reproduction windows and duration of lifespan 
(interesting results can be found in [84, 85]). Second, the 
consideration of the heritability of phenotypic mortality-
related traits which are affected by genetic variations and 
environmental factors would be of great value. Third, 
future research could involve deeper consideration of the 
age-dependent fertility rate, male-female ratio, wider or 
narrower reproductive periods and changes over time 
including time-dependent fitnesses. Fourth, the effects 
of in and out migration, mutations and genetic drift 
could be examined. Finally an extensive literature exists 
on biological ageing and its potential relation to some 
longevity genes. Linking this stream of research with 
the model proposed in this study could allow 
development of new mortality modeling tools and lead 
to further accumulation of knowledge on mortality and 
longevity matters.  
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