SUPPLEMENTARY MATERIAL

Construction and characterization of an improved
DeaD strain

K6001 is a W303-derived strain that was originally
constructed for use in the study of mother cell-specific
mating type switching [72, 73]. K6001 encodes two
integrated copies of the essential gene CDC6,
independently regulated by the repressible GALI
promoter and the mother cell-specific HO promoter,
respectively  (GAL1:Ub:CDC6 and HO:CDCo,).
Previously, we exploited this strain as an alternative to
the standard microdissection method of quantifying
replicative lifespan (RLS), which is labor intensive and
slow [74]. When K6001 cells are grown permissively in
galactose-containing  media  (raffinose/galactose),
GALI:CDC6 is expressed both in mother and daughter
cells and the culture grows exponentially. When
expression of the GALI:CDC6 gene is repressed by
glucose, only the mother-cell-specific expression of
HO:CDC6 remains to support growth. Since HO
expression is largely restricted to mother cells,
daughters generally do not divide and growth of the
culture is limited by the RLS of the initial cohort of
mother cells. Since the success of this strategy depends
on the conditional Death of Daughter cells, we call it
the “DeaD” assay. Although promising, K6001 as a
DeaD strain exhibited significant limitations. Its mother
cells cease division on glucose after an average of only
3-4 divisions [74]. K6001 also has a short average
lifespan under permissive conditions, presumably due to
its W303 background (17 generations for K6001 [74],
similar to 20.8 generations for W303R [18]). Early tests
of the assay showed a reduction of DeaD lifespan by
deletion of SIR2 [74] but these tests ignored the fact that
the HO:CDC6 fusion is haploid-specific [75]. Deletion
of SIR2 prevents silencing of the mating type
information at HML and HMR and thus renders cells
pseudo-diploid [76, 77]. After a switch to glucose, sir2A
mutants will thus be unable to express either copy of
CDC6 (see below for mechanism of HO gene
expression) and will die rapidly, as was observed [74].
When the opposite mating type information was deleted
from this strain, allowing HO:CDC6 expression to
sustain mother cells in glucose, no difference in DeaD
lifespan was observed between SIR2 and sir2A cells
(data not shown). Combined with the other limitations,
this finding indicated that the strategy exemplified by
K6001 would have to be modified before it could be
used as a platform for studying replicative lifespan.

We began by switching the parental background from
W303 to the longer-lived S288C background [78]. For
galactose-specific CDC6 expression, we chose the

strategy employed in K6001: a ubiquitin:CDC6 fusion
driven by the GALI promoter. The N-terminal ubiquitin
fusion allows modification of the amino terminus of
Cdc6 to reduce protein stability and tighten control over
Cdc6 activity. The ubiquitin moiety is co-translationally
removed by ubiquitin processing proteases, and the
amino acid serving as the new amino terminus of Cdc6
determines its half-life according to the N-end rule [79].

We cloned the GAL:Ub:CDC6 fusion from K6001 to a
plasmid vector. DNA sequencing revealed a tyrosine
codon at the beginning of CDC6, rather than the
expected arginine [73]. Multiple independent clones
from two separately obtained K6001 isolates gave the
same result. According to the N-end rule, tyrosine is
less destabilizing than arginine [79]. Rapid turnover of
GALI-expressed Ub-Cdc6 is required for efficient death
of daughters after a shift to glucose. Arginine, which is
maximally destabilizing [79], is thus the desired N-
terminal residue. All of the clones also carried a
conservative mutation in the ubiquitin moiety: arginine
74 to lysine. We used PCR mutagenesis to correct this
mutation and to change the N-terminal residue of Cdc6
to either arginine or methionine. We then integrated
these alleles, and the original K6001 allele, in place of
the endogenous CDC6 in the S288C-derived strain
Y7092 [80]. Since the GAL:Ub:CDC6 allele is the only
source of CDC6 in these strains, all cells arrest when
transferred to glucose, and the efficiency of this arrest is
a function of the stability of Cdc6. Cells expressing
arginine at the N-terminus of Cdc6 achieved the most
efficient growth arrest. (Fig. S1A). This allele was
incorporated into all subsequent DeaD strains.

The HO:CDC6 allele in K6001 is an imprecise fusion
of the open reading frame of CDC6 to the HO promoter:
the fusion leaves in place more than 90bp of the CDC6
5’ untranslated region, and all of the 3° CDC6
untranslated sequences. This construction excludes the
3> UTR of HO, which appears to play a role in mother-
cell-specificity of HO expression [81]. For our new
DeaD strain, we therefore created a precise replacement
of the HO open reading frame with CDC6, leaving the
large HO promoter and the HO 3’ untranslated region in
place. This HO:CDC6:HO fusion was integrated into a
strain already carrying GALI:UbR:CDC6 to create
DeaD strain BB573. BB573 mother cells have improved
survival on glucose compared to K6001 mother cells:
mean RLS increased from 3.4 to 8.3 generations
(p=5.94 x 10", Fig. S1B). However, 8.3 generations is
still much shorter than the 26-28 generation mean
lifespan of normal SC288c-derived cells [78].

To further improve mother cell survival in glucose, we
sought to increase mother cell expression of HO:CDC6.
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Insight into expression of this fusion can be gained from
studies of normal HO. In cells that express the wild-type
HO endonuclease, mother cells switch mating type at a
rate of ~70% [82]. Inhibition of switching in the
remaining ~30% of mothers is dependent on the
transcriptional repressor Ashl, since deletion of ASHI
increases mother cell switching to 95-100% [72, 82].
These results indicate that Ashl is normally
incompletely excluded from mother cells. Ideally, Ashl
would be completely partitioned into the incipient
daughter cell (the bud), leaving none in the mother cell
to repress HO expression.

ASH1 1is expressed at the end of mitosis, when the
transcription factors Swi5 and Ace2 enter the nucleus
and promote ASHI expression by binding to four
putative SwiS5/Ace2 binding sites (predicted by the
nucleotide sequence KGCTGr, where “K” is G or T and
“R” is A or G, [83] in the ASHI promoter. ASHI
expression is dramatically decreased in swi5 ace2
double mutants [72, 84]. We deleted the Swi5/Ace2
binding sites, either in foto or in pairwise combinations,
in BB573 and assessed the effect on mother and
daughter cell survival on glucose by pedigree analysis
(Fig. S2). Deletion of the 1* two SwiSp binding sites
(ASH1-A12) caused too drastic a drop in Ashl: daughter
cell survival dramatically increased (represented by tall
bars in Fig. S2 panel B), compare with parental strain
BB573, Fig S2 panel A). This effect was caused to a
lesser extent by deletion of the middle two sites (4SHI-
A23, Fig. S2 panel C) or of all four binding sites (4SH!-
Al4, Fig S2 panel D). In contrast, deletion of the 3 and
4t SwiSp binding sites produced a strain with enhanced
mother cell survival without increased daughter cell
“escape” (Fig S2 panel E). This strain, ASHI-A34, was
renamed BB579 and it and its derivatives were used in
all subsequent work. BB579 has a mean survival of 11.3
generations on glucose (longer than its parental strain,
BB573, p=1.77 x 107)  corresponding roughly to a
model combining Gompertzian senescence with a
stochastic death rate of 7.5% (Fig S3 panel A).

Yeast cells become sterile near the end of their lifespan
due to de-repression of the silent HM mating type loci
and the resulting pseudo diploidy [85]. De-repression of
the HM loci in a DeaD strain will result in failure to
express haploid-specific HO:CDC6, as discussed above,
and which might cause premature death in aging cells
and an artificially short lifespan. To investigate the
potential benefit of preventing pseudo diploidy by
deleting one of the two mating type loci, HMR, we
deleted HMR in SIR2 and sir2A BB579 cells. We
performed microdissection (Fig. S3 panels A and B)
and DeaD lifespan assays (Fig. S3 panel C) of parental
BB579 (HMR), hmrA, sir2A and hmrA sirA strains.
Deletion of SIR2 alone produced an extremely short

apparent RLS, presumably due to repression of HO
expression resulting from pseudo diploidy, and deletion
of HMR and SIR2 together gave an intermediate
phenotype (Fig. S3 panels A and C) in both the
microdissection and DeaD lifespan assays. None of
these deletions had significant effects on permissive
growth in galactose, although the AmrA sir2A strain
exhibited a minor growth defect (Fig. S3 panel D). By
microdissection RLS assay, deletion of HMR slightly
extended RLS: mean RLS increased from 11.3 to 12.1
generations (p=1.5 x 107?), and maximum increased
from 32 to 45 (Fig. S3 panel B). Deletion of SIR2 in
hmrA BB579 cells shortened RLS to a mean of 8.6
generations (p=1.45 x 10'4), with a maximum of 33
generations (Fig. S3 panel A).

The above results demonstrate that S/IR2 strains have
longer DeaD assay lifespans than sir24 strains in the
improved BB579 background. To test this relationship
further, and to determine whether the DeaD assay is
sensitive not only to lifespan shortening but also to
lifespan extension, we asked whether we could detect a
range of effects on RLS by altering the expression level
of SIR2 with a series of promoter fusions. Replicative
lifespan varies with SIR2 expression level in yeast,
since deletion of SIR2 shortens lifespan and an extra
copy of SIR2 extends it [18]. There is likely to be an
upper limit to lifespan extension by up-regulation of
SIR2, however, since SIR2 overexpression from the
GALI promoter causes toxicity and elevated rates of
chromosome loss [86]. For our test, we used PCR-based
integration to replace the endogenous SIR2 promoter
with the CYC, ADH, TEF, or GPD promoter [87] in an
HMR-deleted BB579 derivative. DeaD assay lifespan of
the resulting strains paralleled the predicted promoter
strength (CYC<ADH<TEF<GPD, [87]), with strains
carrying the strongest two promoters showing extension
of DeaD assay lifespan (Fig. S4 panel C).

As expected if strong overexpression of SIR2 is toxic,
the GPDpr:SIR2 fusion, which we expect to be more
strongly expressed than the TEFpr:SIR2 fusion [87],
confers no additional advantage for lifespan (Fig. S4
panel C). None of these deletions had significant affects
on permissive growth in galactose, although the hmrA
sir2A strain exhibited a minor growth defect (Fig. S3
panel B).

In a parallel set of experiments, we replaced the
endogenous S/R2 promoter with the same promoter
series in a wild-type S288C strain and measured
replicative lifespan using the standard microdissection
assay. The results (Fig.4S Panel D) are a striking
parallel to the DeaD assay findings. The TEF promoter
extended mean lifespan by a robust 45%, while the
stronger GPD promoter showed a lesser extension of
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22%. We conclude that improvements to K6001
engineered into BB579 allow recapitulation of key

features of yeast aging using high throughput capable of SIR2.

0.6

0.5

0.4

0.3

average OD600

0.2

0.1

0.0

100%

80%

60%

40%

percent surviving

20%

0%

oens

2

y i

10 20
time (hours)

30

——K6001
—— BB573

\
i
X
S-S

0

10 20 30 40 50
generation

60

liquid  growth-based
shortening and extension by under- and overexpression

- M
——Y
——R

assays, including lifespan

Figure S1. Characterization of improved DeaD strain BB573. (A) Arrest of GAL:Ub:CDC6 strains in
glucose is dependent on the N-terminal residue of Cdc6p. Cells were transferred to glucose at time 0 and
growth arrest was monitored by measuring the culture OD600. The letter indicates the N-terminal Cdc6p

residue: M: methionine, Y: tyrosine, or R: arginine.

(B) BB573 mother cells have improved survival on

glucose compared to K6001 mother cells: mean RLS increased from 3.4 to 8.3 generations (p=5.94 x 10’13).
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Figure S2. Pedigree analysis of BB573 and derivatives carrying ASH1 promoter deletions. Strains were
grown in a galactose-containing medium to mid-log phase and arrayed on glucose (SCD) plates for microdissection.
Divisions of mother cells are represented on the x axis, and divisions of daughter cells by the height of the bars.
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Figure S3. The effect of hmr and sir2 deletions on mother cell survival and DeaD lifespan in new DeaD assay strain
BB579. (A) Survival of BB579 and its hmrA hmrAsir24, and sir2A derivatives on glucose. Strains were grown to mid-log phase in a
galactose-containing medium and arrayed on glucose (SCD) plates. Mother cell survival was determined by microdissection. For
comparison, models of BY4741 (“x”s) and its sir2A derivative (open circles) with a 7.5% rate of stochastic death are included. (B)
Mean and maximum replicative lifespans from (A). (C) Representative restrictive liquid cultures of the same four strains. (D)
Parallel permissive liquid cultures. (E) Relative DeaD assay lifespans of the four strains, using data from (C) and (D) together with
two more independent experiments. Error bars are +/- one standard error of the mean of the three experiments.
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