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ABSTRACT

Expansion of mesenchymal stromal/stem cells (MSCs) used in clinical practices may be associated with
accumulation of genetic instability. Understanding temporal and mechanistic aspects of this process is
important for improving stem cell therapy protocols. We used yH2AX foci as a marker of a genetic instability
event and quantified it in MSCs that undergone various numbers of passage (3-22). We found that yH2AX foci
numbers increased in cells of late passages, with a sharp increase at passage 16-18. By measuring in parallel
foci of ATM phosphorylated at Ser-1981 and their co-localization with yH2AX foci, along with differentiating
cells into proliferating and resting by using a Ki67 marker, we conclude that the sharp increase in yH2AX foci
numbers was ATM-independent and happened predominantly in proliferating cells. At the same time, gradual
and moderate increase in yH2AX foci with passage number seen in both resting and proliferating cells may
represent a slow, DNA double-strand break related component of the accumulation of genetic instability in
MSCs. Our results provide important information on selecting appropriate passage numbers exceeding which
would be associated with substantial risks to a patient-recipient, both with respect to therapeutic efficiency
and side-effects related to potential neoplastic transformations due to genetic instability acquired by MSCs
during expansion.

INTRODUCTION

Currently, mesenchymal stromal/stem cells (MSCs)
derived from various sources (tissues) are often used for
cell based therapies to treat a variety of diseases [1].
Such applications typically require large numbers of
cells produced by in vitro expansion of cells via
continuing passaging. However, as the passage number
increases, the risk of genetic alterations also increases.

Indeed, high passage numbers in MSCs have been
shown to contribute to the formation of chromosomal
aberrations [2, 3], the inability of cells to differentiate,
and oncogenic transformation [4-6]. It is generally
assumed that these effects are associated, through
unknown mechanisms, with the process of replicative
senescence, or aging, of cells [7]. However, substantial
gaps in our knowledge of the genetic instability in long-
term cultivated MSCs still exist. Unsolved questions
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include both the evaluation criteria and mechanisms of
genetic instability in MSCs during cultivation, as well
as the therapeutic time window, i.e. the critical number
of cell passages suitable for clinical use.

Accumulation of DNA damage due to incomplete or
inaccurate repair of spontanecous DNA lesions (caused
by metabolic free radicals, replication and recombina-
tion errors, spontaneous chemical modifications) is the
most significant contributor to genetic instability in
cells that have not been exposed to external DNA
damaging stimuli, such as ionizing radiation, UV,
chemicals, etc. [8]. Some authors consider the
accumulation of DNA damage in cells as a universal
cause of age-dependent changes in cells [9, 10]. Among
the variety of spontaneous DNA lesions, most of the
interest of researchers has focused on DNA double-
strand breaks (DSB). Indeed, DSBs are the most critical
DNA alterations that can define the fate of cells and, if
repaired incorrectly or inefficiently, can lead to serious
cytogenetic abnormalities, cell death, inactivation of
tumor suppressor genes or activation of oncogenes [11-
14]. Moreover, in recent years, functional state of DNA
DSB repair systems, as well as accumulation of DSB,
have been linked to the formation of a particular
phenotype inherent to aging cells [15].

An indirect method based on immunofluorescence
microscopy analysis of proteins involved in DSB repair
has recently gained broad use to study quantitative
DSB-related changes in living cells. Complex dynamic
microstructures formed during DNA DSB repair
consisting of thousands of copies of proteins and
visualized by immunofluorescence staining appear as
bright spots of fluorescence, called DNA repair foci [16,
17]. It is believed that one focus is the repair site of one
single or multiple DSBs [18]. Notably, the immuno-
fluorescence analysis of phosphorylated at serine 139
core histone H2AX (also known as YH2AX) has been
the most widely used marker of DNA DSBs [19, 20].
Functioning as a binding site for the protein MDCI,
vyH2AX recruits key DNA repair proteins [21] and in
such way, forming a vital part of the machinery that
ensures genome stability. Members of the superfamily
of  phosphatidylinositol ~ 3-kinase-related  kinases
(PIKKS), in particular Serine/Threonine protein kinases
ATM (Ataxia telangiectasia mutated), ATR (ATM- and
RAD3-related) and DNA-PKcs (DNA-dependent
protein kinase catalytic subunit), phosphorylate H2AX
in response to DSB acting as primary DSB sensor
proteins [22].

The aim of our study was to investigate the pattern of
change in the number of YH2AX foci during long-term
(up to 22 passage) culturing of MSCs.

To reveal possible mechanisms of change in the number
of yH2AX foci, we additionally performed: 1)
quantitative analysis of activated (sequentially auto-
phosphorylated at Ser1981, Ser367 and Ser1893) ATM
foci in response to DSBs [23]; 2) differential
quantitative analysis of yH2AX foci in actively
proliferating (Ki67(+)) and resting (Ki67(-)) MSCs. The
associated with ribosomal RNA transcription RNA [24]
Ki67 protein is present in actively proliferating (during
G1, S, G2 and M phases of the cell cycle), while being
absent in resting (GO phase) cells [25].

RESULTS

Quantitative analysis of the YH2AX and pATM
foci

Quantification of yYH2AX foci in MSCs at different
passages is shown in Fig. 1A. It can be seen that
between passages 3-16, the number of YH2AX foci did
not change (r=0.66; p=0.11), whereas at passages 16-22,
the number of the foci doubled. In contrast,
phosphorylated ATM (pATM) foci increased gradually
with the increase in the passage number (Fig. 1A). The
pATM data could be best fit with a linear regression
equation y=0.99 + 0.07x (r=0.83; p=0.003), where y is
the number of foci per nucleus, X is the passage
number. Similar pattern was observed for YH2AX foci
co-localized with pATM foci: y=0.72 + 0.03x (r=0.73;
p=0.017).

It was interesting to compare directly foci quantities at
early (3-8) and late (18-22) passages. As seen in Fig.
1B, both YH2AX and pATM foci significantly increased
in late compared with early passage cells. However,
whereas the number of YH2AX foci tripled, the increase
for pATM foci was only 2-fold. Interestingly,
comparing fractions of YH2AX foci co-localized with
pATM between the early and late passages showed that
the number dropped from 43+2 % foci at passages 3-8
to 27+1 % at passages 18-22. This data indicates that
the sharp increase in YH2AX foci at late passages may
not be ATM-dependent.

Differential analysis of YH2AX foci in proliferating
and resting cells

Analysis of YH2AX foci in proliferating Ki67-positive
(Ki67(+)) and resting Ki67-negative (Ki67(-)) is
presented in Fig. 2. The number of YH2AX foci in
proliferating cells was higher than that in resting cells
for all examined passage numbers (Fig. 2A). No
significant changes in YH2AX foci were found in
proliferating cells at passages 3-16, after which the
number of foci sharply increased (Fig. 2A). A different
pattern was observed in resting cells: the number of
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vyH2AX foci increased more or less gradually with the
increase in passage number and, similarly to pATM
foci kinetics, was well fit with a linear regression
y=0.02 + 0.12x (r=0.96; p=0.00001), where y is the
number of YH2AX foci and x is the passage number.
Moreover, a statistically significant correlation was
found between the number of YH2AX foci in resting
cells and the number of pATM foci in all cells (r=0.87;
p=0.001).

When early (3-8) and late (16-22) passages were com-

pared directly, the number of YH2AX foci was higher in
both proliferating and resting MSC (Fig. 2B). However,
absolute numbers of YH2AX foci were different in
proliferating vs. resting cells, 4.3 vs. 1.8 foci/nucleus,
respectively. These results suggest either a higher rate
of DNA DSB induction or a broader spectrum of
mechanisms leading to DNA DSBs in proliferating vs.
resting cells. However, diminishing DNA DSB repair
mechanisms as a source of such difference between
proliferating vs. resting cells cannot be ruled out as
well.
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Figure 1. Immunocytochemical analysis of yH2AX and pATM foci. (A) Changes in yH2AX, pATM
foci and their co-localization depending on the passage number in MSCs. (B) Comparative analysis of
YH2AX, pATM foci and their co-localization in early (3-8) vs. late (18-22) passages of MSCs. (C) Fraction
of yH2AX foci that co-localize with pATM at early (3-8) vs. late (18-22) passages of MSCs. (D)
Representative immunofluorescent microphotographs of MSC showing yH2AX (green), pATM (red) foci
and their co-localization (yellow) at passage 5 and 20. Nuclei were counterstained with DAPI.
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Figure 2. Differential immunocytochemical analysis of yH2AX foci in proliferating (Ki67(+))
and resting (Ki67(-)) cells. (A) Changes in the yH2AX number in Ki67(+) and Ki67(-) cells on 3-22
passages (B) Comparative analysis of yH2AX in Ki67(+) and Ki67(-) cells on early (3-8) vs. late (18-22)
passages; (C) Representative immunofluorescent microphotographs of MSC showing Ki67 (green), yH2AX
(red) foci and their co-localization (yellow) at passage 5 and 20. Nuclei were counterstained with DAPI.

DISCUSSION

In this study we showed that long-term culture of MSCs
leads to accumulation of YH2AX foci. Late passage
cells were characterized by a ~3-fold increased number
of foci compared with early passage cells. Apparently,
two parallel processes are involved in the observed
accumulation of yH2AX foci that are essentially
distinct:

1. Gradual ATM-dependent accumulation of YH2AX
foci in long-term cultured MSCs.

2. Step-wise ATM-independent increase of YH2AX foci
numbers between passages 16 and 18.

For the first process, the ATM kinase, unlike the ATR
kinase that phosphorylates H2AX upon formation of
large stretches of single-stranded DNA at collapsed
replication forks and nucleotide excision repair sites
[26, 27], phosphorylates histone H2AX in response to
single or clustered DSBs [28, 29]. Thus, accumulation
of YH2AX co-localized with pATM suggests that these
foci represent DNA DSBs in long-cultured MSCs.
However, these co-localized foci had a minor
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contribution to an overall passage dependent increase in
YyH2AX foci (Fig. 1B). Accumulation of DSBs at
telomeres may contribute to this process, since it was
shown that repair efficiency of DNS DSBs at telomeres
is low and may lead to accumulation to YH2AX foci at
telomere repeats [30, 31]. This process is related to
cellular aging and the accumulation of YH2AX foci in
senescent cells [31, 32]. This is consistent with our
results showing the accumulation of YH2AX foci in
Ki67-negative cells, which may also represent senescent
cells. Since passage related YH2AX foci in MSCs co-
localized poorly with pATM foci (Fig. 1C), consistent
with the results of Pospelova et al. [33], it is likely that
they represent non-DNA damage related foci. Such foci
have been shown to be associated with mTOR signaling
pathway in senescent cells only and could be inhibited
by rapamycin [33, 34].

With regards to the second process, it appears to take
place exclusively in proliferating cells and to be ATM-
independent. This suggests an age-related increase in
the rate of errors during DNA replication. For example,
DNA DSBs can be formed at collapsed replication forks
of late-passage cells due to increased oxidative damage
associated with age-dependent dysfunction of
mitochondria [35]. Phosphorylation of H2AX by a
DNA-PKcs/CHK?2 pathway could also contribute to this
age-associated process [36].

Another explanation of the increased rates of yYH2AX
foci in late-passage MSCs could be the inefficient
YH2AX de-phosphorylation processes, also in turn
related to cellular aging [37, 38]. Moreover, replicative
senescence related changes in chromatin remodeling
process may also represent the source of additional
YH2AX foci in late-passage MSCs [38]. However, this
hypothesis is inconsistent with the results of a recent
study in which another marker of DNA DSBs, 53BP1
that is not relevant to H2AX, was used [39]. It is not
unlikely that diminished rates of ATM-dependent
phosphorylation of histone H2AX may indicate an onset
of the senescence phenotype. It was shown that the
concentration and the level of ATM phosphorylation,
which defines its kinase activity, after exposure to
ionizing radiation was lower in old compared to young
mice [40]. On the contrary, ATM-mediated DNA
damage response was shown to prevent further damage,
induce SASP and boost protection against malignant
transformation [41]. Lowered ATM activity may
contribute to diminished p53-dependent responses to
DNA damage, induced or spontaneous, leading to
subsequent sharp increases in DNA DSBs in MSCs of
high passages forming the senescence phenotype.
Lastly, various DNA repair pathways were shown to be
affected by age in various mouse and human tissues
[42-46]. Such changes in DNA repair efficiencies may

also contribute to passage-associated accumulation of
vyH2AX foci in MSCs found in this study. Lastly, it
appears that apoptotic cells had no role in the observed
accumulation of genetic instability markers as we did
not observe an increase in presumptively apoptotic cells
containing >25 yH2AX foci per cell, nor did we notice
accumulation of nuclei with apoptotic morphology (data
not shown).

CONCLUSIONS

A passage dependent accumulation of YH2AX foci in
MSCs, with a sharp increase at passages 16-18, was
observed in this study, indicative of genomic instability.
It appears that the mechanisms of this increased rates of
YyH2AX foci include both a ATM-dependent, most
likely representing physical DNA DSBs irrespective of
cell proliferation status, slow component and a ATM-
independent fast component that gets abruptly activated
at passage 16-18 in proliferating cells. While precise
mechanisms of the two identified components are not
clear and represent obvious interest for future studies,
our results provide important information with respect
to the clinical applications of stem cell therapy. Indeed,
understanding how passage number affects genomic
instability in MSCs would allow optimizing clinical
protocols for in vitro expansion of the cells to achieve
higher therapeutic outcomes.

METHODS

Culture and immunophenotypic characterization of
MSCs

MSCs were obtained from mucosa of a 40-year old
healthy male donor. Cells were cultured in low glucose
DMEM (StemCell, USA) supplemented with L-
glutamin, penicillin/streptomycin and 20% fetal bovine
serum (StemCell, USA) at a concentration of 0.3 x 10°
per flask with filter ventilated caps (25 c¢m?) in a
humidified atmosphere of 5% CO, and 37°C. MSCs
were subcultured every 7 days up to passage 22.

For immunophenotypic characterization, cells were
stained with the panels of antibodies against the
following surface markers: CD3, CD13, CD14, CD19,
CD25, CD29, CD31, CD34, CD38, CD44, CD45,
CD69, CD73, CD90, CDI105, CD106, CD166 and
HLA-DR (Becton Dickinson, USA). The expression of
the surface markers was then analyzed using a BD
FACS Canto II (Becton Dickinson Bioscience, USA)
flow cytometer. The resulting expression profiles
revealed high expression levels (>60% positive cells)
for CD90, CD105, CD166, CD44, CD73, medium
levels (30-60%) for CD13, CD29 and CD69, and very
low levels (<5%) for CD45, CD34, CDI133, CD3,
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CD19, CD25, CD38, CD45, CD106, CD31 markers.
This immunophenotype was consistent with the
reported immunophenotype for MSCs [47] and did not
change in the course of the experiment.

Immunofluorescence microscopy

MSCs at passages 3, 5, 8, 9, 11, 13, 16, 18, 20 and 22
were detached with 0.25% Trypsin/EDTA (StemCell
Technology, USA), washed, resuspended and seeded at
the density of 5 x 10° cells/em® in 500 pL of culture
medium onto coverslips (SPL Lifesciences, South Korea)
placed inside 35 mm Petri dishes (Corning, USA). To
improve adhesion of cells additional volume of culture
medium (1, 5 mL) was added into Petri dishes 15 minutes
after seeding. Cells seeded on coverslips were incubated
at 37°C and 5% CO, for at 48 h prior to fixation.

Cells were fixed on coverslips in 4% paraformaldehyde
in PBS (pH 7.4) for 15 min at room temperature
followed by two rinses in PBS and permeabilization for
40 min with 0.3% Triton-X100 (in PBS, pH 7.4)
supplemented with 2% bovine serum albumin (BSA) to
block non-specific antibody binding. Cells were then
incubated for 1 hour at room temperature with primary
rabbit monoclonal antibody against YH2AX (dilution
1:200, clone EP854(2)Y, Merck-Millipore, USA) and
primary mouse monoclonal antibody against
phosphorylated ATM protein (dilution 1:200, clone
10H11.E12, Merck-Millipore, USA) or primary mouse
monoclonal antibody against Ki67 protein (dilution
1:400, clone Ki-S5, Merck-Millipore, USA) which were
diluted in PBS with 1% BSA. Following several rinses
with PBS, cells were incubated for 1 hour at room
temperature with secondary antibodies IgG (H+L) goat
anti-mouse (Alexa Fluor 488 conjugated, dilution
1:600; Merck-Millipore, USA) and goat anti-rabbit
(rthodamine conjugated, dilution 1:400; Merck-
Millipore, USA) diluted in PBS (pH 7.4) with 1% BSA.
Coverslips were then rinsed several times with PBS and
mounted on microscope slides with ProLong Gold
medium (Life Technologies, USA) with DAPI for DNA
counter-staining. Cells were viewed and imaged using
Nikon Eclipse Ni-U microscope (Nikon, Japan)
equipped with a high definition camera ProgRes
MFcool (Jenoptik AG, Germany). Filter sets used were
UV-2E/C (340-380 nm excitation and 435-485 nm
emission), B-2E/C (465495 nm excitation and 515-555
nm emission) and Y-2E/C (540-580 nm excitation and
600—660 nm emission). At least 200 cells per data point
were imaged. Foci were counted by manual scoring.

Statistical analyses

Statistical and mathematical analyses of the data were
conducted using the Statistica 8.0 software (StatSoft).

Data points in Figures are mean values obtained from
three independent experiments; error bars are standard
errors. Statistical significance was tested using the
Student t-test at p < 0.05.
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