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ABSTRACT

Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic
factors, which may become increasingly important with age. Our objective was to systematically assess the
contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed
GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older
adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of
candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in
or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait
in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression
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of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects
on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide
significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that
more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.

SIGNIFICANCE

Despite promising results from candidate gene studies, a
systematic and comprehensive examination of genetic
determinants of gait speed in a large sample of older
adults has been lacking. Furthermore, previous study
samples have been too small to detect the expected
modest genetic effects especially in such complex and
polygenic encoded traits. To address these limitations,
we conducted a meta-analysis of GWAS of gait speed
in 31,478 older adults and validate our candidate signal
in a cohort of 2588 older adults. Close to 600 candidate
genetic variants have been linked to gait speed. Such
efforts have provided us with an increased knowledge
of the biological systems which impact on gait speed;
this may contribute to improved treatment strategies and
drug development to promote aging with grace.

INTRODUCTION

Gait speed has been described as the “sixth vital sign”
because it is a core indicator of health and function in
aging and disease [1]. Decline in gait speed is
ubiquitous with aging in both men and women [2]. Gait
speed is used to establish thresholds in community
based activities, such as crossing a street [3, 4] or
ambulating [5-7]. Slow gait speed is a consistent risk
factor  for  disability, cognitive  impairment,
institutionalization, falls, hospitalization and mortality
[8-10]. Improvement in gait speed is associated with
better function and survival.

Many genetic and non-genetic factors (environment and
disease) are likely to affect quantitative complex traits
such as gait speed. There are individual differences in
rates of decline in physical function, and genetic
epidemiological studies provide a method for
decomposing that variance into genetic and
environmental sources. Twin studies suggest that
genetic factors account for 15-51% of the variance of
gait speed in older adults [11, 12]. Moreover, the
contribution of genetic factors may increase with age [2,
11, 13-15]. Offspring of parents with exceptional
longevity have better physical function and gait speed in
age-specific comparisons to other individuals of
comparable age and other characteristics [16, 17].
Effective gait requires the integration of many
physiological systems, including the central and
peripheral nervous system that create and execute the

motor program, the musculoskeletal system that moves
and supports the body, and the cardio-pulmonary
function that provides perfusion of adequate nutrients
and oxygen to all of the integrated parts. All these
physiological systems can be affected by genetic
variation. Given the many pathways that may contribute
to gait impairment, effect sizes of individual genetic
variants are expected to be limited.

Previous candidate gene studies have implicated several
loci as relevant to gait speed. Single nucleotide
polymorphisms (SNP) in the Angiotensin-Converting
Enzyme (ACE) gene have been linked to better mobility
response to exercise. The R577X polymorphism in the
alpha-actinin-3 encoding gene (ACTN3) was associated
with elite athletic performance, and muscle strength and
power in the general population, especially in women
[18]. There is evidence that ACE I/D and ACTN3
R577X polymorphisms, individually or in combination,
have a significant influence on mobility and gait speed
phenotypes in older women [19, 20]. Catechol-O-
methyltransferase (COMT) polymorphisms have been
associated with cognitive functions and gait speed [21].
The Met (158) Val polymorphism in COMT was linked
to faster gait speed in older adults [21]. In addition,
apolipoprotein E (4POE) genetic variation has been
shown to influence the risk of gait speed decline [22-
24]. Despite these promising results from candidate
gene studies, a systematic and comprehensive
examination of genetic determinants of gait speed in a
large sample of older adults has been lacking.
Furthermore, previous study samples have been too
small to detect the expected modest genetic effects [25]
especially in such complex and polygenic encoded traits
[26].

To address these limitations, we conducted a meta-
analysis of GWAS studies of gait speed in 31,478 older
adults from the Cohorts for Heart and Aging Research
in Genomic Epidemiology (CHARGE) consortium. We
then tested our findings in a validation cohort of 2588
older adults participating in four independent studies.

RESULTS

Gait speed is considered a marker of health and fitness
in aging. Slow gait in older adults is associated with
increased risk of multiple adverse events including loss
of independence, increased risk of disability, falls [27,
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28], progression of age-related disease including
dementia [29] and death [9]. Slowing of gait
is multifactorial with  major  contributions  from

potentially modifiable risk factors such as physical
inactivity, cognitive impairment, muscle weakness,
pain, poor vision, falls and obesity [30]. Gait speed
was timed over fixed distance, and reported in m/sec
units.

In a meta-analysis of 31,478 subjects from 17 cohorts
(Table 1, Supplementary Text) with ~2.5M imputed
SNPs (Supplementary Table 1) 536 SNPs (202 were
independent (LD, 1* < 0.8) based on the HaploReg tool
[31]) with p< 1x10"* of which 88 (48 were independent
signals) had a p-value less than 1x10~ and one SNP
attained a p-value of less than p< 1x10°° (Table 2,
Supplementary Table 2). The Q-Q plot (Supplementary
Figure 1) did not provide evidence of inflation of test
statistics. The Manhattan plot (Figure 1), highlighted 2
regions on chromosome 6 with high LD and suggestive
association with gait speed (Regional plots [32] are
displayed in Figure 2). These suggestive regions were
further interrogated. Although none of the analyzed
SNPs were genome wide significant (p<5x10°"), one

was present in the top ten (POMI121L2), and 7 other
genes (CEP112, PHACTRI, CNTNS5, PTPRT, FHOD3,
ADAMTS1S, PRIM2) were highlighted based on the
presence of SNPs with suggestive significant
associations (p<0.0001) as well as low recombination
rate and linkage disequilibrium r* >0.8 which may
indicate significant signals in the segment (Figure 2,
Supplementary Table 2, Supplementary Figure 2). The
536 suggestive SNPs (p< 1x10* in the screening group)
were tested for validation in four additional cohorts,
GENOA, LLS, MrOSGBG and MrOSMalmo (2588
subjects). Among the top 10 SNPs (six independent)
only three exceeded nominal significance which slightly
improved the combined meta-analysis significance for
HLA-DPBI ~ SNPs  (rs9501255, 1s7763822 &
rs3749985), however genome-wide levels of signifi-
cance were not attained (Table 2).

Candidate gene approach

None of the imputed variants previously reported as gait
speed candidate genes such as ACE, ACTN3, COMT
and APOE reached a nominally significant (p<0.05)
threshold (Supplementary Table 3).

Table 1. Demography of the screening and validation cohorts

Cohort Age,y %Female il(vivl(t;h‘éié Gait protocol
Screening AGES >65 58.9 3,166 6 meter walk
ARIC >60 59.5 445 7.6 meter walk
BLSA >60 49.5 334 6 meter walk
CHS >65 60.9 3,184 4.6 meter walk
FHS >65 56.1 2,384 4 meter walk
HABC >70 47.1 1,482 6 meter walk
HRS >65 56.4 5,073 2.5 meter walk
InCHIANTI > 60 55.8 898 4 meter walk
LBC1921 77-80 58.4 510 6 meter walk
LBC1936 67-71 49.5 1,001 6 meter walk
MrOS >65 None 4,643 6 meter walk
ROSMAP >60 69.2 1,646 2.5 meter walk
RS-I >55 53 706 6 meter walk
RS-1I >55 51.8 813 6 meter walk
RS-III >45 56.0 1,392 6 meter walk
SOF >65 100 3,441 6 meter walk
TASCOG >60 42 360 6 meter walk
Total Screening 31,478
GENOA >60 55 471 7.6 meter walk
Validation LLS >60 47.2 235 4 meter walk
MrOSGBG >69 None 960 6 meter walk
MrOSMalmo >69 None 922 6 meter walk
Total Validation 2,588
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Figure 1. Manhattan plot of meta-analysis of genome wide association studies of gait speed for ~2.5 million

genotype and imputed SNPs. The blue line indicates the threshold used to select the 536 suggestive genome wide significant SNPs.

Table 2. Top 10 association meta-analysis results for gait speed

Screening Set (n=31,478)

Validation Set (n=2,588)

Screening + Validation
Set (n=34,066)

.. _|ENE| FE A(kby
SNP Chr.:Position Allele | Allele Closest Gene gene Beta (SE) P HetPVal Beta (SE) P Beta (SE) P
location
1517527406 | 6:33709545 | C/G | 0.016 | UQCC2mNF1)| intron | 0.040(0.007) | 5.22E-7| 0.2669 |  0.014(0.032) | 0.65 | 0.037(0.007) |6.883¢-7
1$9501255% | 6:33087321 | T/C |0.038 | HLA-DPBI |3’ UTR|0.023(0.005) | 1.53¢-6 | 0.5853 |  0.048(0.023) | 0.04 | 0.024(0.005) |3.326e-7
1s7763822% | 6:33092651 | T/C | 0.038 | HLA-DPBI | 3 |0.023(0.005) | 1.54e-6 | 0.5704 |  0.047(0.023) | 0.04 | 0.024(0.005) |3.440e-7
1s3749985% | 6:33086656 | C/G | 0.038 | HLA-DPBI |3’ UTR|0.023(0.005) | 1.55¢-6 | 0.5856 | 0.048(0.023) | 0.04 | 0.024(0.005) |3.385¢-7
177461994 | 6:27293545 | C/T |0.166 | POMI21L2 | 15 |0.011(0.002) | 1.58E-6| 0.9658 | 0.011(0.008) | 0.19 | 0.011(0.002) |7.125¢-7
rs12155739 | 8:102084750 | C/T |0.030 | NCALD | intron [-0.041(0.008)| 2.04E-6 | 0.2076 | -0.024(0.032) | 0.45 | -0.039(0.008) |1.858¢-6
rs3800318% | 6:27295862 | A/T | 0.830 | POMI2IL2 | 13 [-0.011(0.002)| 2.07E-6| 0.966 | -0.011(0.008) | 0.20 | -0.011(0.002) [9.686e-7
rs13211166 | 6:27298161 | A/T |0.190 | POMI21L2 | 11 [0.011(0.002) | 2.12E-6 | 0.9688 |  0.010(0.009) | 0.24 | 0.010(0.002) |1.136e-6
159403969 6:148622038 | T/G | 0.737 |  SASHI 70 | 0.009(0.002) | 2.34e-6 | 0.4004 |  0.005(0.007) | 0.50 | 0.009(0.002) |2.351e-6
rs16897515# | 6:27310241 | A/C | 0.161 | POMI2IL2 misesens 0.011(0.002) | 2.41E-6 | 0.9505 |  0.007(0.009) | 0.42 | 0.010(0.002) |2.080e-6

*First gene segment, #second gene segment. E/NE-Effect-, Non-Effect allele; F E-Frequency of Effect Allele; A-distance to proximal gene;
HetPVal- Heterogeneity P Value.
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Figure 2. LocusZoom plots for the suggested top 10 SNPs (5 genes) associated with gait speed of the combined
analysis. (A) POM121L2; (B) HLA-DPB1, (C) UQCC2 (MNF1), (D) SASH1, (E) NCALD. In each plot, the -log10 of p values are on
the left y-axis; the SNP genomic position (HG19) on the x-axis; the estimated recombination rate from 1000 genomes Nov.
2014 EUR are on the right y-axis and plotted in blue. The most significant SNP is in purple diamond and plotted using the p
value attained from the meta-analysis. SNPs are colored to reflect linkage disequilibrium (LD) with the most significant SNP in
red (pairwise r2 from 1000 genomes Nov. 2014 EUR). Gene annotations are from the SeattleSeqAnnotation141.

Pathway analysis

We used the 536 suggestive SNPs to generate the
network analysis, in which 283 SNPs representing 68
genes (Supplementary Table 4) were located in both the
IPA dataset and the SeattleSeqAnnotation141 for SNP
annotation (the remaining 253SNPs did not map to a
gene). Among the genes having the highest number of
defining SNPs, were CEPI12 (38 SNPs), PHACTRI
(23 SNPs), CNTN5 (19 SNPs), PTPRT (18 SNPs),
FHOD3 (17 SNPs), ADAMTS18 (12 SNPs) and PRIM?2
(11 SNPs). The vast majority of these genes’ products
are located in the cytoplasm and plasma membrane
while the rest are in the nucleus, extracellular space and
other cellular spaces. Ten types of protein actions
(enzyme, transporter, phosphatase, transcription
regulator, kinase, ion channel, transmembrane receptor,
translation regulator, ligand- dependent nuclear recep-

tor and peptidase) are enumerated in Supplementary
Table 5. Five of them serve as a biomarker for
diagnosis, disease progression, prognosis, and
unspecified application and five of them were targets
for drug development including PRIM2, GABRAI, LYN,
PRKCE and SCNI1A. Five major putative disease and
function networks were established using the candidate
genes (based on the IPA software analysis significance
classification) and were classified accordingly to cancer,
gastrointestinal ~ disease, organismal injury and
abnormalities, neurological disease, cell and tissue
morphology, cellular function, development and
maintenance, amino acid metabolism, small molecule
biochemistry, gene expression, cell-to-cell signaling and
interaction, nervous system development and function,
cellular assembly and organization. Seven genes were
not mapped to any network (see Figure 3,
Supplementary Table 6).
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Figure 3. Ingenuity pathway analysis of genes associated with gait speed. Genes are represented as
nodes; solid lines indicate direct- and hatched lines indirect- interaction. Gene functions are color-coded as
follows: Red= other, Navy Blue =Group/Complex, Yellow= Enzyme, Turquoise= transcription regulator, Brown=
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mammalian, Hunter Green (Dark Green) = Growth factor, light Green= Transmembrane Receptor, Light Purple=
Translation Regulator, Olive Green=Ligand-dependent nuclear receptor, Bright green= Peptidase.

e¢QTL analysis

By querying a large collection of eQTL results (listed in
Supplementary Text), we obtained a long list of
possible SNP relationships with gene expression
(Supplementary Table 7). We also identified the
strongest eQTL SNP for each particular transcript in
each study. Those SNPs with low p-values (for
association with gene expression, p<10'8) and high LD
(D>0.9) with the functional variant, were picked as
candidates of signal concordance between the eQTL
signals and gait speed signal. Following this analysis,
several transcripts including PRSS16 and WDSUBI
were highlighted (Supplementary Table 7). We also
observed a relationship between a SNP and PTPRT
expression (in liver tissue), which in addition to the
meta-analysis and pathway analysis emphasized its
potential functional link through its synaptic function
and neuronal development, both of which may
contribute to [33] gait speed. By emphasizing a strong
relationship of the best eQTL with our queried SNPs,
we likely underreport SNP-expression relationships due
to missing LD information and the inability to project
LD relationships for trans-eQTLs in the region.

Applying HaploReg v4.1 analysis to the 536 variants
resulted in 9 categories (Supplementary Table 8):
miscRNA (1 variant); snoRNA (2 variants); microRNA
(4 variants); snRNA (9 variants); pseudogenes (14
variants); sequencing in progress (43 variants); LINC
RNA (86 variants); and 372 variants within protein
coding genes. In addition, some variants annotate to the
same gene resulting in a total of 139 genes (protein-
coding or non-coding). Of those genes, 6 are
exceptionally long, containing over a million base-pairs,
the longest of which is PTPRT coded by 1117219bp.
The shortest genes are the ones coding for micro
(MIR3143) or small nuclear (U7) RNAs at 63bp each.
There is only partial information regarding the
chromatin state of each variant. However, from the
information gathered in the analysis we observed 14
transcription  start sites and 245  enhancers
(Supplementary Table 8).

DISCUSSION

In this genome-wide association study of gait speed in
31,478 adults ages 60 and older from 17 different
cohorts in the USA, Europe and Australia and 2,588
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individuals in four wvalidation cohorts, we did not
discover any genome-wide significant association with
gait speed nor did we confirm gait speed associations
with previously reported candidate genes (i.e. ACE,
ACTN3, COMT and APOE) (Supplementary Table 3).
However, our analyses revealed some potentially
relevant SNPs that could be targeted for further analyses
regarding their associations with gait speed.

Our results shed light on several candidate genetic
polymorphisms that did not achieve genome wide
significance but which had multiple signals on the gene
segment, an observation that supported the association
with the trait of interest. In addition, these SNPs map to
genes that were either linked to physiologic functions
expected to influence gait speed (such as neuromuscular
function, cardiac function and muscle health or brain
function) ADAMTSIS, a gene associated with bone
mineral density, could be associated with gait speed if
individuals with variants in this gene had suffered from
fracture leading to slowing of gait [34]. In functional
studies ADAMTSI8 levels were significantly lower in
subjects with non-healing skeletal fractures compared to
normal subjects [35]. POMI2IL2 - an ion transport
gene [36] - was listed in the top ten meta-analysis genes
with four variants, making it a potential candidate for
our study. This gene has been linked to schizophrenia,
[37], suggesting a potential brain-related association
with gait speed. One of the top candidates in our
analysis was UQCC?2 (also known as M19 or MNF1), a
mitochondrial membrane protein that regulates skeletal
muscle differentiation and insulin secretion [38].
Although UQCC?2 function has a clear link to gait
speed, the fact that in this study only one SNP found
within UQCC2 demonstrated suggestive significance,
which provides less confidence of a true association.
NCALD, a calcium-binding protein, has been associated
with diabetic nephropathy [39]. The region that was
highlighted next to SASHI, a tumor suppressor gene,
has multiple signals associated with gait speed.
However, there is a high recombination rate between
this region and the candidate gene (Figure 2),
suggesting a higher dissociation between the gene and
the signaled region. The last candidate from the top 10
SNP association list is HLA-DPBI, an immune response
gene that has been linked to rheumatoid and
inflammatory myopathies [40, 41]. Interestingly, one of
its variants (rs7763822) was indicated in systemic
sclerosis  susceptibility in Korean subjects [42]
suggesting a pleiotropic effect.

CEP112 involved in proper cell cycle progression [43]
was not listed among the top 10 SNPs (Table 2)
however its clear dominancy (38 SNPs) among the 536
suggestive SNPs make it an attractive candidate for
further functional association studies with gait speed.

Similar to CEPI12 variants, PHACTRI regulates
cardiac o-actin isoform ratio [44] and actomyosin
assembly [45]; CNTNS5 is associated with neuron
function [46]; PTPRT regulates synaptic function and
neuronal development [33] and serves as a genuine
susceptibility locus for rheumatoid arthritis[33];
FHOD3, is a key regulator in the cardiac muscle [47]
and sarcomere organization in striated muscle cells
[48]; and PRIM2 is involved in DNA replication and
transcription and is crucial for normal growth and
development [49]. This list of genes repeatedly
implicates associated signals that are important for
neuromuscular function, cardiac function and muscle
health, which could reasonably contribute to the
complex trait of gait speed.

A second tier of locus with repetitive signals established
among the 536 suggestive SNPs included PDZN3,
which is implicated in muscle function and regeneration
[50-52], CACNG3, a voltage-dependent calcium
channel subunit [53] that was previously linked to
ataxic phenotype in mice [54], ASTN2 that functions in
neuronal migration [55] and that was associated with
hip osteoarthritis susceptibility [56], SIMI involved in
coordinating muscle activity and generating rhythmic
activity [57] and also associated with obesity [58], and
MDGA2, which is required for proper development of
cranial motoneuron subtypes [59].

The eQTL analysis (various tissues and cell types, listed
in Supplementary Text) of the 536 suggestive SNPs
reported a couple of candidate genes such as PRSS/6, a
gene encoding serine protease expressed exclusively in
the thymus. PRSSI6 was associated with exercise [60]
and was linked to COMT (a candidate gene for gait
speed (20)). Both are regulated by ZNF804a [61]. This
link between the two genes (PRSS16 and COMT) may
support our gait speed association results. Another
candidate gene from our eQTL analysis was WDSUBI a
U-box ubiquitin ligases encoded protein which was
associated with sudden cardiac death [62]. A link with
cardiovascular diseases may indicate a potential
cardiovascular effect on gait speed. The last candidate
in this analysis is PTPRT, a gene that regulates synaptic
function and neuronal development. It is possible that
its link to gait speed (operates through its role in
diabetes [63]). The fact that it was present in all three
sets of analysis results may suggest a stronger candidate
for further analysis.

The lead motif of the network analysis in all 5 disease
networks was “cellular function”, however, the
candidate SNPs from the multiple analysis strategies
strongly suggested links to bone, skeleton, muscle and
brain, incorporating development, structure and
function. While our SNP associations did not achieve
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genome wide significance, we believe that we
demonstrated a potential link to gait speed. To exclude
false positive signals, these associations should be
pursued further in controlled experiments as well as
animal models, which will increase our understanding
of the biology of gait speed deterioration with aging.
Such efforts would provide us with an increased
knowledge of the biological systems which impact on
gait speed; this may contribute to improved treatment
strategies and drug development to promote aging with
grace.

This study did not provide conclusive evidence for the
genetics contributing to gait speed. While the large
sample is a strength (and we have the power to detect
smaller effects), the observed associations suggest that
an even larger sample is required to establish genetic
contributions to the gait speed phenotype. The
individual effects of common SNPs for complex traits
such as gait speed are expected to be very small. From
studies of other polygenic complex traits, it has been
observed that the number of discovered variants is
strongly correlated with experimental sample size [64].
Another potential explanation why we did not observe
genome wide significant associations is that there are
many potential pathways that contribute to gait speed,
including nervous system function (neuromuscular,
central nervous system), musculoskeletal conditions
such as sarcopenia and osteoarthritis, cardiovascular
disease, visual function, psychological factors and other
contributors. This complexity of phenotype may make
it difficult to discover associations. Phenotype
refinement may be a future approach to explore.

In summary, the lack of genome-wide significant
signals from this moderately large sample of older
adults suggests that larger samples (or study to sub-
classify the gait speed phenotype) will be needed to
identify SNP-based associations. Also, it may suggest
that downstream mechanisms are more likely to make
more important contributions to gait speed. Gait speed
is a complex phenotype with many potential
contributors; it is not unsurprising that it should be
governed by multiple genes. However, we were able to
use network analyses to define some potential networks
of genes that might be of relevance for this phenotype.
Future studies may be best positioned to focus on one
network in more detail and to examine gene-environment
or gene-behavior- environment interactions.

METHODS
Subjects

The Aging and Longevity Working Group of the
CHARGE Consortium [65, 66], was formed to facilitate

genome-wide association study meta-analyses of age
associated diseases and phenotypes among multiple
large and well-phenotyped cohorts of older individuals
who underwent genotyping.

Screening cohorts

A combined cohort of 31,478 subjects age 60 years and
older with timed walks constituted our discovery
sample (Table 1). Timed walk at usual pace was
converted to gait speed (m/s) to harmonize the
phenotype across cohorts. Participants of the following
17 European descendent cohorts were included
(Supplementary Material):

The Age, Gene/Environment Susceptibility-Reykjavik
(AGES), The Atherosclerosis Risk in Communities
(ARIC), Baltimore Longitudinal study on Aging
(BLSA), Cardiovascular Health Study (CHS),
Framingham Heart Study (FHS), Health, Aging, and
Body Composition Study (HABC), Health and
Retirement Study (HRS), Invecchiare in Chianti
(InCHIANTI), Lothian Birth Cohorts 1921 (LBC1921)
and 1936 (LBC1936), Osteoporotic Fractures in Men
Study (MrOS), The Religious Orders Study and Rush
Memory and Aging Project (ROSMAP), Rotterdam
Study (RS-I, -II, -III), Study of Osteoporotic Fractures
(SOF), Tasmanian Study of Cognition and Gait
(TASCOG)  (Table 1, Supplementary Text). All
participants with gait speed assessments including
participants who were able to walk with assistance of a
cane were included in this analysis. Exclusion criteria
included missing gait assessments and inability to walk
(Supplement Text).

Validation cohorts

The validation cohort consisted of 2,588 subjects (>60
years) from the Genetic Epidemiology Network of
Arteriopathy (GENOA), Leiden Longevity Study
(LLS), Osteoporotic Fractures in Men Study (MrOS)
Sweden, Malmo[MrOSMalmo] and Gothenburg
[MrOSGBG] studies (Table 1, Supplement text).
Together these cohorts reach the minimum number of
subjects required for sufficient statistical power (Our
power calculation shows that given a fixed sample size
(n=2500) our analysis will have >80% power to detect
MAF=0.01, alpha<0.0001) to wvalidate significant
signal(s) from the screening cohort using the same
harmonized gait speed phenotype. Results from the
screening and validation cohorts were meta-analyzed.

Phenotype definition

The different methods of assessing gait speed in
individual cohorts are described in Table 1 and
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Supplementary Text. Variability in the methods of
assessing gait speed in the participating cohorts
included differences in distance walked (8 to 25 feet)
and measurement techniques (instrumented walkway
versus stopwatch). Previous reports including 4 cohorts
from this report (CHS, HABC, InCHIANTI and SOF)
have suggested that there is a high correlation (1*>0.9)
between the different methods of measuring gait speed
[9, 24, 67]. The mean overall gait speed was 1.13+ 0.25
m/sec, and varied from 0.66 = 0.16 m/sec to 1.66 + 0.41
m/sec in the individual cohorts (Supplementary Table 9,
Supplementary Figure 3).

Genotyping

A structured, pre-specified analytical plan was applied
to each of the 17 cohorts included in the screening
sample. Genome-wide analysis of imputed genotypes,
summarized in Supplementary Text, were conducted in
each cohort. Imputation (using either BimBam or
MACH) resulted in approximately 2.5 million HapMap
SNPs being available for analysis. Imputation details,
QC and SNP count per cohort can be found in
Supplementary Text and Supplementary Table 1.
Exclusion criteria for SNP in each of the 21 cohorts
(screening and validation) included: 1) minor allele
frequency (MAF) < 0.005); 2) imputation quality (R* or
oevar_imp < 0.3); and for the meta-analysis, SNPs with
average MAF <0.01 and total N < 15,000.

Cohort-specific analyses

Multiple linear regression of imputed SNP dosages on
gait speed was performed using an additive model, i.e.
as a count of the number of variant alleles present (1
degree of freedom). Sex-combined analysis was
performed. Adjustment for age (at time of exam), sex,
study site (for cohorts with multiple sites), principal
components to control for population stratification,
height, and presence of osteoarthritis (yes/no) if
available were included. For cohorts with osteoarthritis
data available, the analysis was done excluding
participants with osteoarthritis (Supplementary Text and
Supplementary Table 10).

Meta-analysis

Inverse variance weighted meta-analysis was performed
on summary statistics of the cohort-level association
analyses. Meta-analysis of gait speed (Screening and
validation cohorts were analyzed separately as well as
together (joint meta-analysis)) was performed using
METAL [68] with a fixed effects model of beta
estimates and standard errors from each cohort. In
addition, we applied heterogeneity test between studies

(on both screening and validation cohorts) using
METAL. A p-value threshold (Bonferroni-adjusted) of
p<5x10" was used to indicate genome-wide statistical
significance.

Pathway analysis

We assembled a list of 536 meta-analyzed SNPs
(representing 69 genes) that were highly suggestively
associated (p < 1 x 107" with gait speed. This list
resulted in 67 candidate genes (Annotated by Ingenuity
Pathway Analysis (IPA) and SeattleSeqAnnotation)
being identified which were used in the IPA analysis
(www.ingenuity.com). The resulting classification of
networks, pathways, biological processes and molecular
functions are represented in tables and graphic format
(Figure 3, Supplementary Table 4, 5 and 6).

Expression quantitative trait loci (¢QTL) analysis

We examined existing eQTL resources for the candidate
suggestive list of 536 SNPs (p<10™) to further explore
their biological and functional relevance to gait speed
(Supplementary Text). We queried these SNPs against
an eQTL database (listed in Supplementary Text)
containing eQTL results from over 100 studies across a
wide range of tissues. A general overview of a subset of
>50 eQTL studies has been published [69], with
specific citations for the included datasets included in
the Supplementary Material.

Further we applied the HaploReg v4.1 annotation tool
for TF analysis of 536 SNPs suggestively associated
with gait speed.
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SUPPLEMENTARY MATERIAL
SUPPLEMENTARY TEXT

Cohort description

The Age, Gene/Environment Susceptibility-
Reykjavik (AGES)

The Reykjavik Study cohort originally comprised a
random sample of 30,795 men and women born in
1907-1935 and living in Reykjavik in 1967 [1]. A total
of 19381 attended, resulting in 71% recruitment rate.
The study sample was divided into six groups by birth
year and birth date within month. One group was
designated for longitudinal follow-up and was examined
in all stages. One group was designated a control group
and was not included in examinations until 1991. Other
groups were invited to participate in specific stages of
the study. Between 2002 and 2006, the AGES-
Reykjavik study re-examined 5764 survivors of the
original cohort who had participated before in the
Reykjavik Study. Of those, 3,219 have genomic
genotypes and only 3,166 went through gait assessment
that included 6 meter walk in usual pace.

The Atherosclerosis Risk in Communities (ARIC)

The ARIC study is a population-based cohort study of
atherosclerosis and clinical atherosclerotic diseases [2].
At its inception (1987-1989), 15,792 men and women,
including 11,478 white and 4,266 black participants
were recruited from four U.S. communities: Suburban
Minneapolis,  Minnesota; = Washington  County,
Maryland; Forsyth County, North Carolina; and
Jackson, Mississippi. In the first 3 communities, the
sample reflects the demographic composition of the
community. In Jackson, only black residents were
enrolled. Participants were between age 45 and 64 years
at their baseline examination in 1987-1989 when blood
was drawn for DNA extraction and participants
consented to genetic testing. Between 2004 and 2006,
participants who had undergone magnetic resonance
scanning at the third ARIC visit were invited to
participate in the ARIC MRI study [3]. Gait assessment
was performed on 1134 ARIC participants. Time to
walk 25 feet (7.62 m) at the participants’ usual pace was
recorded in an unobstructed corridor with a stop watch.
Four hundred and forty five participants of European
ancestry with genome-wide genotype data and a gait
speed measurement were enrolled to this study.

Baltimore Longitudinal study on Aging (BLSA)

The Baltimore longitudinal study on Aging (BLSA)
study is a population-based study aimed to evaluate

contributors of healthy aging in the older population
residing predominantly in the Baltimore-Washington
DC area [4]. Starting in 1958, participants are
examined every one to four years depending on their
age. Currently there are approximately 1100 active
participants enrolled in the study. Blood samples were
collected for DNA extraction, and genome-wide
genotyping was completed for 1231 subjects using
[llumina 550K. This analysis focused on a subset of the
participants (N=334) with European ancestry with data
on walking speed (6 meter walk in normal pace). The
BLSA has continuing approval from the Institutional
Review Board (IRB) of Medstar Research Institute.

Cardiovascular Health Study (CHS)

The CHS is a population-based cohort study of risk
factors for CHD and stroke in adults >65 years
conducted across four field centers [5].The original
predominantly Caucasian cohort of 5,201 persons was
recruited in 1989-1990 from random samples of the
Medicare eligibility lists; subsequently, an additional
predominantly African-American cohort of 687 persons
were enrolled for a total sample of 5,888. Only 3980
CHS participants who were free of CVD at baseline,
consented to genetic testing, and had DNA available for
genotyping were GWASed. Finally, to maintain race
homogeneity we picked 3184 Caucasian with gait speed
(4.6 meter walk normal pace) and genome wide
assessments to participate in the current study.

Framingham Heart Study (FHS)

The FHS is a longitudinal community-based multi-
generational study funded by the National Heart Lung
and Blood Institute [6]. The Original cohort (Genl) has
undergone 32 biennial examinations since 1948; the
Offspring cohort (Gen2) has participated in 9 exams
from 1971 onwards, and the Omni group 1 cohort in 4
examinations from 1994 onwards. The Gen3 and Omni
group 2 cohorts completed 2 examinations since 2002
and are currently starting the third examination cycle
(April 2016). All participants undergo extensive
research examinations and surviving Original cohort,
Offspring and Gen 3 participants had genome-wide
genotyping with the Affymetrix 500K Array Set and
50K Human Gene Focused Panel available at the start
of this study [7]. At Offspring exam 8 (2005-2008) and
Original cohort exam 26 (1999-2001), participants were
asked to walk a 4 meter course at a normal pace while
being timed with a stop watch by trained technicians.
The usual pace walk was repeated and the faster of the
two walks was used for analysis. Participants were
excluded if under age 60. The final sample included
2384 participants (56.1% women), mean age 72.4 (SD
8.5) years (range 60 to 98) with gait speed and genomic
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genotyping assessed. Informed consent was obtained at
each attended exam and the Boston University Medical
Center Institutional Review Board approved the
protocol for all examinations.

Health, Aging, and Body Composition Study
(HABC)

The Health Aging and Body Composition (HABC)
Study is a NIA-sponsored cohort study of the factors
that contribute to incident disability and the decline in
function of healthier older persons, with a particular
emphasis on changes in body composition in old age.
Between March 1997 and July 1998, 3075 70-79 year
old community-dwelling adults (41%  African-
American) were recruited to participate in the Health
ABC Study; characteristics of the cohort have been
described elsewhere [8]. Medicare beneficiary listings
were used to recruit in metropolitan areas surrounding
Pittsburgh, Pennsylvania, and Memphis, Tennessee.
Eligibility criteria included having no difficulty walking
one-quarter of a mile, climbing 10 steps, or performing
activities of daily living (transferring, bathing, dressing,
and eating); no history of active treatment for cancer in
the prior 3 years; and no plans to move from the area
within 3 years. Genotyping was successful for 2,802
unrelated individuals (1663 Caucasians and 1139 African
Americans). To reduce race bias we include only
Caucasians of which 1482 have their gait speed assessed
in normal pace (6 meter walk) have enrolled to the study.

Health and Retirement Study (HRS)

The Health and Retirement Study (HRS) is a longitudinal
survey of a representative sample of Americans over the
age of 50 [9]. The current sample is over 26,000 persons
in 17,000 households. Respondents are interviewed every
two years about income and wealth, health and use of
health services, work and retirement, and family
connections. DNA was extracted from saliva collected
during a face-to-face interview in the respondents' homes.
These data represent respondents who provided DNA
samples and signed consent forms in 2006 and 2008. Gait
speed was measured only on respondents > 65 years of
age. Respondents were removed if they had gait
velocities <0.05 or gait velocities > 5sd from the mean. A
total of 5,073 subjects who have both a measure of gait
speed (2.5 meter walk at a normal pace) and high quality
imputed genomic genotypes were included in the
analysis.

Invecchiare in Chianti (InCHIANTI)
The InCHIANTI study is a population-based

epidemiological study aimed at evaluating the factors
that influence mobility in the older population living in

the Chianti region in Tuscany, Italy [10]. The details of
the study have been previously reported. Briefly, 1616
residents were selected from the population registry of
Greve in Chianti (a rural area: 11,709 residents with
19.3% of the population greater than 65 years of age),
and Bagno a Ripoli (Antella village near Florence;
4,704 inhabitants, with 20.3% greater than 65 years of
age). The participation rate was 90% (n=1453), and the
subjects ranged between 21-102 years of age. Overnight
fasted blood samples were for genomic DNA extraction.
[lumina Infinium HumanHap 550K SNP arrays were
used for genotyping. Data from 898 subjects were used
for this analysis with genetic and walking speed (4
meter walk in normal pace) data. The study protocol
was approved by the Italian National Institute of
Research and Care of Aging Institutional Review and
Medstar Research Institute (Baltimore, MD).

Lothian Birth Cohorts 1921 (LBC1921) and 1936
(LBC1936)

The Lothian Birth Cohorts include surviving
participants from the Scottish Mental Surveys of 1932
or 1947 (SMS1932 and SMS1947), having been born,
respectively in 1921 (LBC1921) and 1936 (LBC1936)
[11-13]. The LBC1921 cohort consists of 550 relatively
healthy individuals, 316 females and 234 males,
assessed on cognitive and medical traits at about 79
years of age. When tested, the sample had a mean age
of 79.1 years (SD = 0.6). The LBC1936 consists of
1091 relatively healthy individuals assessed on
cognitive and medical traits at about 70 years of age. At
baseline the sample of 548 men and 543 women had a
mean age 69.6 years (SD = 0.8). They were all
Caucasian and almost all lived independently in the
Lothian region (Edinburgh city and surrounding area) of
Scotland. Genotyping was performed at the Wellcome
Trust Clinical Research Facility, Edinburgh. Among
participants with genome-wide data and gait speed
assessment (6 meter walk in normal pace), 510
(LBC1921) and 1001 (LBC1936) individuals were
available for the present analysis.

Osteoporotic Fractures in Men Study (MrOS)

The Osteoporotic Fractures in Men Study (MrOS) is a
multi-center prospective, longitudinal, observational
study of risk factors for vertebral and all non-vertebral
fractures in older men, and of the sequelae of fractures
in men [14, 15]. MrOS study population consists of
5,994 community dwelling, ambulatory men aged 65
years or older from six communities in the United
States (Birmingham, AL; Minneapolis, MN; Palo Alto,
CA; Monongahela Valley near Pittsburgh, PA; Portland,
OR; and San Diego, CA). Inclusion criteria were
designed to provide a study cohort that is representative
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of the broad population of older men. Genomic DNA
from participants in the Osteoporotic Fractures in Men
(MrOS) Study was extracted from whole blood samples
collected at the baseline visit using the Flexigene
protocol (Qiagen, Valencia, CA, USA) at the University
of Pittsburgh. Among the 5994 MrOS participants
enrolled at the baseline visit, 5130 samples with whole
genome genotyping data that passed QC. Of which,
only 4,643 with gait speed assessed in normal pace (6
meter walk) were enrolled to the study.

The Religious Orders Study and Rush Memory and
Aging Project (ROSMAP)

Data came from 2 community based cohort studies of
aging and dementia, the Religious Orders Study and
Rush Memory and Aging Project (ROSMAP). Details
about the study design have been described previously
[16, 17]. Both studies were approved by the institutional
review board of Rush University Medical Center.
Participants were free of known dementia at enrollment
and agreed to annual clinical evaluation and brain
donation at the time of death. An informed consent and
an Anatomic Gift Act form were obtained from each
participant. The follow-up rate among the survivors
exceeds 90%. The two studies are conducted by the
same team of investigators and share a large common
core of test batteries, which allows combined analysis
of the data. Gait speed was derived by timing with a
stop watch how long it took a participant to walk 8 feet
(2.5m) at their usual pace [18]. DNA was extracted
from whole blood, lymphocytes, or frozen postmortem
brain tissue. Genotyping was performed at the Broad
Institute’s Center for Genotyping and the Translational
Genomics Research Institute [19]. Among participants
with genome-wide data and gait speed assessment 1,646
individuals were available for the present study.

Rotterdam Study (RSI, -I1, -III)

The Rotterdam Study is a population-based study in
Rotterdam that currently investigates 14,926 inhabitants
from a suburb of the city aged 45 years or over.
Participants were enrolled during three recruitment
phases — in 1990 (cohort 1), 2000 (cohort 2), and 2006
(cohort 3) [20, 21]. Visits to the research center are
planned every 3-4 years for wvarious medical
examinations. Genotyping was successfully performed
on 11,496 participants. Gait assessment was introduced
in the study protocol in 2009. The Rotterdam Study has
been approved by the Medical Ethics Committee of the
Erasmus MC and by the Ministry of Health, Welfare
and Sport of the Netherlands , implementing the Wet
Bevolkingsonderzoek: ERGO (Population Studies Act:
Rotterdam Study). All participants provided written
informed consent to participate in the study and to

obtain information from their treating physicians. Gait
assessment of 3651 subjects included 5.79-m long
pressure-activated walkway (GAITRite Platinum; CIR
systems, Sparta, NJ: 4.88-m active area; 120-Hz
sampling rate) [22, 23]. Follow thorough exclusion the
reminder 2911 subjects were genomic genotyped and
imputed to the HapMap 2 reference panel.

Study of Osteoporotic Fractures (SOF)

The Study of Osteoporotic Fractures (SOF) is a
prospective multicenter study of risk factors for
vertebral and non-vertebral fractures [24]. The cohort is
comprised of 9704 community dwelling women 65
years old or older recruited from populations-based
listings in four U.S. areas: Baltimore, Maryland,
Minneapolis, Minnesota; Portland, Oregon; and the
Monongahela Valley, Pennsylvania. Women enrolled
in the study were 99% Caucasian with African
American women initially excluded from the study due
to their low incidence of hip fractures. The SOF
participants were followed up every four months by
postcard or telephone to ascertain the occurrence of
falls, fractures and changes in address. To date, follow-
up rates have exceeded 95% for vital status and
fractures, a review of pre-operative radiographs. The
SOF study recruited only women. Among the 9704 SOF
participants enrolled at the baseline visit, 3625 samples
with whole genome genotyping data that passed QC. Of
which, only 3,441 with gait speed assessed in normal
pace (6 meter walk) were enrolled to the study.

Tasmanian Study of Cognition and Gait (TASCOG)

TASCOG is a study of cerebrovascular mechanisms
underlying gait, balance and cognition in a population-
based sample of Tasmanian people aged at least 60
years [25]. Individuals aged 60-86 years (n = 395)
living in Southern Tasmania, Australia, were randomly
selected from the electoral roll between 2006 and 2008
to participate in the study. Individuals were excluded if
they lived in a nursing home, had a contraindication for
magnetic resonance scanning (MRI) or were unable to
walk without a gait aid. The response rate was 55%, and
genotyping was performed at the Diamantina Institute,
University of Queensland. The study was approved by
the Human Health and Medical Research Ethics
Committee, University of Tasmania. Genomic data and
gait speed assessment (GAITRite) were available for
360 subjects that are part of this study.

Genetic Epidemiology Network of Arteriopathy
(GENOA)

The Genetic Epidemiology Network of Arteriopathy
(GENOA) study consists of hypertensive sibships
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recruited for linkage and association studies in order to
identify genes that influence blood pressure and its
target organ damage [26]. In the initial phase of the
GENOA study (Phase I: 1996-2001), all members of
sibships containing > 2 individuals with essential
hypertension clinically diagnosed before age 60 were
invited to participate, including both hypertensive and
normotensive siblings. In the second phase of the
GENOA study (Phase II: 2000-2004), 1239 European
American participants were successfully re-recruited to
measure potential target organ damage due to
hypertension. From 2001-2006, Phase II GENOA
participants that had a sibling willing and eligible to
participate underwent a neurocognitive testing battery to
assess several domains of cognitive and neurological
functioning, including the assessment of gait speed
(N=967). Participants were excluded from this analysis
if they were less than 60 years of age or gait velocities
>1.9m/s. The sample includes 471 European Americans
(55.0% female) with imputed genotypes and a measure
of gait speed on a 25 foot (7.6 meter) walking course.

Leiden Longevity Study (LLS)

The LLS has been designed to investigate biomarkers of
healthy ageing and longevity [27] and has been
described in detail previously [28]. It is a family-based
study consisting of 1,671 offspring of 421 nonagenarian
sibling pairs of Dutch descent, and their 744 partners.
DNA from the LLS was extracted from white blood
cells at baseline using conventional methods and
genotyping was performed with Illumina Human660W-
Quad and OmniExpress BeadChips (Illumina, San
Diego, CA, USA). Imputation was performed with
IMPUTE using the HapMap 2 reference panel [29].
Walking speed at usual pace was determined over 4
meters. Among participants with genome-wide data and
gait speed assessment 235 individuals were available
for the present study.

Osteoporotic Fractures in Men Study (MrOS)
Sweden (Malm6[MrOSMalmo] and Gothenburg
[MrOSGBG])

The Osteoporotic Fractures in Men (MrOS) study is a
multicenter, prospective study including older men in
Sweden, Hong Kong and the United States. The MrOS
Sweden study (n=3014) [30] consists of three sub-
cohorts from three different Swedish cities (n=1005 in
Malmo, n=1010 in Gothenburg, and n=999 in Uppsala).
Study subjects (men aged 69 to 81 years) were
randomly identified using national population registers.
A total of 62% of the MrOS Sweden subjects who have
both GAIT information and high quality imputed
genomic genotypes participated in the study (n=922 in
Malmo, n=960 in Gothenburg). To be eligible for the

study, the subjects had to be able to walk without
assistance, provide self-reported data, and sign an
informed consent. The study was approved by the ethics
committees at the Universities of Gothenburg, Lund,
and Uppsala. Informed consent was obtained from all
study participants. Genome-wide genotyping was
performed in the MrOS Gothenburg and MrOS Malméo
sub cohorts. Walking speed at usual pace was
determined over 6 meters. Both duration of the walk
and the number of steps were measured.

Expression quantitative trait loci (eQTL) analysis

A general overview of a subset of >50 eQTL studies has
been published [31], with specific citations for >100
datasets included in the current query following here.
Blood cell related eQTL studies included fresh
lymphocytes [32], fresh leukocytes [33], leukocyte
samples in individuals with Celiac disease [34], whole
blood samples [35-54], lymphoblastoid cell lines (LCL)
derived from asthmatic children [55, 56], HapMap LCL
from 3 populations [57], a separate study on HapMap
CEU LCL [58], additional LCL population samples [59-
65], neutrophils [66, 67], CD19+ B cells [68], primary
PHA-stimulated T cells [62, 65], CD4+ T cells
(20833654), peripheral blood monocytes [59, 68-72],
long non-coding RNAs in monocytes [73] and CD14+
monocytes before and after stimulation with LPS or
interferon-gamma [74], CD11+ dendritic cells before
and after Mycobacterium tuberculosis infection [75] and
a separate study of dendritic cells before or after
stimulation with LPS, influenza or interferon-beta [76].
Micro-RNA QTLs [77, 78], DNase-I QTLs [79],
histone acetylation QTLs [80], and ribosomal
occupancy QTLs [81] were also queried for LCL.
Splicing QTLs [82] and micro-RNA QTLs [83] were
queried in whole blood.

Non-blood cell tissue eQTLs searched included omental
and subcutaneous adipose [37, 48, 54, 63, 84], visceral
fat [37] stomach [84], endometrial carcinomas [85],
ER+ and ER- breast cancer tumor cells [86], liver [37,
84, 87-90], osteoblasts [91], intestine [92] and normal
and cancerous colon [93, 94], skeletal muscle [37, 95],
breast tissue (normal and cancer] [96, 97], lung [48, 98-
101], skin [48, 59, 63, 102], primary fibroblasts [62, 65,
103], sputum [104], pancreatic islet cells [105], prostate
[106], rectal mucosa [107], arterial wall [37] and heart
tissue from left ventricles [48, 108] and left and right
atria [109]. Micro-RNA QTLs were also queried for
gluteal and abdominal adipose [110] and liver [111].
Methylation QTLs were queried in pancreatic islet cells
[112]. Further mRNA and micro-RNA QTLs were
queried from ER+ invasive breast cancer samples,
colon-, kidney renal clear-, lung- and prostate-
adenocarcinoma samples [113].
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Brain eQTL studies included brain cortex [36, 72, 114-
116], cerebellar cortex [117], cerebellum [115, 118-
121], frontal cortex [117, 119, 121], gliomas [122],
hippocampus [117, 119], inferior olivary nucleus (from
medulla) [117], intralobular white matter [117],
occipital cortex [117], parietal lobe [120], pons [121],
pre-frontal cortex [118, 119, 123, 124], putamen (at the
level of anterior commissure) [117], substantia nigra
[117], temporal cortex [115, 117, 119, 121], thalamus
[119] and visual cortex [118].

Additional eQTL data was integrated from online
sources including ScanDB, the Broad Institute GTEx
Portal, and the Pritchard Lab (eqtl.uchicago.edu).
Cerebellum, parietal lobe and liver eQTL data was
downloaded from ScanDB and cis-eQTLs were limited
to those with P<1.0E-6 and trans-eQTLs with P<5.0E-8.
Results for GTEx Analysis V4 for 13 tissues were
downloaded from the GTEx Portal and then additionally
filtered as described below www.gtexportal.org:
thyroid, leg skin (sun exposed), tibial nerve, aortic
artery, tibial artery, skeletal muscle, esophagus mucosa,
esophagus muscularis, lung, heart (left ventricle),
stomach, whole blood, and subcutaneous adipose [48].
Splicing QTL (sQTL) results generated with
sQTLseeker with false discovery rate P<0.05 were
retained. For all gene-level eQTLs, if at least 1 SNP
passed the tissue-specific empirical threshold in GTEx,
the best SNP for that eQTL was always retained. All
gene-level eQTL SNPs with P<1.67E-11 were also
retained, reflecting a global threshold correction of
P=0.05/(30,000 genes X 1,000,000 tests).

Analysis Plan

1) Analysis Plan:
a. Imputation: all cohorts have imputed to HapMap,
using either BimBam or MACH.
b. Cohort-specific analyses
i. Multiple linear regression of imputed SNPs on
gait speed (m/s)
ii. All analyses will be sex-combined
iii. SNPs will be coded as additive model as a count
of the number of variant alleles present (1 degree of
freedom).
iv. Covariate adjustment:
1. age (at time of exam)
2. gender
3. study site (for cohorts with multiple sites)
4. principal components that control
population stratification (in some cohorts)
5. height
6. Osteoarthritis*

for

c. Meta-analysis: Inverse variance weighted meta-
analysis to be performed on summary statistics of

imputed data. Meta-analysis of gait speed outcome will
be performed using a fixed effects model of beta
estimates and standard errors from each cohort.

i. Significance threshold: A threshold of p-value
5x10-8 will be used to determine genome-wide
statistical significance.

*Cohorts with Osteoarthritis measurement will add a
variable yes/no converted to 1/0 for any sort of
osteoarthritis and will provide two analyses one with
and one without this variable.

— Cohorts without Osteoarthritis measurement will
stick to the original analytic plan.
— Cohorts with Osteoarthritis
provide:

I. Analysis which includes everyone with or
without osteoarthritis.

II. Analysis only for the one without this variable.

d. Cohorts with mixed ethnicity will be stratified by

race. Meta analysis will test both possibilities with the
additional race as a separate cohort and without.

measurement  will

2) Data format: The data delivery format for the meta-
analysis will be according to the CHARGE protocol for
file sharing.

a. ShareSpaces, a secure web-based file-sharing
system implemented by the University of Washington's
Catalyst computing group, will be used.

b. The following variables should be included when
sharing imputed results for meta-analysis (Table 11).
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SUPPLEMENTARY FIGURES
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Supplementary Figure 1. Q-Q plot of expected (red line) vs. observed (black dot line) —log10 p-values
for meta-analysis of genome-wide association studies of gait speed.
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Supplementary Figure 2. LocusZoom plots for the genes (7 genes) with most suggestive variants (not listed in the
top tens) associated with gait speed of the combined analysis (A) CEP112; (B) PHACTR1, (C) CNTN5, (D) FHOD3, (E)
PRIM2, (F) PTPRT, (G) ADAMTS18). In each plot, the -log10 of p values are on the left y-axis; the SNP genomic
position (HG19) on the x-axis; the estimated recombination rate from 1000 genomes Nov. 2014 EUR are on the
right y-axis and plotted in blue. The most significant SNP is in purple diamond and plotted using the p value attained
from the meta-analysis. SNPs are colored to reflect linkage disequilibrium (LD) with the most significant SNP in red
(pairwise r2 from 1000 genomes Nov. 2014 EUR). Gene annotations are from the SeattleSegAnnotation141.
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