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ABSTRACT

Several articles describe highly accurate age estimation methods based on human DNA-methylation data. It is
not yet known whether similar epigenetic aging clocks can be developed based on blood methylation data from
canids. Using Reduced Representation Bisulfite Sequencing, we assessed blood DNA-methylation data from 46
domesticated dogs (Canis familiaris) and 62 wild gray wolves (C. lupus). By regressing chronological dog age on
the resulting CpGs, we defined highly accurate multivariate age estimators for dogs (based on 41 CpGs), wolves
(67 CpGs), and both combined (115 CpGs). Age related DNA methylation changes in canids implicate similar
gene ontology categories as those observed in humans suggesting an evolutionarily conserved mechanism
underlying age-related DNA methylation in mammals.

INTRODUCTION

Technological breakthroughs surrounding genomic
platforms have led to major insights about age related
DNA methylation changes in humans [1-9]. In
mammals, DNA methylation represents a form of
genome modification that regulates gene expression by
serving as a maintainable mark whose absence marks
promoters and enhancers. During development,
germline DNA methylation is erased but is established
anew at the time of implantation [10]. Abnormal
methylation changes that occur because of aging
contribute to the functional decline of adult stem cells
[11-13]. Even small changes of the epigenetic landscape
can lead to robustly altered expression patterns, either
directly by loss of regulatory control or indirectly, via
additive effects, ultimately leading to transcriptional
changes of the stem cells [14].

Several studies describe highly accurate age estimation
methods based on combining the DNA methylation
levels of multiple CpG dinucleotide markers [15-18].
We recently developed a multi-tissue epigenetic age
estimation method (known as the epigenetic clock) that

combines the DNA methylation levels of 353 epigenetic
markers known as CpGs [17]. The weighted average of
these 353 epigenetic markers gives rise to an estimate of
tissue age (in units of years), which is referred to as
"DNA methylation age" or as "epigenetic age". DNA
methylation age is highly correlated (r=0.96) with
chronological age across the entire lifespan [8, 19, 20].
We and others have shown that the human epigenetic
clock relates to biological age (as opposed to simply
being a correlate of chronological age), e.g. the DNA
methylation age of blood is predictive of all-cause
mortality even after adjusting for a variety of known
risk factors [21-25]. Epigenetic age acceleration (i.e. the
difference between epigenetic and chronological age) is
associated with lung cancer [26], cognitive and physical
functioning [27], Alzheimer's disease [28], centenarian
status [25, 29], Down syndrome [30], HIV infection
[31], Huntington's disease [32], obesity [33],
menopause [34], osteoarthritis [35], and Parkinson's
disease [36]. Moreover, we have demonstrated the
human epigenetic clock applies without change to
chimpanzees [17] but it no longer applies to other
animals due to lack of sequence conservation.
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Many research questions and preclinical studies of anti-
aging interventions will benefit from analogous
epigenetic clocks in animals. To this end we sought to
develop an accurate epigenetic clock for dogs and
wolves. Dogs are increasingly recognized as a valuable
model for aging studies [37, 38]. Dogs are an attractive
model in aging research because their lifespan (around
12 years) is intermediate between that of mice (2 years)
and humans (80 years), thus serving as a more realistic
model for human aging than most rodents. Dogs have
already been adopted to model multiple human diseases
in gene mapping studies (e.g. squamous cell carcinoma
[39], bladder cancer [40]) and cancers are often the
cause of age-related mortality in domestic dogs [41].

The maximum lifespan of dogs is known to correlate
with the size of their breed [42-44]. Based on previous
studies in human [17], we expect that the age
acceleration (difference between epigenetic age and
chronological age) correlates with longevity. We
hypothesize that dogs whose epigenetic age is larger
than their chronological age are aging more quickly,
while those with negative value are aging more slowly.
Thus, we would expect to see a correlation between age
acceleration and dog breed size.

We also sought to build an epigenetic clock for gray
wolves because alternative age estimation methods
have limitations. Gray wolf age estimates have
traditionally been conducted through tooth wear
patterns, cranial suture fusions, closure of the pulp
cavity, and cementum annuli [45, 46]. Based on tooth
wear patterns, the age structure of a wolf pack is
typically skewed towards younger animals (<1-4 years
old), with few individuals >5 years of age [46, 47].
Sexually maturity is reached between 10 months and 2
years of age [48, 49]. In a wild social carnivore, group
living often results in high mortality rates. Gray wolves
live on average 6-8 years in natural populations, but
can live up to 13+ years in captivity with increased
reproductive success [45, 46].

RESULTS
Data set

We used Reduced Representation Bisulfite Sequencing
to generate DNA methylation data of 46 domestic dogs
(26 females, 20 males) and 62 gray wolves from
Yellowstone National Park (26 females, 36 males). The
age distribution of wolves is skewed towards younger
animals (Dogs: mean=5 years, median=4, range=0.5-14;
Wolves: mean=2.7, median=2, range=0.5-8) due to
younger mortality rates in natural populations compared
to domestic species, and that estimating the age in wild
specimens lacks precision. Additionally, we included

729 humans (388 females, 341 males) with a large age
range (mean=47.4, range=14-94).

Based on calculations and criteria described in the
Methods section, we constructed a matrix of high
confidence methylation levels across 108 canid blood
samples. Previous work has shown that there are locus-
specific significant methylation differences between
dogs and wolves [50]. Here, however, we sought to
identify a clock that correlated with age across both
canid species; thus, we removed the methylation sites
that showed species-specific divergence. This yielded a
set of 252,240 CpG sites for our modeling efforts. Of
these, 105,521 could be mapped to syntenic CpGs in the
human genome (hgl9) for functional annotation
purposes. Further, a subset of 9,017 sites are measured
by the human Illumina 405K array, which allowed us to
test for conservation of age correlations between these
evolutionarily divergent species (humans, dogs, and
wolves).

From these input sets of 10s to 100s of thousands of
CpGs, regression models were obtained using an
algorithm (see Methods) that selects a much smaller
number of CpGs by allowing regression coefficients to
go to zero. As the space of possible models is
combinatorially vast, there is no guarantee of global
optimality of the resulting models, and there are likely a
large number of models that would yield comparable
results. Thus, we make no assertions of biological
significance for the exact identity or number of CpGs in
a given model used here.

Conservation of age-correlated methylation between
dogs and wolves

To initially gauge whether it might be possible to create
a DNAm age clock for a multi-species group (i.e.
canids), we looked at the conservation of age-correlated
methylation in the two canid species. The global
correlation between the age effects across the two
species is small in magnitude (r=0.07, Fig. 1A) which
could be due to the following reasons: 1) it could reflect
poor accuracy of the chronological age estimate in
wolves, ii) it could reflect the relatively small sample
size, iii) it could reflect that wolves tended to be
younger than dogs in our study, i.e. the chronological
age distributions differed.

Conservation of age-correlated methylation between
canid species and human

To test for more distant evolutionary conservation of
age effects on DNA methylation between canids and
humans, we computed age correlations over a set of 729
human blood methylation array samples [6] and
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examined syntenic locations between the canine
(canFam3) and human (hgl9) genomes as described in
Methods. While the subset of measured DNA-
methylation sites common to all 3 species is relatively
small (~9000 CpGs), we see that the conservation of
age-correlation between ‘“canids” (pooled samples of
dogs and wolves) and human is statistically significant,
though small in magnitude (r=0.20, p=1x10*', Fig. 1B).
This conservation holds for dogs alone (r=0.20, p=6x10
85) but is weaker for wolves alone (r=0.11, p=1X10’25,
Fig. 1C, 1D).

The high correlation between dogs and humans is
remarkable because the two data sets were generated on
different platforms (RRBS versus the Illumina 450K

array).
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Leave one out estimate of the accuracy of the canid
epigenetic clock

DNAm age (also referred to as epigenetic age) was
calculated for each sample by regressing an elastic net
on the methylation profiles of all other samples and
predicting the age of the sample of interest. In the
course of our work, we found that pre-selecting subsets
of CpGs was helpful and computationally expedient.
This was done by computing correlations between
methylation and age and taking only those with absolute
correlation above 0.3. These pre-selection steps were
also performed in a leave-one-out manner for all cross-
validated results presented here. These predictions (in
years) were obtained by taking the exponential of the
output of the epigenetic aging model where ages were
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Figure 1. Conservation of epigenetic aging. Normalized correlation (z) between age and DNA methylation for CpG sites in one
species versus the same correlation computed at syntenic CpG sites in another species. The species comparisons are shown, as follows:
(A) Wolves versus Dogs, (B) Human versus Canid (pooled dogs and wolves), (C) Human versus Dogs, and (D) Human versus Wolves.
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log-transformed prior to regression. We see a strong
linear relationship between DNAm age and true age for
our 108 canid samples (Fig. 2A). The correlation
between predicted and actual ages using leave-one-out
cross-validation was 0.8 and the median absolute error
was 0.8 (years). The average number of CpGs in the
108 individual regression models was 122.3.

To examine the effects of pooling two species of canids,
we performed the same prediction (DNAm age calcula-
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tion) procedure on dogs and wolves, separately. We find
that the performance of these models is lower than the
canid model, with dogs showing a correlation of r=0.65
and wolves r=0.54 (Fig. 2B). The average number of
CpGs in the dog-only and wolf-only models were 58.5
and 62.9, respectively. These models, on average,
contain fewer CpGs than the combined canid models
as the smaller number of samples in each subset
provides less statistical support for the regression
algorithm.
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Figure 2. Accuracy of canid age clock. DNA methylation age (y-axis) versus chronological age (x-axis) for all canid samples
(green = dog, blue = wolf). (A) Results obtained using a leave-one-out cross validation over all 108 samples. (B) Results
obtained in each species separately using a leave-one-out cross validation. (C) Results obtained by regressing on all samples in
one species and predicting age on samples from the other species. (D) Final models for each grouping of samples.
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As another means of assessing the robustness of a
multi-species clock, we built one clock for each species
using all samples in that species and then applied it to
all samples in the other species. These clocks have
similar correlation to the dog only or wolf only clocks,
close to 0.6, utilizing a single regression model with 67
and 41 CpGs for the dog and wolf model, respectively
(Fig. 2C).

Final epigenetic aging clocks based on all animals

To determine the accuracy of our final models, we
regressed the penalized elastic net over the set of dogs
(41 CpGs), wolves (67 CpGs), and then both combined
(115 CpGs) (Fig. 2D). The penalized regression routine
(“elastic net”) utilizes an internal cross-validation to
select the optimal penalty parameter. While the entire
set of canids, and the subset of domesticated dogs could
be fit exactly (r=1.0), the wolf data alone was slightly
less amenable.

Age acceleration as a function of dog size

With the largest variation in size among terrestrial
vertebrates, the domestic dog not only spends most of
its life in an environment and lifestyle like its human
companions, but also displays a high similarity of
analogues to human disease [51, 52]. Though dog
breeds are diverse in nearly every aspect, smaller breeds
are known to live longer than larger breeds [42-44].
Recent genomic surveys have identified nine loci linked
to canine size determination, with seven of these loci

supporting  growth, cellular  proliferation, and
metabolism [53]. Of these, the growth hormone IGF1
has not only been of historic interest as a causative
locus controlling body size in mice [54-56], but also has
the most significant association with body size [57, 58].
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Figure 3. Age acceleration and dog breed. Age acceleration
(difference between predicted epigenetic age and actual
chronological age) is plotted against the maximum weight for
the breed of each dog sample.

Table 1. Functional enrichment studies of age related CpGs in canids.

Functional Annotation Hypergeometric FDR
Q-Value
A. Functional roles of CpGs that lose methylation with age
compartment pattern specification 2.8x10™
proximal tubule development 4.3x10™
carbohydrate derivative transport 8.8x10™
Notch signaling pathway 1.3x107
B. Functional roles of CpGs that gain methylation with age
regulation of transcription, DNA-dependent 1.6x10™"
regulation of RNA biosynthetic process 8.8x107"
organ development 1.0x10™"
embryonic organ morphogenesis 1.8x10™"°
anatomical structure development 8.3x10"°
Set 'Suz12 targets": genes identified by ChIP on chip as targets of the Polycomb 2.6x10™"°
protein SUZ12 in human embryonic stem cells.
Genes with high-CpG-density promoters (HCP) bearing the H3K27 tri-methylation 6.9x10”
(H3K27me3) mark in brain.
Genes with high-CpG-density promoters (HCP) bearing histone H3 trimethylation 1.5x10°®
mark at K27 (H3K27me3) in neural progenitor cells (NPC).
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We found a correlation of 0.25 between age acceleration
and breed weight (Fig. 3). Given the limited sample size
for dogs (n = 46) we did not reach a significance below
the standard threshold of 0.05. However, we expect that
a study with a larger cohort might have sufficient power
to show that these trends are in fact significant.

Functional significance of DNAm age sites

As described in Methods, mapping of canid CpGs to the
human genome yielded 105,521 sites. We utilized this
entire set as “background” and selected subsets of CpGs
based on the statistical significance of their correlation
with age as “foreground”. These subsets are not meant
to correspond exactly to any of the particular regression
models, but to capture the general association of age-
related CpGs (from which the regression models are
drawn) and biological function inferred via proximity of
the CpGs to known genes.

We also partitioned the CpGs into groups with positive
(gain of methylation) or negative (loss of methylation)
with age, as these two groups have been noted to
correspond to separate classes of biomolecular function
in previous work [17, 59]. As negatively correlated sites
generally partition to distal parts of gene bodies or inter-
genic regions, they tend to have limited annotation.
Conversely, positively correlated sites localize to
promoter regions of genes for which there is generally
more detailed annotation. To ensure the selection of
statistically significant age-related CpGs, we performed
a multiple-testing correction [60] on the p-values and
selected only those with adjusted values <= 0.05. The
annotation tool (GREAT) accesses a large and diverse
number of databases and function ontologies. Here, we
report those results edited down to non-redundant
highlights. We found that a subset of 91 negatively-
correlated CpGs (0.1% of total) localized to 125 genes
that function in cellular organization and the Notch
pathway, an evolutionarily conserved cell-to-cell
signaling pathway important for cell proliferation and
differentiation (Table 1A). The subset of 90 positively-
correlated CpGs (0.1% of total) localized to 71 genes
with vital roles in embryonic organismal development
and chromatin states (Table 1B). In summary, the canid
genes whose DNA-methylation changes are most
strongly correlated to age (both negatively and
positively) are critical developmental genes; those that
determine cell fate and organ development in the
embryonic stage of life, as has been noted in previous
work with DNA-methylation in humans [17, 59].

DISCUSSION

More broadly, our study demonstrates that DNA-
methylation correlates with age in dogs and wolves as it

does in human and related species. This age-dependence
of DNA-methylation is conserved at syntenic sites in
the respective genomes of these canid species as well
for more distantly related mammalian genomes such as
human. Strikingly, the age associations of syntenic
CpGs is well conserved (r=0.20) even though the data
were generated on different platforms (RRBS vs
[lumina methylation array). Overall, our study
demonstrates that dogs age in a similar fashion to
humans when it comes to DNA methylation changes.

Race/ethnicity and sex have a significant effect on the
epigenetic age of blood in humans [61]. Further, genetic
loci have been found that affect epigenetic aging rates
in humans [62]. It will be interesting to determine
whether sex effects can also be observed in dogs and
whether genetic background relates to the ticking rate of
the canid clock. Based on our preliminary blood
samples of 108 canid specimens, including both dogs
and wolves, we accurately measured the methylation
status of several hundred thousand CpGs. We
demonstrate that these data can produce highly accurate
age estimation methods (epigenetic clocks) for dogs and
wolves separately. By first removing sites that were
variable between dogs and wolves, we could also
establish a highly accurate epigenetic clock for all canids
(i.e. dogs and wolves combined). This clock allows us to
estimate the age of half the canids to within a year.

Our study has several limitations including the
following. First, the sample size was relatively low
(n=108). There is no doubt that more accurate clocks
could be build based on larger sample sizes. Second, we
only focused on blood tissue. Future studies could
explore other sources of DNA such as buccal swabs.
Third, the chronological ages of the wolves are
probably not very accurate since they were estimated by
the investigators.

In human studies, we have found that lifestyle factors
(e.g. diet) have at best a weak effect on cell-intrinsic
epigenetic aging rates measured by the 353 CpG based
clock [63]. By contrast, extrinsic measures of epigenetic
age acceleration, which also capture age related changes
in blood cell composition, relate to lifestyle factors that
are known to be protective in humans (e.g. consumption
of fish, vegetables, moderate alcohol, and to higher levels
of education). Biomarkers of metabolic syndrome were
associated with increased DNAm age but we could not
detect a protective effect of metformin in this observatio-
nal study [63]. The presented canid aging clocks open up
the possibility of assessing dietary and pharmacological
intervention on canid aging. The genome coordinates for
the CpGs and corresponding regression coefficients of
our final canid age estimator and of our dog age estimator
can be found in Table 2 and Table 3, respectively.
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Table 2. Multivariate model of canid age.

Canine coordinate Coef Mean Corr(age,met | Human coordinate Proximal genes
(canFam3) meth h) (hgl9)
Intercept term 4.382
chrl: 815007 -0.405 0.95 -0.27 | chrl8: 77637184 KCNG2 (+13517), PQLC1 (+74479)
chrl: 48720985 0.5191 0.95 0.31
chrl: 49472858 0.2594 0.64 0.28
chrl: 90590933 -0.0041 0.94 -0.32 | chr9: 1872401 Intergenic
chrl: 98573761 -0.0837 0.6 -0.42
chrl: 98573781 -0.1991 0.2 -0.37
chrl: 101051499 -0.2786 0.79 -0.4 | chrl9: 57398441 ZIM2 (-46345)
chrl: 108136920 0.933 0.98 0.22 | chrl9: 48626542 PLA2G4C (-12469), LIG1 (+47317)
chrl: 117122008 -0.2091 0.82 -0.33 | chrl19: 36035408 TMEM147 (-1088)
chrl: 117495962 -0.1664 0.86 -0.41 | chrl9: 35540744 FXYD3 (-66421), HPN (+9335)
chrl: 121791246 -0.3188 0.67 -0.38 | chr19: 30153492 PLEKHF1 (-2470)
chrl: 121796139 0.3134 0.96 0.28
chrl: 121864927 0.3367 0.83 0.3 | chr19: 30042558 POP4 (-52365), VSTM2B (+25153)
chr2: 10101121 -0.0266 0.65 -0.29
chr2: 30853505 -0.0048 0.93 -0.28 | chrl0: 4714389 Intergenic
chr2: 36347652 0.0248 0.37 0.36 | chr5: 140749805 PCDHGAG (-3845), PCDHGBS3 (-
25)
chr2: 71080824 0.0288 0.86 0.33 | chrl: 30051475 Intergenic
chr2: 82210243 -0.387 0.94 -0.22 | chrl: 15602565 Intergenic
chr2: 84377388 -0.4829 0.97 -0.36 | chrl: 11951757 NPPB (-32770), KIAA2013
(+34722)
chr2: 84445018 0.0924 0.26 0.33 | chrl: 11864680 CLCNG (-1587), MTHEFR (-1379)
chr3: 1128258 -0.0993 0.94 -0.37
chr3: 51442070 -0.0641 0.8 -0.3 | chrl5: 88733456 NTRK3 (+66204)
chr3: 60468935 -0.2449 0.82 -0.43 | chr4: 8834358 HMX1 (+39184)
chr3: 62880832 0.4931 0.88 0.25 | chr4: 17638199 MED28 (+21946)
chr3: 84450199 -0.0696 0.89 -0.49 | chr4: 25978965 SMIM20 (+63140)
chr4: 28034141 -0.6356 0.14 -0.33 | chrl0: 79971431 Intergenic
chrd: 28162022 -0.1129 0.89 -0.32 | chr10: 80116134 Intergenic
chr4: 28489863 0.0289 0.7 0.24 | chrl10: 80479452 Intergenic
chr4: 79153238 0.1058 0.09 0.42 | chr5: 27038840 CDH?9 (-148)
chr5: 4750111 -0.089 0.35 -0.5 | chrl1: 129969307 ST14 (-60149), APLP2 (+29507)
chrl4: 41413362 -0.2829 0.57 -0.33 | chr7: 28355716 CREBS (-96427)
chr14: 59995975 -0.0142 0.73 -0.34 | chr7: 121776852 AASS (-2977)
chrl5: 17780647 1.3988 0.97 0.29 | chrl4: 20915434 TEP1 (-33855), OSGEP (+7829)
chrl5: 17785631 -0.3897 0.94 -0.43 | chrl4: 20921454 APEX1 (-1899), OSGEP (+1809)
chrl6: 131577 -0.0629 0.73 -0.31
chrl6: 247019 0.8011 0.83 0.34
chrl7: 18033866 0.2802 0.82 0.32 | chr2: 23704553 Intergenic
chrl8: 1791242 -0.0118 0.94 -0.35 | chr7: 50515762 FIGNLI (+1659)
chr18: 25850449 -0.2607 0.92 -0.34
chr18: 33813035 -0.1549 0.78 -0.41 | chrll: 33962891 LMO2 (-49056)
chr18: 43740411 -0.1646 0.94 -0.34 | chrll: 45669463 CHST1 (+17708)
chr18: 48905778 0.0765 0.72 0.41 | chrll: 68925723 Intergenic
chr18: 49633631 -0.0336 0.49 -0.22 | chrll: 67984189 SUV420H1 (-3308)
chr18: 53920336 -0.0957 0.8 -0.4
chr20: 44455198 0.3338 0.72 0.46
chr20: 49366316 -0.0004 0.71 -0.28 | chrl9: 12895268 HOOK?2 (-8932), JUNB (-7041)
chr21: 23088752 -0.4109 0.88 -0.28 | chrll: 75219103 GDPDS5 (+17844)
chr21: 47917499 -0.0235 0.84 -0.29 | chrll: 27349807 Intergenic
chr22: 56299850 -0.2509 0.89 -0.32 | chrl3: 108022629 Intergenic
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chr23: 24782165 -0.1049 0.89 -0.33 | chr3: 18277027 Intergenic

chr23: 24782179 -0.658 0.94 -0.31 | chr3: 18277013 Intergenic

chr24: 42551119 -0.2892 0.93 -0.35 | chr20: 56148739 PCKI (+12604), ZBP1 (+46789)

chr24: 45589901 0.2135 0.97 0.27 | chr20: 59877087 CDH4® (+49606)

chr26: 220859 0.0037 0.98 0.27

chr26: 5991914 -0.2154 0.93 -0.37 | chrl2: 124138408 TCTN2 (-17251), GTF2H3 (+20033)

chr26: 11457252 -0.3679 0.94 -0.28 | chrl2: 114784708 TBX5* (+61538)

chr26: 37645878 -0.4125 0.93 -0.3

chr27: 1189935 -0.0497 0.78 -0.39 | chrl2: 54471815 HOXC4™"*Y (+24155)

chr27: 2886690 -0.0004 0.86 -0.44 | chrl2: 52559286 KRT80 (+26497), C120rf44
(+95532)

chr27: 45394279 -0.4689 0.93 -0.45

chr28: 23823079 -0.2956 0.91 -0.31

chr28: 40564054 -0.0603 0.96 -0.33 | chr10: 134593678 NKX6-2*" (+5877)

chr30: 15275091 -0.0557 0.89 -0.31

chr30: 27934524 -0.0484 0.93 -0.26 | chrl5: 63648005 CAI12 (+26354), APHIB (+78253)

chr30: 38620897 0.8567 0.94 0.33 | chrl5: 78043186 Intergenic

chr31: 27720671 0.0332 0.16 0.46 | chr21: 34444104 OLIG1*? (+1655)

chr31: 36955453 -0.5267 0.91 -0.36 | chr21: 44079991 PDE9A (+6127)

chr31: 37492782 -0.4942 0.49 -0.56

chr32: 1431916 -0.2835 0.07 -0.3 | chr4: 77752402 Intergenic

chr32: 38110814 -0.076 0.87 -0.35

chr33: 22992599 -0.0003 0.93 -0.34 | chr3: 119042586 ARHGAP31 (+29367)

chr33: 25783582 0.3819 0.98 0.34 | chr3: 122422615 PARP14 (+23151), HSPBAPI
(+90055)

chr33: 31142995 -0.8311 0.95 -0.3 | chr3: 194291430 ATP13A3 (-72338), TMEM44
(+62719)

chr34: 40858941 -0.1582 0.93 -0.38 | chr3: 177096996 Intergenic

chr35: 2307155 -0.1171 0.94 -0.32 | chr6: 1886203 Intergenic

chr36: 2545193 0.2403 0.84 0.47 | chr2: 157179898 NR4A2 (+9329)

chr36: 19969591 0.0515 0.27 0.38 | chr2: 177025691 HOXD1**4 (-27615), HOXD4*>4
(+9742)

chr37: 6301 -0.1058 0.69 -0.43

chr37: 25454687 0.4555 0.32 0.33 | chr2: 219736500 WNT10A***¢ (-8584), WNT6*
(+11957)

chr38: 16230281 0.1055 0.92 0.23 | chrl: 221912099 DUSP10 (+3418)

chr38: 22365525 -0.1451 0.89 -0.36 | chrl: 159724037 CRP (-39659), DUSP23 (-26755)

chr38: 22792877 0.7599 0.72 0.43 | chrl: 159145579 DARC (-29621), CADM3" (+4181)

chrX: 80013740 -0.133 0.85 -0.29

Genome coordinates and coefficient values for predicting a log (base e) transformed version of chronological age. These coefficients
were found by regressing a log-transformed version of age on the RRBS DNA-methylation measured from 108 canid blood samples.
Since chronological age was log-transformed prior to regression, it is important to exponentiate the age estimate from this model to
arrive at age estimates in units of years. We provide the mean methylation and Pearson correlation with age for each individual CpG.
Where possible, we identify, via synteny to the human genome, genes that are proximal to the CpGs in our models. Numbers in
parentheses are the distance in bases to the Transcription Start Site of the gene. Additionally, we note those genes with experimentally
inferred relevance to cellular identity (pluripotency).

Genes experimentally identified as targets of pluripotency factors and the Polycomb repressor complex [69, 70]

® genes identified by ChIP on chip as targets of the Polycomb protein EED in human embryonic stem cells.

b genes possessing the trimethylated H3K27 (H3K27me3) mark in their promoters in human embryonic stem cells, as identified by ChIP
on chip
“ Polycomb Repression Complex 2 (PRC) targets; identified by ChIP on chip on human embryonic stem cells as genes that: possess the
trimethylated H3K27 mark in their promoters and are bound by SUZ12 and EED Polycomb proteins

¢ genes identified by ChIP on chip as targets of the Polycomb protein SUZ12 in human embryonic stem cells
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Table 3. Multivariate model of domesticated dog age.

Canine coordinate (canFam3) | Coef | Mean Corr(age,meth) Human coordinate proximal genes
Meth (hgl9)

(Intercept) -6.9009

chrl: 98804509 -0.1771 0.92 -0.56 | chr9: 95371248 ECM2 (-72912), IPPK (+61298)

chr2: 34467253 -0.1762 0.96 -0.52 | chr10: 323319 Intergenic

chr2: 50165769 1.8403 0.97 0.56 | chr5: 63460330 RNF180 (-1378)

chr3: 54128482 0.1444 0.77 0.51 | chrl5: 85429683 PDESA™" (-93987), SLC28A1 (+1771)

chrd: 28320267 -0.4038 0.94 -0.43 | chr10: 80292869 Intergenic

chr5: 19204758 -0.5393 0.31 -0.62 | chrl1: 114000061 ZBTB16™™%! (+69747)

chr5: 32946701 0.1414 0.63 0.67 | chrl7: 8027247 ALOXE3"™" (-4883), HES7*>*! (+154)

chr5: 57889544 0.1104 0.88 0.45 | chrl: 3202081 Intergenic

chr6: 31347568 -0.0245 0.64 -0.5 | chrl6: 11536754 | ENSGO00000188897 (+80689), RMI2 (+97467)

chr6: 77030251 0.5807 0.82 0.6 | chrl: 68732333 WLS™ (-34106)

chr7: 54060517 0.3047 0.06 0.48 | chrl8: 33708261 ELP2 (-1599), SLC39A6 (+1019)

chr8: 50434546 0.0351 0.91 0.42 | chrl4: 78126349 SPTLC2 (-43234), ALKBHI1 (+48013)

chr9: 58841067 0.318 0.15 0.61 | chr9: 126779366 LHX2**4 (+5478)

chr10: 21355951 0.3876 0.86 0.52

chr10: 55453590 -0.4182 0.95 -0.75 | chr2: 54776879 SPTBNI (+93458)

chr10: 56694481 0.4854 0.09 0.46 | chr2: 56151248 EFEMP1 (+25)

chr10: 62832468 0.2077 0.77 0.6 | chr2: 63279783 OTX 1" (+1847)

chr10: 62832512 0.2347 | 0.58 0.67 | chr2: 63279827 OTX1**4 (+1891)

chrll: 4422863 0.7296 0.91 0.44 | chr5: 113831979 Intergenic

chrl1: 56812470 0.0579 | 0.87 0.47 | chr9: 102590004 NR4A3**%4 (+996)

chrll: 68812130 1.204 0.95 0.5 | chr9: 117441733 C9orf91 (+682438)

chrl2: 67228192 1.4284 0.98 0.39 | chr6: 110931985 Intergenic

chrl2: 67482078 -0.2241 0.19 -0.53 | chr6: 111267687 GTF3C6 (-12075), AMD1 (+71715)

chrl2: 67482081 -0.0314 0.26 -0.48 | chr6: 111267690 GTF3C6 (-12072), AMDI1 (+71718)

chr12: 71716109 0.0065 0.82 0.34

chr14: 8324605 0.3087 0.65 0.59 | chr7: 127670876 LRRC4 (+246)

chrl4: 34373167 0.2091 0.76 0.64 | chr7:20371740 ITGBS (+995)

chr18: 36757482 -0.403 0.83 -0.63 | chrl1: 30565405 MPPED?2 (+36637)

chr19: 22964392 -0.0157 0.89 -0.54 | chr2: 128408298 GPR17 (+4860), LIMS2 (+13821)

chr20: 43010636 0.4045 0.97 0.5

chr20: 44455198 0.0664 0.72 0.47

chr20: 56821233 1.2199 0.98 0.42 | chr19: 2210771 SF3A2" (-25748), DOTIL (+46624)

chr22: 49950553 0.1423 0.54 0.63 | chrl13: 100636088 ZIC2%(+2063)

WwWw.aging-us.com

1063

AGING




chr24: 37978456 -0.0979 0.77 -0.59

chr28: 39644410 0.0856 0.84 0.37

chr30: 38620897 1.4441 0.94 0.51 | chrl5: 78043186 Intergenic
chr31: 37492782 -0.0028 0.47 -0.51

chr33: 23073877 -0.0296 0.96 -0.52 | chr3: 119134135 TMEM39A (+48393)
chr34: 40999085 -0.1395 0.97 -0.46 | chr3: 177284378 Intergenic
chr36: 2545142 0.432 0.5 0.62 | chr2: 157179848 NR4A2 (+9379)

Genome coordinates and coefficient values for predicting a log (base e) transformed version of chronological age. These
coefficients were found by regressing a log-transformed version of age on the RRBS DNA-methylation measured from 46
domesticated dog blood samples. Since chronological age was log-transformed prior to regression, it is important to
exponentiate the age estimate from this model to arrive at age estimates in units of years. We provide the mean methylation
and Pearson correlation with age for each individual CpG. Where possible we identify, via synteny to the human genome,
genes that are proximal to the CpGs in our models. Numbers in parentheses are the distance in bases to the Transcription
Start Site of the gene. Additionally, we note those genes with experimentally inferred relevance to cellular identity
(pluripotency).

Genes experimentally identified as targets of pluripotency factors and the Polycomb repressor complex [69, 70]

% genes identified by ChIP on chip as targets of the Polycomb protein EED in human embryonic stem cells.

b genes possessing the trimethylated H3K27 (H3K27me3) mark in their promoters in human embryonic stem cells, as
identified by ChIP on chip

° Polycomb Repression Complex 2 (PRC) targets; identified by ChIP on chip on human embryonic stem cells as genes that:
possess the trimethylated H3K27 mark in their promoters and are bound by SUZ12 and EED Polycomb proteins

d genes identified by ChIP on chip as targets of the Polycomb protein SUZ12 in human embryonic stem cells

METHODS Culling species-specific differential methylation

Reduced representation bisulfite sequencing (RRBS) To exclude species-specific differential methylation as a

We obtained previously published canine RRBS confounder, we first constructed a methylation matrix

methylation data as CGmap files (see Janowitz, Koch, Wlth. no d(l;g sargplesl fWIth Sa £es greil:ter th?ln Cth(e}:
et al. 2016) [50]. Both wolf and dog data were aligned maximum observed wolf age (8 years). For cach &b
we then computed a t-test of the dog methylation values

versus the wolf methylation values and excluded those
with t >= 2 from use in regression modelling.

to the canine genome (canFam3).

Data processing

For each CpG site in each sample we estimated the Computing age correlations for DNA methylation
methylation frequency as the number of methylated

mapped read counts over the total mapped read counts When comparing age-correlations computed in datasets
and computed a corresponding 95% confidence interval of different sizes, we use a z-score instead of the
from the binomial distribution [64]. For inclusion in our Pearson correlation coefficient. A Student t-test statistic

analysis, we required that each CpG site had confident
methylation frequencies in at least 95% of samples.
Confidence was defined as having a confidence interval
smaller than 0.63 (roughly equivalent to requiring a

. . v .
for testing whether a Pearson correlation ( ¢) is
different from zero is given by

minimum of 15 mapped reads at that site). For the m —2-r,

remaining elements in the data matrix, we used the Z I

frequencies calculated regardless of confidence or 1-7,

imputed missing values using R package “softimpute” where mg denotes the number of observations (i.e.
with type option “ALS” [65]. samples) in the s-th data set.
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Regression

Penalized regression models were built using glmnet
[66]. Given that we would like to see a reduction in the
number of predictors from potentially hundreds of
thousands of CpGs as input, we utilized the “elastic net”
version of glmnet corresponding to an alpha parameter
of 0.5. For all results reported here, the internally cross-
validated (cv.glmnet) was utilized to automatically
select the optimal penalty parameter.

Functional annotation and multi-species synteny

Canid methylation sites (using coordinates from the
CanFam3 draft genome) were first mapped to the
human genome (hg19) where possible so that functional
analysis tools with access to the most complete and
detailed annotations could be utilized. This mapping
was made using the "liftOver" tool and associated
human to canine chain files available at the UCSC
Genome Browser[67]. The human genome coordinates
were then used as input to the Genomic Regions
Enrichment of Annotations Tool (GREAT) [68].
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