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ABSTRACT

We investigated the role of a single nucleotide polymorphism rs3764030 (G>A) within the human GRIN2B
promoter in mental processing speed in healthy, cognitively intact, older adults. In vitro DNA-binding and reporter
gene assays of different allele combinations in transfected cells showed that the A allele was a gain-of-function
variant associated with increasing GRIN2B mRNA levels. We tested the hypothesis that individuals with A allele
will have better memory performance (i.e. faster reaction times) in older age. Twenty-eight older adults (ages 65-
86) from a well-characterized longitudinal cohort were recruited and performed a modified delayed match-to-
sample task. The rs3764030 polymorphism was genotyped and participants were grouped based on the presence
of the A allele into GG and AA/AG. Carriers of the A allele maintained their speed of memory retrieval over age
compared to GG carriers (p = 0.026 slope of the regression line between AA and AG versus GG groups). To
validate the results, 12 older adults from the same cohort participated in a different version of the short-term
memory task. Reaction times were significantly slower with age in older adults with G allele (p < 0.001). These
findings support a role for rs3764030 in maintaining faster mental processing speed over aging.

INTRODUCTION

Cognitive aging and onset of dementia initially affect
short-term memory, whereas long-term memory is
largely retained. A consistent finding in the cognitive
aging literature is the general slowing in mental
processing speed, manifesting as increased reaction
times during cognitive tasks [1]. Compared to young
adults, middle age and older adults exhibit slowing in
mental processing speed during working memory tasks
[2]. Additionally, neural responses in the visual cortex

in response to visual stimuli are delayed in older
individuals [3]. Multiple brain imaging studies have
demonstrated that to accomplish a simple cognitive
task, older adults require the activation of additional
brain networks than young adults, possibly as a
compensatory mechanism [4, 5, 6, 7].

Despite progress in cognitive and brain aging research,
the molecular and cellular basis for inter-individual
differences in brain aging and why some older adults
retain their sharp mind, is not yet well understood.
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Significant relations of genetic factors and individual
differences in working memory performance of healthy,
cognitively intact, older adults have been demonstrated
[8]. These previous studies implicated the contribution of
genetic variation in dopaminergic/noradrenergic genes in
cortical activity, and to inter-individual variation in
working memory and decision behavior. Other neuro-
transmitter systems are also important in memory
performance, but have been understudied. Of particular
interest is the N-methyl-D-aspartate (NMDA) receptor,
an ionotropic glutamate receptor central in synaptic
plasticity underlying learning and memory formation
[9,10]. Dysregulation of the NMDA receptor is used to
model dementias and Alzheimer’s disease (AD) [11,12]
in rodents. A mouse model of AD demonstrated that
soluble amyloid beta oligomers can interact with the pore
forming GIuN2B subunit to induce hyperexcitability of
the NMDA receptor, blocking long term synaptic
potential and inducing excitotoxicity [13].

A genome wide association study (GWAS) identified
two single nucleotide polymorphisms (SNPs) in introns
of the GRIN2B gene (GRIN2B), encoding the GluN2B
subunit, that were significantly over-represented in
patients with AD [14]. This was the first finding of a
genetic  association between GRIN2B and an
endophenotype. The GIuN2B subunit is expressed in
neurons in the hippocampus and forebrain. Genetic and
pharmacological animal studies demonstrated that
genetic ablation of GRIN2B or pharmacological
inhibition of GIluN2B resulted in decreased memory
formation and consolidation [15, 16]. In contrast,
transgenic animals overexpressing GluN2B displayed
superior learning and memory performance compared to
wild types [17]. In addition, decreased levels of
GIuN2B protein are correlated with advanced age in the
hippocampus of aging mice [18] and decreased levels of
GRIN2B mRNA during Alzheimer’s disease progression
[19]. Interestingly, memory in aged mice can be rescued
by enhanced expression of GluN2B [20], suggesting an
approach for developing cognitive enhancers.

Transcription of GRIN2B is controlled by several
proteins including members of the E26 transforming-
specific (ETS) transcription factor family [21, 22, 23],
cyclic AMP response element binding protein (CREB),
and nuclear factor kappa B (NF-xB). The ETS
transcription factor family is characterized by a central
5’-GGA(A/T)-3> DNA binding site with flanking
sequences that are thought to contribute to the ETS
binding specificity [24]. At present, 28 members of the
ETS family, subdivided into 12 subgroups, have been
identified in humans [24, 25]. Researchers have used
combined chromatin immunoprecipitation, microarrays,
or massively parallel sequence analysis to identify a
subset of ETS transcription factors that preferentially

bind the 5’-CCGGAACT-3" eight nucleotide sequence
in various cell types [24,26]. In particular Elk-1, known
for its role in pro-apoptosis and pro-differentiation in
neurons, has been shown to be involved in learning and
memory [27, 28].

Here, we investigated the role of the single nucleotide
polymorphism (SNP) rs3764030 within the GRIN2B
promoter region in working memory retrieval in
healthy, cognitively intact older adults. We demonstrate
in two experiments that the rs3764030 G>A SNP forms
a de novo ETS binding site resulting in a gain-of-
function phenotype, which is associated with
maintained mental processing speed over aging.

RESULTS

The SNP rs3764030 A allele creates a novel in vitro
ETS transcription factor binding site

We tested the hypothesis that a SNP (rs 3764030, G>A)
within the promoter region of GRIN2B gene produces a
de novo ETS family transcription factor binding site.
An in vitro DNA binding assay was developed using
purified Elk-1, an ETS family member expressed in the
central nervous system [28], and DNA targets
containing either (1) the consensus ETS core binding
site (GGAA/T), (2) the ETS binding site identified in
the GRIN2B promoter region (GGAA, A allele), or (3)
without the ETS binding site (GGGA, G allele). The
results in Figure 1 show that the A allele DNA probe
bound recombinant Elk-1 to a greater extent than the G
allele DNA probe (Panel A). When the same gel was
stained for protein, it was readily apparent that the A
allele DNA probe had more protein associated with it
than the G allele DNA probe (Panel B).

NMDA receptor activation in N2a cells transfected
with rs3764030 A allele plasmid induced greater
reporter gene activity than transfection with
rs3764030 G allele

Murine neuron-like N2a cells, which express Elk-1 [29]
and NMDA receptors [30], were used to study the
function of the SNP rs3764030. Differentiated cells
were transfected with plasmids containing either the
rs3764030 A or G allele and firefly luciferase and a
second plasmid containing Renilla luciferase.
Transfected cells were stimulated with different
concentrations of NMDA (0, 10, 30, 50, 70 uM) and
luciferase activities measured. A dose-dependent
increase in Firefly/Renilla luciferase activity was seen for
the A allele (Fig. 2). N2a cells transfected with the SNP
rs3764030 G allele did not respond to NMDA. These
data suggest that the A allele produces an NMDA
receptor gain-of-function phenotype.
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Figure 1. Binding of recombinant Elk-1 protein to dsDNAs containing the rs3764030 variant A
allele from the human GRIN2B gene promoter. Double-stranded DNA targets (Methods) were
incubated withl pug recombinant human Elk-1 protein on in EMSA buffer. DNA-protein complexes were
electrophoresed through 6% polyacrylamide gels in HEPES buffer pH 6.3, without polydldC. The gel was then
stained with the SYBR Green to visualize DNA (A) and SYPRO Ruby for protein bound to DNA (B). The stained
gel was scanned in G:BOX (Syngene, US) for imaging. Elk-1 bound to DNA is indicated by the arrow.
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Figure 2. Concentration dependent response of human GRIN2B promoter in N2a cells carrying
either the A or G alleles of rs3764030 to NMDA. Luciferase reporter gene plasmids were constructed
in pGL 4.10 (to produce Firefly luciferase, Promega, US). Luciferase reporter plasmids and the pGL4.75
plasmid (to produce Renilla luciferase as a reference) were co-transfected into retinoic acid differentiated
N2a cells and assayed for Methods). After 24 hours of transfection, the cells were incubated for six hours
with 0, 30, 50, 70 or 90 uM NMDA for transcription factors binding and then replaced with complete media
(with 10% FBS) and cultured for an additional 40-44 hrs. Data are presented as means =+ SE.
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Participant characteristics

A description of the 28 healthy aged adults in
Experiment 1 stratified by rs3764030 genotype is
provided in Table 1.

Participants (n = 28, 15 GG vs 13 A allele carriers):
allele frequencies met Hardy-Weinberg expectation
based on frequencies observed in European populations.

When stratified by A allele carriers and GG genotypes,
the groups did not differ based on age, sex, education,
or APOE €4 carrier status (Table 1). Both genotype
groups had high cognitive function and had comparable
mean scores of 29 on the Mini-Mental State Exam.
(MMSE; Table 1).

Experiment 1. Association of rs3764030 genotype
with memory performance

The NMDA receptor has been shown to be critical for
learning and memory. We therefore investigated if the
SNP rs3764030 in the GRIN2B promoter region would
correlate with a memory performance phenotype. We
hypothesized that aged individuals with the SNP
rs3764030 A allele would perform better in a visual
memory test than those with a homogenous G allele.
Using the Delayed Match-to-Sample (DMS) task, we
determined that there was a significant correlation
between participants’ age and reaction time when
grouped based on SNP rs3764030 genotype. A positive
correlation between age and reaction time was found in
subjects with the GG genotype (Fig. 3). In contrast, sub-

Table 1. Participant characteristics for Experiment 1.

A carrier GG P-value

Age 75.4+£55 73.5+6.0 0.39
Sex (M/F) 6/7 6/9 0.96
Education 16.1 £2.8 16.2+£2.6 0.91
(Years)

MMSE 29.1+0.86 29.2 4+ 0.68 0.34
APOE ¢4 11/3 11/2 0.93
Status (0/1)

Two-tailed P-values were obtained from ANOVA for continuous traits, or by chi-
square tests, for categorical variables. APOE €4 status: 0 = non-carrier, 1 = €4

carrier.
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Figure 3. Reaction time in Experiment 1 participants with increasing age based
on stratification by GG genotype and A allele carriers (AA and AG genotypes)
group differences. A significant difference in the slopes of the regression lines was
observed for A allele carriers (-3.99 + SE 3.47) versus the GG genotype group (5.84 + SE
2.28) (p = 0.026). R? for GG regression was 0.336 while R? for A allele carriers was 0.107.
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jects in the AA and AG genotype group (A allele
carriers) had a negative correlation between age and
reaction time (Fig. 3). The slopes of the regression lines
differed significantly between subjects with and without
an A allele (-3.99 = SE 3.47 for A allele carriers vs 5.84
+ SE 2.28 for GG; t(24) = 2.37, p = 0.026). The
negative slope of the regression line for A allele carriers
was associated with improved performance, but was not
significantly different from a flat slope (p = 0.275).
This may be due to the dispersion from combining AA
and AG genotyges. The R* for GG regression was
0.336 while R for A allele carriers was 0.107,
indicating greater variability in reaction time. In a
different measure, mean reaction time was not
significantly different between A allele carriers and the
GG genotype group (A allele carriers: 583 + 81 msec;
GG 583 £ 54 msec; p = 0.490, Students’ t-test).

Experiment 2. Replication sample

To validate the results from the Experiment 1, we
performed a second experiment using a shorter and
slightly simpler version of the working memory task
(See Methods section).

The results from Experiment 2 showed GG and A allele
carrier did not differ in memory accuracy (on average
97%) of retrieval of the memory targets. Yet, they dif-

fered in reaction times in repeated retrieval of visual
target held in working memory. GG indivivals had a
positive correlation between age and reaction times of
3" retrieval of memory target (Fig. 4). That is,
individuals with the GG genotype had increased
reaction times of memory retrieval with age. In
contrast, A allele carriers (AA and AG genotypes) did
not show such trend. The A allele carriers reactions
times even decreased slightly with age (Fig. 5). The
slopes of the regression lines were significantly
different (-3.58 + SE 0.21 for A allele carriers versus
GG genotype 13.1 = SE 0.20, t(8) = 58.5, p < 0.001).
These results were consistent with those from
Experiment 1.

DISCUSSION
Summary of results

We tested the hypothesis that individual differences in
processing speed are partially determined by a SNP
within the promoter of the GRIN2B gene. In two
experiments, memory performance among A allele
carriers, predicted better performance during aging.
These findings in two groups of cognitively normal
aging adults suggest that the A allele may confer a
protective effect on one aspect of memory performance.
Behavioral results showed that presence of the A allele

Reaction times vs Age for rs3764030 GG
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Figure 4. Reaction time in Experiment 2 participants with increasing age was

examined in GG homozygotes.
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was not associated with differences in mean reaction
times. However, A allele carriers showed decreased
reaction time with age compared with the GG genotype
(p = 0.026 based on difference in slope of the regression
line between GG and A allele carriers).

Changes in expression of the GRIN2B gene and activity
of GluN2B subunit containing NMDA receptors are
known to affect memory and cognition [17]. From the
genetic perspective, variation in the human GRIN2B
gene is known to be associated with normal and
impaired memory [14,31], although the molecular and
cellular mechanisms underlying these changes in
memory performance are not well understood. In this
study we determined a biological effect of the GRIN2B
promoter SNP, rs3764030 G>A, showing that the A
allele in transfected N2a cells, responded to NMDA
agonism in a dose-dependent manner relative to the
common G allele. In addition, we showed that the A
allele was capable of binding the ETS transcription
factor, Elk-1, in vitro. These observations were the
mechanistic basis for supporting a gain-of-function gene
variant and for combining genotype groups (A allele
carriers vs non-carriers) for genetic association studies.

Evidence from neuroimaging studies indicates that
working memory involves multiple cortical networks,
e.g. the prefrontal, temporal cortex, and parietal,
parahippocampus, and early visual occipital cortices
[32,33,34]. From animal studies and in humans, it is

known that as the brain ages, the level of GRIN2B
mRNA and GluN2B protein is reduced in certain brain
regions [18,35,36,37,38]. While other SNPs, by
individual or by haplotype-based analyses have
supported the idea that GRIN2B has a role in gene
expression and memory performance [39] and in AD
[40], we think the current study is the first report of a
SNP that affects GRIN2B mRNA levels by an activity-
dependent mechanism. Knowing a functional
polymorphism that increases levels of GRIN2B mRNA
and possibly the number of GIuN2B subunits suggests a
way for protecting the brain from age-related cognitive
decline. However, it should be noted that our study has
limitations that will need to be addressed in future
studies. First, the sample size was small, so these
findings must be considered preliminary. We describe
the association of one genetic variant on memory
performance. SNP rs3764030 may interact with other
variants of the GRIN2B gene or may be in linkage
disequilibrium with other functional variants. An
examination of linkage disequilibrium relationships
among SNPs approximately 10 kb 5° and 10 kb 3 from
SNP rs3764030 (European-American population of
Northern and Western European ancestry, CEU, 1000
Genomes database) indicated that while linkage
disequilibrium (LD) approached 1.0 based on D’, the
average R® was low between rs3764030 and flanking
SNPs (highest R value was 0.237)(Figure S1, Panel B,
Supplementary Material, flanking SNP with available

Reaction Time vs Age for rs3764030 AG and AA
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Figure 5. Reaction time in Experiment 2 participants with increasing age based on A allele
carrier status (AA and AG genotypes). A significant difference in the slopes of the regression lines
was observed for A allele carriers (-3.58 + SE 0.21) versus the GG genotype (13.1 + SE 0.20) (p < 0.001).
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R? within 20kb of rs3764030). Therefore, at least for
individuals of Northern and Western European descent,
the selected SNPs in this 20 kb region have a similar
frequency as rs3764030 but have no better predictability
than the functional variant we selected for analysis in
the current study. Addressing the role of other genetic
variants that regulate expression of the GRIN2B gene
will require additional DNA sequence screening,
mRNA expression analysis, and association analysis
using larger cohorts.

Other questions relating to the role of ETS domain
proteins in the brain are worthy of future exploration.
The ETS domain transcription factor family has 27
known members that are expressed by different human
cells. Our initial focus on Elk-1 was because it is
expressed in the brain, among other tissues. Although
these ETS transcription factors display binding site
selectivity based on differences in nucleotide sequences
that flank the core GGAA/T motif in vitro, convergent
findings from different groups have shown that ETS
family member proteins display overlapping DNA
binding patterns between some family members in vivo
[41,42]. In future studies, it will be of great interest to
identify the ETS domain transcription factor that binds
the A allele in vivo. This information may have
implications in defining cellular changes that occur in
the aging human brain that may then be used to predict
vulnerability to neurodegenerative disorders such as AD.

CONCLUSIONS

Our results from two experiments support the idea that
presence of the A allele of SNP rs3764030 positively
influenced an individual’s mental processing speed
during working memory indexing. Alternatively,
individuals with the G allele, while having slower
responses with increasing age, may have a stronger
capability to suppress distractors. Either interpretation
is consistent with the idea that changes in subunit
stoichiometry of NMDA receptors confer distinct
functional properties on memory. The grouping of A
allele-genotypes for association analyses was justified
based on reporter gene assays and gain-of-function ETS
transcription factor binding to DNA. Future
longitudinal follow-up in larger populations will bring
insights of whether GRIN2B gene variation might be a
potential indicator for cognitive reserve or may serve as
a risk-factor for late onset dementia.

METHODS
Participants

Participants were drawn from a large aging cohort of
over 400 older adults followed by the University of

Kentucky (UK)-Alzheimer’s Disease Center (ADC).
All participants were enrolled from a prior existing
longitudinal study on aging and brain health that
collects demographic, health and neuropsychological
data, and blood samples annually [43]. All research
activities were approved by the University of Kentucky
Institutional Review Board and all participants provided
informed written consent prior to any research
activities.

Individuals were not invited to participate in the study if
they had a history of substance abuse, traumatic brain
injury, major psychiatric illness, or illness affecting the
central nervous system such as for example encephalitis
or meningitis. Battery of Neuropsychological tests
including the Mini-Mental State Examination were
available for all participants in the present study.
Subjects agreed to provide blood for genetic testing and
to participate in annual clinical assessment and
neuropsychological testing. In the first group
(described later as Experiment 1), 28 (17 females)
healthy, cognitively normal, right-handed, English-
speaking, adults aged 65-86 participated in the current
study.

To cross-validate the results of Experiment 1, 16
healthy older adults from the general cohort described
above participated in the second experiment. Twelve of
the 16 older adults had rs3764030 genotypes available
for analysis together with memory performance data.

Genotyping

Genomic DNA was isolated from whole blood as
described previously [44]. For Experiment 2, genotypes
for SNP rs3764030 were obtained from the UK-ADC
samples. The older adults’ blood samples were
contributed to the Alzheimer’s Disease Genetics
Consortium, and genotype calls were returned to the
UK-ADC. The genotyping data were extracted from
the raw genotype file first and then merged with the
behavioral performance data. The minor allele (A) was
determined by calculating minor allele frequency based
on the raw UK genotype files. SNP rs3764030 is
detected in human populations of European and Asian
origin. Details for genotyping reactions are given
below.

Primers

DNA, extracted from blood samples, were genotyped
for the rs3764030 G>A SNP in the human GRIN2B
promoter region using a 5’ exonuclease assay with
allele-specific fluorescence detection probes. The
rs3764030 SNP is located at nucleotide position
13,980,398 (Reference Sequence NC _000012.2) on
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Chromosome 12. The allele-specific detection probes
were fluorescently labeled with either FAM or VIC at
the 5’-end and linked to a non-fluorescent quencher
(MGB) at the 3’-end.

Amplification primers

Forward: 5’-caaagcgtccccttcctaag-3’

Reverse: 5’- ctctcgtgtgcactctgtgg-3°.

The sequence of the allele-specific detection probes
were:

G allele (shown as opposite strand, C): 5’-
ttgattcgcgtgtccecce-3’

A allele (shown as opposite strand, T): 5’-
ttgattcgcgtgttceee-3’.

APOE variants rs429358 (C>T, Argl112Cys) and rs7412
(C>T, Argl58Cys) were genotyped as described
previously [45].

General method for performing 5’-exonuclease assay

Genotyping reactions (5 pl) were performed in 96-well
plates containing 10 ng of genomic DNA, 0.5 uM of
primers, 0.2 uM of probes, and 2.5 ul of Master Mix
(Thermo). The reaction thermal cycle program
consisted of 50°C for 2 min, 95°C for 10 min, followed
by 40 cycles of 95°C for 15 s, 59 or 60°C for 1 min. End
point amplification genotypes were determined using
BioRad Sequence Detector. Genotyping accuracy was
verified by re-genotyping at least 10% of randomly
selected DNA samples using the same assay or direct
sequence analysis. Genotyping accuracy was >99% and
genotyping completion was 99%.

Genotypes were independently confirmed using direct
sequence analysis with no discrepancies. Genotype
frequencies met Hardy-Weinberg expectations in the
study population.

Molecular and cellular characterization of a
functional GRIN2B SNP

Luciferase vector construction

To characterize potential effects of this SNP on
transcription, we used PCR to amplify a 1.7 kb genomic
region spanning from 1530 bps upstream of the human
GRIN2B gene transcription start site into GRIN2B gene
untranslated exon 4. Exon organization was based on
RefSeqGene NG _031854.1 (Fig. S1, Panel A
Supplementary Material). For PCR, the Forward
primer: 5' GAGCTCAAACCACTTCCTCCGGCTTC 3'
and the Reverse primer: 5' CTCGAGGCCAACCTCTA
GACGGACA 3'. Individuals with genotype GG and
AA are selected to PCR amplify the 1.7kb region for
cloning. The PCR product was inserted into the pGL
4.10 plasmid (Promega, Madison, WI, USA) that is a
promoter-less vector containing a luciferase reporter
gene. Four plasmid constructs were designed, one for

each combination of alleles (A or G allele, positive and
negative orientation), and the DNA strand transcribed:
(1) positive orientation with allele A on the upper
transcribed strand (A+ plasmid), (2) positive orientation
with allele G (G+ plasmid), (3) negative orientation
with allele A on the lower untranscribed strand (A-
plasmid), and (4) negative orientation with allele G (G-
plasmid). Orientations and alleles in the constructs were
confirmed by direct sequencing with an ABI 310
genetic sequencer (Applied Biosystems, Foster City,
CA, USA).

Functional NMDA receptor analysis

Murine N2a neuroblastoma cells (ATCC, Manassas,
VA, USA) were grown in RPMI 1640 cell culture
medium (Thermo Fisher, Pittsburgh, PA, USA)
supplemented with 5% fetal bovine serum (FBS) in 5%
CO, at 37°C until cells were approximately 80%
confluent. Cells were transferred into laminin- and poly-
L-lysine coated 96 well cell culture plates (Corning
3904, Thermo Fisher Scientific, Pittsburgh, PA, USA)
and grown in serum-free RPMI 1640 medium 24-48 hrs
prior to transfection. Cell differentiation was induced by
adding 1 uM retinoic acid (Sigma-Aldrich, St. Louis,
MO, USA) to the culture medium for 24 hrs.
Differentiated cells were co-transfected with one of the
four pGL4.10 plasmid constructs encoding the Firefly
luciferase reporter gene and the control pGL4.75
plasmid encoding the Renilla luciferase reporter gene
using the Lipofectamine transfection reagent (Thermo
Fisher) according to manufacturer’s instructions.
Transfected cells were activated by adding 0, 30, 50, 70,
or 90 u M NDA (Sigma-Aldrich) to the culture medium
for 4-6 hrs to induce transcription factors. Solutions
were replaced with RPMI 1640 medium containing
10% Fetal Bovine Serum (Atlanta Biologicals, Flowery
Branch, GA, USA) for 40-44 hrs at 37° C in 5% CO,.
Luciferase activities were measured using a Synergy 4
plate reader (Biotek, Winooski, VT, USA). Each
NMDA concentration was tested three times for
statistical analysis.

Electrophoretic mobility shift assay

The electrophoretic mobility shift assay (EMSA) was
used to monitor interactions between the ETS domain
transcription factor Elk-1 and its DNA recognition
sequence in vitro. The following sequences were used
for producing a positive control double stranded DNA
(dsDNA) targets based on Wei et al.,( 2010):

Positive control

Forward: 5' ACGCTAACCGGATATAACGCTA 3'
Reverse: 5' TAGCGTTATATCCGGTTAGCGT 3'
GRIN2B sequences were:

GRIN2B A allele

Forward: 5' CATCTCCGGGGAACACGCGAA 3'

WWWw.aging-us.com 1300

AGING



Reverse: 5' TTCGCGTGTTCCCCGGAGATG 3'
GRIN2B G allele

Forward: 5' CATCTCCGGGGGACACGCGAA 3'
Reverse: 5' TTCGCGTGTCCCCCGGAGATG 3'

Complementary oligonucleotides were annealed with
the Bio-Rad C1000 thermocycler (Bio-Rad, Berkeley,
CA, USA) in annealing buffer (10 mM Tris-HCI (pH
8.0), 1 mM EDTA, and 50 mM NaCl ) with 1°C/ 1 min
decreasing from 95°C to 20°C. The annealed dsDNA
was incubated on ice for 1 h with 1 pg recombinant
human Elk-1 protein (Sigma-Aldrich, St. Louis, MO,
USA) in EMSA buffer (50 mM HEPES pH7.5, 10 mM
MgCl,, 5% glycerol, 1 mM DTT, 0.3% BSA, 1 mM
EDTA). The EMSA was run in a 6% retardation gel
(Thermo Fisher Scientific) using 95V for 80 min. The
gel was stained with EMSA SYBR Green and SYPRO
Ruby kit (Catalog E-33075; Thermo Fisher Scientific)
according to manufacturer’s instructions. The gel was
scanned using an imaging G:BOX (Syngene, Frederick,
MD, USA).

Experimental paradigm to study visual working
memory

Visual stimuli

Stimuli consisted of 216 two dimensional pictures of
common objects taken from [46]. Each object was
presented in white-black within a rectangular area of
approximately, 8.3 by 5.8 cm. At the beginning of each
memory trial, sample pictures were also presented with
a 6.5 mm green border. Each picture group was normed
for familiarity and complexity. All 216 stimuli pictures
were transformed using Fourier analysis. They were
named scramble pictures. For Experiment 1, scramble
pictures were seen between trials, that was not the case
for Experiment 2.

The modified delayed match-to-sample task
Experiment 1. The short-term memory task consisted
of study and test phase. During the study phase,
participants memorized 80 line drawing pictures until
they reach 95% accuracy in immediate recognition.

Figure 6. The modified Delayed Match to Sample (DMS) task. Schematic shows a typical memory trial at the
test phase of the task. Repeated retrieval of a target memory item (Match) occurs. Participants were first presented
with a sample target object and then viewed test objects (target or distracters) in rapid succession for each memory
trial. Subjects were instructed to forget the previous sample target object only when a new sample target object
appeared. For Experiment 1, a study phase was included. During the study phase, participants memorized 80 line
drawing pictures until they reach 95% accuracy in immediate recognition. Thus, half of the images were studied
during the test phase. The sample target object was followed by 10 successive old and new distracter objects at a
rate of 2 sec per picture. The DMS task consisted of 80 trials separated into eight blocks of 10 trials each. It took about
50 minutes to complete the task for each participant. The protocol for Experiment 2 used a shorter and simpler version
of the task [47], which did not include a study phase, and total time is about 20 minutes for each participant.
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Thus, half of the images were studied during the test
phase. The test phase included 80 trials separated into 8
blocks of 10 trials each. Each trial began with the
presentation of a sample target object for 2000 msec
and was distinguished by a green border (Fig. 6). The
sample target object was followed (ISI = 700 + 100
msec) by 10 successive test objects with a stimulus
duration of 2000 msec (ISI = 500 £+ 200 msec). Each
trial lasted 27.5 seconds. The test portion of each trial
contained a pseudo-random presentation of target match
and nonmatch objects where the match, a studied
nonmatch, and a new nonmatch were presented three
times each, resulting in nine of the ten test items in a
trial.  One additional ‘filler’ object was included in
each trial to reduce the potential for subject expectancy
and served either as a 4" target (16.7 % of trials), 4t
studied nonmatch (16.7 % of trials), 4™ new nonmatch
(16.7 % of trials), or a new nonmatch never previously
shown (50 % of trials). None of the objects, whether
serving as a target or nonmatch, were used in any
subsequent trials. Across trials, stimuli from the three
experimental conditions were equally distributed across
all 10 serial positions. Figure 6 illustrates a memory trial.

Participants were told to hold the sample target object in
mind and indicate whether the following 10 test objects
were the same or different from the sample target.
Assignment of hands to indicate a target match versus a
nonmatch object was counterbalanced across right-
handed subjects. Subjects were also instructed to forget
the previous sample target object only when a new
sample target object appeared in the next trial (Fig. 6).
Reaction time and accuracy of behavioral responses
were recorded.

Experiment 2. The version used in the Experiment 2
was shorter, and without study phase. Total 60 trials
were performed in two blocks of 30 trials each, with a
short break between blocks. The working memory task
lasted approximately 18 minutes overall. For each
memory trial, a sample image with a green border was
initially presented for 3 sec the participant indicated
whether each of five successive test images matched or
did not match the sample. A fixation with jittered delay
(1.1-1.4 seconds) was placed between each test image.
No scramble images were seen between trials as it was
in Experiment 1 (Also see illustration and description of
the task in Experiment 2 in a previous publication [47]).

Behavioral data analysis

Accuracy of behavioral responses (number of correct
responses), learning rate, and reaction times in
milliseconds (msec) were determined for each object
retrieval, new or studied item matching target, new or
studied non-match distractors as previously described

[2]. Exploratory analysis included the use of the
descriptive  statistics including means, standard
deviations for continuous variables. Results were
presented over the three repeated retrieval of memory
target matches. Two sample t-tests were used to
compare means and regression models were used to
compare slopes All data analyses were performed in R
(version 3.3.3).
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Figure S1. Panel (A) Schematic of the human GRIN2B gene showing locations of the first four non-coding exons and the
5’ flanking region. SNP rs3764030 is shown with an asterisk. Boxes indicate the non-coding exons from GRIN2B. A major
transcription start site in brain is shown by a large left-pointing arrow. Other transcription start sites are shown with
smaller left-pointing arrows. The non-coding exons are known to undergo extensive alternative pre-mRNA splicing (shown
as open boxes). Nucleotide positions from the reference sequence are shown above the horizontal line. Adapted from
NCBI: www.ncbi.nlm.nih.gov RefSeqGene NG_031854.1. GRIN2B markers used in linkage equilibrium (LD) analysis are
indicated by their dbSNP rs identifier. Orientation of the map is shown with transcription proceeding from right to left.
Panel (B) Pairwise LD relationships for 27 markers in the CEU population with values shown in color below the GRIN2B gene

map:

R? (left) and D’ (right). Bright red indicates a region of high LD (R > 0.8, D’ > 0.8) with yellow indicating areas of

lower LD. The Lowest LD (R2 <0.1, D’ <0.1) are shown in white. Over the entire 20 kb region, R? was low while D’ was high.
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