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ABSTRACT

The microbiome has been demonstrated to play an integral role in the maintenance of many aspects of health
that are also associated with aging. In order to identify areas of potential exploration and intervention, we
simultaneously characterized age-related alterations in gut microbiome, muscle physiology and serum
proteomic and lipidomic profiles in aged rats to define an integrated signature of the aging phenotype. We
demonstrate that aging skews the composition of the gut microbiome, in particular by altering the Sutterella to
Barneseilla ratio, and alters the metabolic potential of intestinal bacteria. Age-related changes of the gut
microbiome were associated with the physiological decline of musculoskeletal function, and with molecular
markers of nutrient processing/availability, and inflammatory/immune status in aged versus adult rats.
Altogether, our study highlights that aging leads to a complex interplay between the microbiome and host
physiology, and provides candidate microbial species to target physical and metabolic decline during aging by

modulating gut microbial ecology.

INTRODUCTION

The concept of ‘healthy aging’ addresses the need to
combat the economic burden of an aging population, its
physiological and social consequences, and subsequent
reduced quality of life. Microbes and multicellular
organisms have co-evolved over millennia. The micro-
bial counterpart has been shaped in terms of their
composition and metabolic potential by taking cues
from the state of their hosts’ physiology and immediate
external environments [1]. Aging is characterized by
alterations in distinct sets of host functions including
cellular function (leading to oxidative stress and
senescence) and a pathophysiological decline of most
organs and metabolic homeostasis [2-4]. In particular,
there is decline of the musculoskeletal system [5, 6],
which contributes to alterations in the quality of life.

The gut microbiota may directly or indirectly impact
several age-related aspects [7-12] and is an under-
explored area of investigation [13, 14].

The microbiome has been implicated in several aspects
associated with aging including rate of aging [15],
inflammation [16], immunity [17], and muscle status
[18]. Previously, it was shown that there is a significant
relationship between age and the taxonomic and altered
metabolic potential of the microbiome in mice [8].
Associations between microbiome, age and pro-
inflammatory status (serum MCP-1 status) mice have
also been identified [19]. However, an integrated view
of age-related alterations in gut microbiome, muscle
physiology, and biochemical protein and lipid markers
would help to define areas of further investigation and
potential intervention to support ‘healthy aging’.
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Previously, we investigated the susceptibility of
muscles in rats to age-related decline [20]. In the current
study, we characterized the same rats to determine a
metabolic fingerprint of the aging phenotype and
investigated the associated alterations of the
microbiome as a contributor to age-related physiology
and sarcopenia. We identified age-specific features in
the gut microbial communities for 8, 18 and 24-month
rats and age-related alterations of the microbial
metabolic potential. At the physiological level, we
observed decreased gastrocnemius muscle mass and
sciatic response amplitude that correlated with vitamin
B12 levels and lipid metabolism. We identified several
known and novel associations between gut microbiota
and physiological parameters in aging. In summary, the
data pointed towards changes in nutrient processing,
musculoskeletal status and inflammatory/immune status
with aging. This enabled us to define a consensus
phenotype of age-related alterations in gut microbiome,
muscle physiology, and biochemical protein and lipid
markers of aging.

RESULTS

In this study we sought to investigate the association of
age and sarcopenia (AAS)-related gut microbial
changes with host physiology and identify the potential
molecular mechanisms underlying these associations to
evaluate the potential of targeting the microbiome in
AAS-related health. Using aged Wistar rats of ages 8,
18 and 24 months (subsequently referred to as 8M for
adult, 18M for adult-pre-sarcopenic and 24M for adult-
sarcopenic respectively (similar framework as our
previous work [20]), we determined the ecological
states of the microbiome at the various ages, identified
potential metabolic functions of these states and
integrated this analysis with the biochemical and
physiological phenotypes (Figure 1A).

Gut microbial diversity in aged rats

The gut microbiome is a complex ecosystem that
reflects the contribution of multiple environmental
(such as diet, drugs and pathogens) and host-related
(immunity) factors. We first sought to understand the
composition of the microbiota across the ages to
determine key bacteria associated with the aging
phenotype.

We began by conducting a 16S rRNA-based OTU
survey of the ecological state of the fecal microbiomes
(Supplementary Materials, S1.xlsx). Our observations
of the microbial ecology (using NMDS plots of the
community structures Beta diversity) suggest that the
microbiome is affected by aging. The 18M communities
appeared unique to the 8M and 24M communities that

could not be distinguished from one another (Figure
1B). The composition (alpha diversity) of the
microbiome at the three ages demonstrated unique
OTUs at each age, but generally did not distinguish one
age-related community from another (Figure 1C).

The OTUs identified in the 16S survey were organised
into categories based on the observed abundance across
the ages (Figure 1D) (further described in
Supplementary Materials). We observed 7 of the
possible 18 categories (theoretically possible) that
would demonstrate a significant change. In particular,
categories 9 and 10 demonstrated the same pattern as
seen in the NMDS plots identifying potential OTUs that
drive the distinction of the 18M samples.

We also used indicator analysis [21] to investigate the
contributions of different OTUs to the differences
between the age groups. Thirty-nine unique indicator
OTUs with P values < 0.001 and statistically different
levels upon comparison of two age groups were
identified for ages 8M, 18M and 24M (Supplementary
Materials, S1.xlsx—IndicatorAnalysis Sheet). Selected
indicator OTUs (indicator values > 65), their average
relative abundance, their categorization and the age
group they indicate are depicted in Figure 2A. OTUs
indicating 24M were the most abundant. The only
indicator OTU for 18M, with an indicator value (69.32),
was OTUO0560 (Thermotalea) which was also
significantly upregulated at 18M vs 8M. Focussing on
the category 9 and 10 OTUs, OTU 0499
(Lachnospiraceae insertae sedis) and OTU 0809
(Lachnobacterium) were both identified as indicators of
the 24M group, consistent with the observed decrease at
18M (Figure 1D). Based on Spearman correlations,
these two OTUs were also some of the most connected
OTUs based on their positive correlation with other
OTUs across the ages (Figure 2B, Supplementary
Figure 1). OTU 0914 (Lactonifactor), the only OTU
found in category 9, was also well connected but
negatively correlated with a number of OTUs including
OTUs 0499 and 0809. Based on the composition of the
microbes across the ages, these three OTUs appear to be
markers and keystones of the 18M microbial ecology.

Association of bacteria genera and rat sarcopenia

We next examined the association between the
microbial ecology and the observed physiological
changes in the rats. Aged rats gradually lose muscle
mass and function (i.e. sarcopenia) through multi-
factorial mechanisms involving mitochondrial and
neuromuscular dysfunction [20, 22]. Having charac-
terized the genetic composition of the microbiome, we
investigated whether the age-related changes observed
in the ecology of the gut microbiota could account for

WWWw.aging-us.com 1699

AGING



Dimension Il

some of the physiological parameters associated with
aging and sarcopenia. We previously demonstrated in
the same rats that they demonstrated selective age-
related sarcopenia (Table 1, complete data provided in
Supplementary Materials S3.xlsx). Using age window
comparisons of the physiological measurements we ob-

served that body weight and fat mass (%) increased
with age (statistically different in 8M-24M and 18M-
24M comparisons) while gastrocnemius muscle mass
(statistically different in 8M-18M, 8M-24M, 18M-24M
comparisons), lean mass (%) and sciatic response
amplitude (statistically different in 8M-24M and 18M-
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Figure 1. Gut microbial diversity in aging rats. (A) Study design highlighting the experimental plan and the measured parameters.
(B) NMDS plot of OTUs using Jclass calculator for the 16S data. The points show a distinct cloud for age group 18M (green circles), while
ages 8M (orange circles) and 24M (blue circles) show more overlap. (C) Overlap of observed OTUs between the different age groups. (D)
Comparison of statistically different OTUs across different age groups and classification into categories. Vignette: Categorization/feature
based classification of members based on statistical increase/decrease across different age windows. Abbreviations: SU — Statistically
Up, SD — Statistically Down, 8M — 8 months, 18M — 18 months and 24M — 24 months.
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24M comparisons) decreased with age (Figure 3A). To
investigate the potential associations between the
microbiome and the host, we analysed the correlations
(details in materials and methods) between the
physiological measurements and the OTUs significantly
correlated with age (Figure 3B). We focussed on the
indicator OTUs for the 24M samples consistent with the
development of the sarcopenia phenotype. In general,
these OTUs (24M) correlated with increased fat mass,
decreased lean and gastrocnemius muscle mass. Several
of these OTUs also correlated with vitamin B12 and
folate levels. The group 10 OTU (OTU0499) positively
correlated with both folate levels in the plasma and
heart mass. Although folate levels did not significantly
change across the ages, its role in the context of
cardiovascular disease has been studied extensively.
Vitamin B12, as well as folate, have been similarly
studied in the context of lipid physiology. Considering
the association of these bacteria with these vitamins as
well as the physiological impact of aging, we next sought
to determine the underlying mechanistic links between
the microbiota and host physiological responses to aging.

Metagenomic functional content analysis

We next tried to identify potential molecular
mechanisms implicated in the aging phenotype by
applying PICRUSt [23] to identify the Metagenomic
Functional Content (MFC) for different groups using
the 16S rRNA data (Figure 4A). The tabulated entries
for the entire list of statistically different MFC’s are

available in the Supplementary Materials (Supplemen-
tary Materials, S2.x1sx).

To help focus the analysis, the MFCs were put into the
same 18 categories previously used for the OTUs in
Figure 1 (Figure 4B, 4C and Figure 1D). All the
statistically different MFC’s could be classified into 9
categories, with the majority (82% or 307 KO IDs,
categorised into categories 1, 2, 4 and 7). Most of the
physiological responses (Figure 3A) could be
categorised into Category 7 or 8 (significantly
higher/lower at the 24M vs 8/18M). Since there were no
MFCs observed in category 8, we focussed our attention
on the Category 7 observations. These can be
summarised in three main categories: secretion systems
(often associated with pathogenic mechanisms), ABC
transporters (often associated with uptake of essential
nutrients) and dietary metabolism (protein, carbohydrate
and lipid metabolism) suggesting that the host/micro-
biome interactions contributing to the aging phenotype
involves immune and dietary components.

Microbial NMDS analysis and the community analysis
summarised in Figures 1 and 2 indicated that the 18M
microbiota was distinct from the 8M and 24M
communities. While the composition of the 8M and
24M communities could not be distinguished based on
16S rRNA survey, their functional capacity was distinct
as demonstrated in Figure 4. One interpretation of this is
that there was a transition in the community member-
ship that led to a functional alteration of the microbiota.

Table 1. Physiological parameters measured in aged rats. Std Dev — refers to standard deviation.

Physiological Parameters Average | Std Dev | Average Std Dev Average Std Dev
M M 18M 18M 24M 24M

Body weight (g) 518.72 52.82 555.50 36.20 606.92 37.69

Lean mass (%) 72.75 2.12 71.21 2.34 66.88 1.44

Fat mass (%) 12.54 2.43 13.32 2.42 18.58 1.76

Gastrocnemius muscle mass 4.84 0.76 3.92 0.55 2.32 0.39

(mg/g)

Sciatic response amplitude 65.86 14.88 60.26 15.18 26.66 11.63

(mV)

Triceps muscle mass (mg/g) 3.88 0.67 3.92 0.23 3.81 0.35

Radial response amplitude 69.32 14.79 70.96 11.61 63.51 17.03

(mV)

Heart muscle mass (mg/g) 2.71 0.46 2.74 0.30 3.07 0.45

B12 total (pmol/L) 1074.00 | 183.97 965.00 167.10 912.50 258.94

Folate level (nmol/L) 169.05 27.83 170.75 24.18 205.50 47.08
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The 18M community MFC therefore may give an
indication of the molecular mechanisms that underlie
this transition. Figure 1 identified Category 9 and 10
OTUs as associated with the 18M samples. While no
category 10 MFCs were observed, there were an
abundance of category 9 MFCs. We further summarized
the MFC’s into their corresponding KEGG pathways to
hypothesize the molecular mechanisms that may
underlie the transition to the aged phenotype (Figure
4D). Category 9 pathways were primarily related to diet
including metabolism of carbohydrate, protein, lipids and
vitamin biosynthesis (Supplementary Materials, S2.x1sx)
suggesting that the microbiome contributes in part to
aging through their established role in digestion. We
observed a general increase in MFC’s assigned to Amino
Acid (25/29) and Carbohydrate (12/15) metabolism with
a concurrent general decrease (6/9) in those assigned to
Lipid Metabolism suggesting a shift in the potential to
digest, process, and synthesize these dietary components.
One of the increased MFCs was cholesterol oxidase
(steroid Dbiosynthesis) indicating a predicted change
towards cholesterol versus fatty acid synthesis.
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Furthermore, consistent with the analysis of MFCs
related to Metabolism of Cofactors and Vitamins
(Figure 4D), statistically reduced levels of serum
Vitamin B12 were observed. We also explored the
correlations between specific MFC’s and the
physiological measurements (Table 1, Supplemental
Figure 2). None of the Category 9 MFCs associated
with physiological parameters. However, there were
several associations of other diet-related MFCs on many
physiological factors including gastrocnemius muscle
mass and sciatic response amplitude (Supplementary
Figure 2, S2.xIsx — MFC Metadata Correlation Sheet).
Fat mass was positively correlated to Cobalamin
biosynthetic protein CobC (K02225), carnitinyl-CoA
dehydratase  (K08299) and allantoin permease
(K10975). Furthermore, there was a strong negative
correlation between lean mass and allantoin permease
(K10975). Allantoin has previously been demonstrated
to increase lifespan when administered to the nematode
worm Caenorhabditis elegans [24, 25]. The negative
association could relate to microbial scavenging of this
purine metabolism biomarker of oxidative stress [26].
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Figure 2. Inter-species correlations in the aging rat microbiome. (A) Indicator analysis for different age groups. Indicator OTUs
with P values < 0.001 for different age groups — orange for 8M, green for 18M and blue for 24M are shown. Categorization of the
indicator OTUs and their corresponding indicator values are also indicated. (B) Correlations between the statistically different OTUs. Only
correlations values > 0.6 and < -0.6 are shown. The OTUs are sorted and plotted anticlockwise starting at O degrees, based on the number
of correlation (statistically relevant and with R values > 0.6 or < -0.6) across the entire set. The OTU classified as Clostridium XIVa
(highlighted in red text) at the genus level is the most correlated while the OTU classified as Acidaminobacter (highlighted in blue text) is
the least correlated. Details of one to one OTU correlations are in Supplementary Figure 1 and Supplementary Materials. Abbreviations:
SU — Statistically Up, SD — Statistically Down, Cat — Category, 8M — 8 months, 18M — 18 months and 24M — 24 months.
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Figure 3. Correlations between microbiome and host physiology. (A) Age group comparisons for statistical differences of
measured physiological parameters, body weight (g), lean mass (%), fat mass (%), gastrocnemius muscle mass (mg/g), sciatic response
amplitude (mV), triceps muscle mass (mg/g), radial response amplitude (mV), heart muscle mass (mg/g), Vitamin B12 total (pmol/L) and
folate levels (nmol/L). (B) Correlations between statistically different OTUs and physiological measurements. Correlations shown are after
FDR correction with Q values < 0.05. Abbreviations: SU — Statistically Up, SD — Statistically Down, Cat — Category, 8M — 8 months, 18M —
18 months and 24M — 24 months.
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Figure 4. Analysis of predicted Metagenomic Functional Content (MFC) obtained from PICRUSt. (A) Statistically different MFC'’s
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Membership of the statistically different MFC’s in each category in different pathways. Correlations shown are after FDR correction with Q values
< 0.05. Abbreviations: SU — Statistically Up, SD — Statistically Down, Cat — Category, 8M — 8 months, 18M — 18 months and 24M — 24 months.

WWwWw.aging-us.com 1704 AGING



We considered the following key observations: 1)
analysis of the aging microbiome identified a diet-related
ecology specifically associated with the transition at 18M
to the sarcopenic phenotype, 2) the OTUs characterized
at the 18M correlated with observed Vitamin B12 and
folate levels, and 3) the MFC analysis identified
candidate molecular mechanisms including pathogenesis

and dietary metabolic function associated with the
sarcopenic  phenotype. Taking these observations
together, they indicate an important role for microbial-
derived dietary metabolic pathways in aging and
sarcopenia including carbohydrate, lipid and vitamin
metabolism that could alter the metabolic status of the
host and contribute to the physiological state in aging.
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Figure 5. Comparative analysis of proteomics data from the serum of aging rats (8M, 18M and 24M) obtained
using aptamer-based detection method. (A) Based on the pattern of statistically significant increase (SU) and
statistically significant decrease (SD) between the different ages, the proteins were classified into categories. Protein full
names, Entrez Gene Names, UniProt IDs and corresponding categorical classifications of the statistically different proteins
identified in the serum of the aging rats. Abbreviations: SU — Statistically Up, SD — Statistically Down, Cat — Category, 8M — 8
months, 18M — 18 months and 24M — 24 months. (B) Correlations between statistically different serum proteins and
physiological measurements. Correlations shown are after FDR correction with Q values < 0.05.
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Serum proteomics of aged rats

As shown by the analysis above, microbial ecology is a
complex process that involves the integration of many
factors leading to an outcome in the host. We performed
proteomic analysis of the serum to identify the potential
host response to the changes in the microbiota and their
association with the physiological state. Serum proteins
for the 3 groups of rats (n=9 at 8M, n=10 at 18M and
n=8 at 24M) were analysed using aptamer-based
detection [27]. Similar to the OTUs and MFC analysis,
we performed pairwise comparisons to identify proteins
that were significantly altered between two age groups
(8M-18M, 8M-24M and 18M-24M) and put them into
the categories previously described. (Figure 5SA,
Supplementary Materials S4.x1sx).

Since we were looking specifically at the host response,
we focussed on categories that demonstrated a
significant association with the host physiological
measurements shown in Figure 3. In general, fat mass,
lean mass and sciatic response amplitude demonstrated
a ‘Category 7 or 8’ pattern. There were only two serum
proteins  detected demonstrating this  pattern;
Amnionless (AMN) and Insulin-like growth factor I
receptor (IGF1R). IGFIR did not show any significant
correlation with the physiological measurements.
However, AMN correlated with most of the physio-
logical measurements with the exception of folate
(Figure 5B). AMN plays a key role in Cobalamin (Cbl,
vitamin B12) transport as well as for lipid metabolism,
HDL-mediated lipid transport, lipoprotein metabolism
and lipid digestion. We also detected an association of
AMN with cholesterol oxidase and cobalamin bio-
synthetic protein CobC in the MFCs (Supplementary
Figure 4).

Subsequently, we used Reactome [28, 29]
(www.Reactome.org) to identify participation of the
differentially observed proteins in different pathways in
rats (Supplementary Materials S4.xIsx). Overall, protein
levels which consistently increased with age (Cat 1), i.e.
Neutral ceramidase (ASAH2), Nuclear receptor
subfamily 1 group D member 1 (NR1D1), Parathyroid
hormone (PTH) and X-linked ectodysplasin-A2
receptor (EDA2R) were implicated in glycosphingolipid
metabolism, sphingolipid metabolism, GPCR signal-
ling, TNFR2 non-canonical NF-kB signalling and the
immune system.

Summarizing the genetic analysis of the microbiome
and the serum protein response of the host there was a
common theme associated with the microbiome and
aging. Alterations in dietary metabolism, possibly via
their influence on Vitamin B12 and folate, seemed to be
involved in the aging phenotype.

Serum lipidomics of aged rats

Vitamin B12 and folate have defined roles in lipid
metabolism. Vitamin B12, adenosylcobalamin, act as a
cofactor on methylmalonyl-CoA mutase to convert
methylmalonyl-CoA (MM-CoA) to succinyl-CoA.
When MM-CoA mutase is blocked in the absence of
Vitamin B12, MM-CoA accumulates and inhibits the
rate-limiting enzyme of fatty acid oxidation (CPT1 -
carnitine palmitoyl transferase) thus causing lipo-
genesis. Low levels of Vitamin B12 are also associated
with shifts toward cholesterol synthesis and hepatic
steatosis in mice [30]. Folate deficiency decreases flux
through phosphatidylethanolamine N-methyltransferase
(PEMT), an enzyme that synthesizes phosphatidyl-
choline (PC) via the methylation of phosphatidylethano-
lamine (PE) [31]. The alterations in these lipid-
modifying vitamins by the microbiota therefore could
underlie the association with aging. We analysed 122
lipid species using direct infusion mass spectrometry as
described previously [32] (materials and methods, data
tabulated in Supplementary Materials, S5.xlsx).
Analysing the measured lipid species across the samples
(n=10 at 8M, n=10 at 18M and n=8 at 24M), using
NMDS analysis, there was no clear separation between
&M and 18M (orange and green circles in Figure 6A).

One to one comparison for statistical differences
between two groups further confirmed this (no
statistically different levels for lipid species measured
between 8M and 18M or between 8M and 24M).
However, the 18M and 24M groups clearly separated in
the lipid space (green and blue circles, Figure 6A). 5
lipid species were statistically significantly different
between the two groups (18M-24M) (Figure 6B).
Levels of two Lysophosphatidylcholines (LPC 20:5 and
LPC 20:3) decreased in old age, while three lipids,
Lysophosphatidylinositol (LPI 16:0), Phosphatidyl-
choline (PC 37:4) and sterol ester (SE 20:4) increased in
old age. The changes in phosphatidylcholine/lyso-
phosphatidylcholine are consistent with the observed
alterations in Vitamin Bl2 and folate status.
Subsequently, we looked at the correlations of the lipids
with  physiological measurements (Figure 6C).
Gastrocnemius muscle mass (decreased consistently
with age) and sciatic response amplitude (decreased in
8M-24M and 18M-24M) significantly correlated to the
statistically different lipids (Figure 6C). Gastrocnemius
muscle mass positively correlated with LPC 20:3
(decreased in 18m-24m). Sciatic response amplitude
positively correlated with LPC 20:5 and LPC 20:3 (both
decreased in 18M-24M) and negatively correlated with
PC 37:4 and SE 20:4 (both increased in 18M-24M)
(Figure 6C). Lipid metabolism, therefore, may play a
particular role in the development of the sarcopenic
phenotype observed in these rats.
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A NMDS Plot of Lipidomics
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Figure 6. Serum Lipidomic analysis of aged rats. (A) NMDS plot of the lipid species measured across all the samples. Overall,
we see a separation between 18M and 24M but not between 8M-18M and 8M-24M. (B) Statistically different lipid species and
demarcation of up/downregulation in different comparisons. (C) Correlations between lipid species and measured physiological
parameters. (D) Correlations between lipid species and OTUs. (E) Correlations between lipid species and proteins. Only
statistically significant correlations are shown. Correlations shown are after FDR correction with Q values < 0.05. Abbreviations:
SU — Statistically Up, SD — Statistically Down, Cat — Category, 8M — 8 months, 18M — 18 months and 24M — 24 months.

Given the possible role of microbes in altering lipid and
inflammatory status, we looked at the correlations of the
lipid species with the microbial members (OTUs —
Figure 6D, MFC’s — Supplementary Figure 5) and
serum protein levels (Figure 6E). In total there were 14
OTUs that correlated with the age-related lipid species
of which OTU 0229 (Lachnospiraceae insertae sedis)
was the only category 10 OTU identified. In particular,
it negatively correlated with LPC 20:5 (Figure 6D). The
other OTUs identified were, similar to the lipids
identified, Category 15 and 18 OTUs. Of these, OTUs
0126, 0954, 0979 and 0599 were also identified in the
indicator analysis in Figure 2. Focussing on these, OTU
0954 also negatively correlated with Vitamin B12 levels
(Figure 3). The category 18 OTU 0269 was also iden-

tified and positively correlated with B12 (Figure 3).
LPC 20:5, LPC 20:3 and PC 37:4 were among the most
correlated lipid species consistent with a potential role
for microbial metabolism of Vitamin B12 and folate. In
addition, the levels of PC 37:4 and SE 20:4 positively
correlated with the MFC Cobalamin Biosynthesis
Protein CobW (Supplementary Figure 5). Reduced LPC
20:5 were reported in obese patients as opposed to
control subjects [33]. LPC 20:5 and LPC 20:3 were
earlier reported to be negatively correlated to BMI in
Obesity [34]. However, the association of these lipids
with a sarcopenic phenotype suggests an important role
for the microbiome in regulating lipid metabolism,
potentially contributing to sarcopenia as well as
obesity.
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We next determined potential host responses to the
altered lipid physiology. We identified 9 proteins,
which are significantly correlated with the lipid levels.
Proteins, which are the most correlated, included
IL17RD, ERAP1, TNFSF11 and ATP5B. While the
lipids, which were the most correlated, included LPC
20:3, LPC 20:5, PC 37:4 and SE 20:4. Reduction of
NOTCHI1 was negatively correlated to SE 20:4 and
positively correlated to LPC 20:3. Potential anti-
inflammatory lipids LPC 20:5 and LPC 20:3 were
negatively correlated to increased levels of IL17RD,
CBXS, ERAPI and TNFSF11 and positively correlated
to IGF1R. Alterations of the EPH-ephrin signalling (via
EPHA10) was positively correlated to LPC 20:5.
Proteins altering the immune status (i.e. TNFSFI11,
ERAPI1 and IL17RD) were negatively correlated to
decreased levels of LPC 20:5 and LPC 20:3 and
positively correlated to increased levels of PC 37:4 and
SE 20:4. The negative correlation of PAHB to PC 37:4
levels indicates potential effects in VLDL biosynthesis
and chylomicron-mediated lipid transport.

Our results demonstrate the complexity of host microbe
interactions in the context of aging and highlight the
potential interaction of nutrition, the microbiome, and
host metabolism in sarcopenia. Our thorough survey of
microbial, proteomic and lipidomic biomarkers that
underlie the aging process suggest that regulation of
dietary metabolism by the microbiota may underlie
some of the consequences of aging and identify new
nutritional therapeutic avenues for further exploration in
age-related conditions such as sarcopenia.

Inflammation/Immunity

Aspects of host physiology potentially
impacted by gut microbiome

d .
S/B Ratio

DISCUSSION

Microbial association with its host has been shaped over
millennia. The ecosystem is in a state of constant
remodelling adapting to its host environment [35-39].
This in turn impacts host function, including at the
extremes of aging [3]. Researchers [40] have observed
that the microbial membership changes as the host ages,
although the molecular mechanisms underlying the
association of aging and microbial ecology are yet to be
defined. Combinations of several factors including but
not limited to clinical status, prevalence of co-morbid
diseases, exposure to multiple medications, aging
alimentary tracts, impaired dentition, decreased gut
motility and dietary modifications complicate
investigation in humans. However, some aspects like
inflammation [41], muscle [4, 11, 20, 42-44], bone [12,
45] and immune status [46] have been previously
investigated. It is thus relevant and important to
understand the complex associations between gut
microbes and host physiology to determine the scope of
the potential of lifestyle/nutrition/pharmacological
interventions to maintain health in old age.

Our systematic integrated analysis of in-vivo
phenotyping, gut microbial analysis, biochemical
analysis, serum proteomics and lipidomics of aged
sarcopenic rats (8M, 18M and 24M) highlighted three
broad associations with aging; musculoskeletal, nutrient
and inflammation/immunity (Figure 7A). Musculo-
skeletal modifications broadly included altered muscle
function and serum markers associated with altered

—>» Lean Mass
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Levels

Lipid

Barneseilla (B)

Associated with

Metabolism
Age ->

Sutterella (S) Gastrocnemius
o Muscle mass

Microbial shifts associated with Aging/Sarcopenia

Figure 7. Summary of host-microbial interactions in Aging and Sarcopenia. (A) Different aspects of host physiology
impacted directly or indirectly by gut microbiome include nutrients, musculoskeletal and inflammation/immunity. (B)
Illustration highlighting the shift within the microbial community in terms of members of Sutterella and Barnesiella with
aging. Barnesiella is positively correlated to Clostridium XIVa and Papillibacter, which are all similarly correlated to aging
phenotypes, specifically at the level of Lean Mass, Vitamin B12 levels, Lipid metabolism and Gastrocnemius muscle mass.
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bone density and bone regeneration. Modifications in
nutrient availability/role broadly included altered
vitamin  production/uptake, altered carbohydrate
metabolism and altered lipid metabolism/uptake.
Inflammation/Immunity  related changes broadly
included chronic/age specific inflammation, altered
immune status, impact on T cells and altered mucin
layers in the gut.

Modifications in muscle status with aging has been
extensively studied and discussed in several studies [4,
11, 20, 42, 43]. Consistent with earlier findings, at the
physiological level, we observed decreased gastro-
cnemius muscle mass and decreased sciatic response
amplitude with aging. Our integrated analysis suggests
that the microbiota may underlie the sarcopenic
phenotype of the aged rats via vitamin synthesis, altered
lipid metabolism and regulation of growth and immune-
related factors.

In particular, Sutterella (OTU0954) may have an
important role in regulating some of the aspects of
aging. Its presence correlated with AMN/vitamin B12,
alterations in lipid metabolism as well as loss of gastro-
cnemius muscle mass and sciatic response amplitude.
Physiological decrease in serum Vitamin B12 levels
were also consistent with altered metagenomic
functional shifts in the microbes for cobalamin protein
synthesis (CobC and CobW) and serum protein level
changes in amnionless (AMN).

The ecology of the microbiome may play an important
part in regulating this. While Sutterella positively
correlated with the abundance of a number of indicator
species (Figure 2), Barnesiella (OTUO0875) negatively
correlated with Sutterella and many of the same
indicator species. In addition, it correlated positively
with Clostridium XIVa (OTU0299) and Papillibacter
(OTU0269). Individually, these three OTUs generally
demonstrated the opposite profiles on the physiological
parameters and the host proteomic response than
Sutterella.

We therefore propose a model whereby Sutterella
solidifies a microbial ecology that contributes to the
aged phenotype in rats. This counteracts the positive
influence of the Barnesiella on lean mass, alters
Vitamin B12 and lipid metabolism, and results in a pro-
inflammatory  environment contributing to the
sarcopenic phenotype (Figure 7B). Further studies will
clarify whether this ecology is unique to rats, how it can
be influenced by diet and whether these molecular
mechanisms play a role in sarcopenia in human
populations. Wang et al. [47] recently showed that
probiotic strains like Lactobacillus paracasei CNCM I-
4270 (LC), L. rhamnosus 1-3690 (LR) and

Bifidobacterium animalis subsp. lactis 1-2494 (BA),
when administered to HFD fed mice, were potent in
increasing OTUs affiliated to Barnesiella. While these
authors tested the ability of these strains to reduce HFD-
induced MS, it is interesting to hypothesize a potential
role in preserving a healthy gut microbial ecology
during aging and in delaying the pathological
manifestations of aging. However, subsequent studies
with detailed controls and establishment of causality
will be required as next steps.

While the current study allowed us to define a
consensus phenotype of aging and sarcopenia in rats,
understanding  the translational relevance and
identifying interventional solutions will require further
studies accounting for the differences between rat and
human physiology, the gut microbiome [48, 49], and
the interactions at play. Towards that goal, analysing
human microbial ecology during aging and sarcopenia
will be of major importance and transplanting these
aged human microbiomes to germ free rodents will be
key to uncouple aging of the microbiome from other
physiological and environmental perturbations that co-
exist during human aging.

CONCLUSIONS

Considering the needs of the elderly in society and for
cost-effective means to support healthy aging, our
research findings are the most comprehensive
characterization of the gut microbiome in context of the
molecular mechanisms of aging in preclinical models
studied to date. In our study, we simultaneously
characterised and investigated age-related alterations in
gut microbiome, muscle physiology and serum protein
and lipid markers to define a consensus phenotype of
age-related alterations in gut microbiome and host
physiology. Interestingly, we observed changes in the
composition and metabolic potential of the aging gut
microbiome were associated with the musculoskeletal,
nutrient processing/availability, and the inflammatory/
immune status of aged vs adult rats. This study is the
first step towards identifying the molecular mechanisms
underlying microbiome-driven aging and sarcopenia
and potential therapeutic interventions and guidelines to
support healthy aging.

MATERIALS AND METHODS
Animal study protocol

Male Wistar rats aged 8 months to 24 months were
obtained from Janvier Labs (Le Genest-Saint-Isle,
France). The rats (littermates) labelled by age were
grouped by date of birth within one month, and further
grouping was then based on the muscle phenotype in
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hind limbs under the following categories: adult (8
months of age), early-sarcopenic (18 months of age),
and sarcopenic (24 months of age). Upon arrival, all
animals were housed by two in standard type 4 cages
with ad libitum access to food and water on a 12 hour
light/dark cycle at a temperature between 20-24°C and a
relative humidity between 50-60%. The experimental
procedures on animals were in agreement with Swiss
and EU ethical guidelines and approved by the local
animal experimentation committee of the Canton of
Vaud (license number VD2630). Body composition
(lean mass and fat mass) was measured non-invasively
in awake animals using quantitative NMR (1IH NMR
relaxometry device, echoMRI). Electromyography
(EMG) measurements were performed on rats under
isoflurane anaesthesia. Briefly the left limbs were
shaved and recording needle electrodes (twisted pairs,
wire 150cm, needle 04 x 13mm, Neurolite,
Switzerland) were sequentially placed into the
gastrocnemius, and triceps brachii muscles. Supra-
maximal electric stimulation was achieved via
stimulating needle electrodes sequentially placed
around the sciatic nerve and the radial nerve, and the
resulting compound muscle action potential (CMAP)
was recorded using the Keypoint software (Neurolite,
Switzerland). The animals were sacrificed by
exsanguination under isoflurane anaesthesia and blood
was collected from the portal vein and resulting serum
was used for proteomic analysis. Skeletal muscles and
heart were dissected free of fat, weighed and snap
frozen in liquid nitrogen.

Fecal pellet collection, DNA extraction

Fecal pellets from each rat were collected prior to
sacrifice in sterile 1.5 ml Eppendorf tubes that were
then stored at -80C until DNA was extracted from
approximately 50 mg using the MoBio PowerMag DNA
extraction kit according to the manufacturer’s
specifications. The DNA was stored at -20C until
library preparation.

Amplicon library preparation and sequencing

An Amplicon library of partial 16s TRNA genes was
produced according the methods outlined in Caparaso et
al. [50]. Briefly, we used primers targeting the V4-6
region of the 16S ribosomal genes at positions 515-806
(E. coli numbering) composed of the Illumina adapters,
pad, barcode (forward primer only) and gene specific
nucleotides. The resulting PCR products after 23 cycles
of amplification from 3 reactions per samples were
pooled and quantified using a Caliper LabChip GX. The
samples were then pooled in equimolar ratio and
cleaned using Agencourt AMPure XP. The cleaned
amplicons were then pooled with PhiX DNA spike as

per manufacturer recommendation and sequenced using
a MiSeq using chemistry V2.4.

16S data processing

Sequences were demultiplexed from fastq files
according to the specific barcode for each sample
introduced at the PCR step. Quality control was
performed with MOTHUR [51] using the default
parameters in the MiSeq SOP [52] accessed on Feb
2016. The resulting sequences were then clustered into
OTUs (with 0.03 cutoff). These were also converted
into biom files with closed OTU picking with
greengenes taxonomy (greengenes version 13.5) for use
in PICRUSt [53]. The resultant OTUs were also used
for plotting NMDS with JClass and ThetaYC
calculators, additionally an indicator analysis was also
performed. Statistical differences in OTUs between age
groups were assessed using the Wilcoxon Rank Sum
test and after FDR correction, Q-values < 0.05 were
considered significant.

Metagenomic functional content analysis

Phylogenetic  investigation of communities by
reconstruction of unobserved states (PICRUSt) [53] was
used to predict the metagenomic functional content
(MFC) of the different samples. Statistical differences
between age groups were estimated by using the
Kolmogorov-Smirnov test on the rank of the z-scores of
the relative abundances of the MFC’s and P-values were
considered significant using a FDR of 1%.

Serum analysis

Vitamin B12 and folate levels were measured using the
competitive binding assay from Beckman (Beckman
Coulter, Nyon, Switzerland). For protein measurement
in serum, samples were analyzed using DNA-aptamer-
based recognition on the SOMAscan platform
(SomaLogic, Boulder, CO, USA), as described [27].
Median normalized relative fluorescence units (RFUs)
were logp-transformed before applying principal
component analysis and linear models. Statistical
analyses were performed in R 3.1.3 (R Foundation for
Statistical Computing).

Lipidomics analysis

Lipid extraction and analysis were performed as
reported previously [32]. In summary, 100 ul of (diluted
serum 1 in 50 ammonium bicarbonate buffer) was
mixed with 80 ul of ammonium bicarbonate solution
and then 810 ul of methyl tert-butyl ether/methanol
(7:2, v/v) solution was added. Internal standard mixture
was pre-mixed with the organic solvents mixture. The
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internal standard mixture contained: PC 17:0/17:0, Chol
D6, DAG 17:0/17:0, TAG 17:0/17:0/17:0, Cer
18:1;2/17:0, SM 18:1;2/12:0, LPC 12:0, LPE 17:1, PE
17:0/17:0, SE 20:0, PI 16:0/16:0. Solution was mixed at
700 rpm, 15 min at 4 °C using a ThermoMixer C and
then centrifuged at 3000 RCF for 5 min. 100 pl of the
organic phase was transferred to a 96-well plate, and
dried in a speed vacuum concentrator. Lipid extract was
reconstituted in 40 pl of 7.5 mM ammonium acetate in
chloroform/methanol/propanol  (1:2:4, V/V/V). All
liquid handling steps were performed using Hamilton
STAR robotic platform.

For MS data acquisition, samples were analyzed by
direct infusion in a QExactive mass spectrometer
(Thermo Fisher Scientific) equipped with a TriVersa
NanoMate ion source (Advion Biosciences). Samples
were acquired in both polarity modes in a single
acquisition at Rm/z=200 = 140000. All data was
analyzed with in-house developed lipid identification
software based on LipidXplorer. Data post-processing
and normalization were performed on an in-house
developed R based package. Statistical significance
between age groups was assessed using the
Kolmogorov-Smirnov 2 sample test and after FDR
correction Q-Values were considered significant if <
0.05.

Correlation analysis

In general (unless otherwise stated), correlations
(Spearman’s Rho) were assessed between different
measurements and checked for statistical significance. It
was considered as statistical significant after FDR
correction with Q values < 0.05.

Ethics approval and consent to participate

Animal Study: The experimental procedures on animals
were in agreement with Swiss and EU ethical guidelines
and approved by the local animal experimentation
committee of the Canton of Vaud (license number
VD2630).
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SUPPLEMENTARY MATERIAL
Categorization or feature based classes

To analyse temporal features, we pooled the potential
differences (statistically increased or decreased levels)
between different age group comparisons, i.e. 8M-18M,
8M-24M and 18M-24M, into 18 theoretical categories
(feature based classes, Figure 1D — Categorization
Vignette). These categories correspond to: 1)
continuous increase with age, 2) opposite trend with
age: decrease between 8-18M, increase between 18-
24M with overall increase between 8-24M, 3) opposite
trend with age: decrease between 8-18M but increase
between 18-24M with overall decrease between 8-24M,
4) opposite trend with age: increase between 8-18M but
decrease between 18-24M with overall increase
between 8-24M, 5) opposite trend with age: increase
between 8-18M but decrease between 18-24M with
overall decrease between 8-24M, 6) continuous
decrease with age, 7) increase only between 18-24M
and overall increase between 8-24M, 8) decrease only
between 18-24M and overall decrease between 8-24M,
9) opposite trend with age: increase between 8-18M but
decrease between 18-24M with overall no difference
between 8-24M, 10) opposite trend with age: decrease
between 8-18M but increase between 18-24M with
overall no difference between 8-24M, 11) increase
between 8-18M and no change between 18-24M with
overall increase between 8-24M, 12) decrease only
between 8-18M and no change between 18-24M with
overall decrease between 8-24M, 13) increase only
between 8-18M but no difference between 18-24M and
8-24M, 14) increase overall between 8-24M but no
difference between 8-18M and 18-24M, 15) increase
only between 18-24M but no difference between §-18M
and 8-24M, 16) decrease only between 8-18m but no
difference between 18-24M and 8-24M, 17) decrease
overall between 8-24M but no difference between 8-
18M and 18-24M, 18) decrease only between 18-24M
but no difference between 8-18M and 8-24M.

Availability of data and materials

1. The data including the raw sequences for the fecal
samples analysed in the study reported in the paper has
been deposited in the SRA database under the accession
number SRP092598. Processed microbial data is
provided in Supplementary Excel Sheets S/.xlsx and
S2.xlsx - Data Set S1 and Data Set S2

2. The Physiological Data is provided in Table 1 and
Supplementary Excel Sheet S3.x/sx - Data Set S3.

3. The Somalogic (protein) Data is provided in
Supplementary Sheet S4.xlsx - Data Set S4.

4. The Lipidomics Data is provided in Supplementary
Sheet §5.xlsx - Data Set 5.

Please browse the Full Text version of this manuscript
to see the listed Data Sets.
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Supplementary Figure 1. Correlations between the statistically different OTUs across all aged rats. Yellow colors indicate
positive correlations while blue colors indicate negative correlations. Grey boxes indicate either no correlations or correlations between -
0.6 to 0.6 or non-statistically significant correlations. The rows have the OTUs classified at the genus level while the columns have the
corresponding OTU IDs. It's a symmetric matrix thus column 1 corresponding to Otu0126 corresponds to row 1 and is classified as
Clostridium XIVa. Correlations shown are after FDR correction with Q values < 0.05.
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Supplementary Figure 2. Correlations between MFC’s and
physiological data. Yellow colors indicate positive correlations
while blue colors indicate negative correlations. Grey boxes indicate
either no correlations or correlations between -0.5 to 0.5 or non-
statistically significant correlations. The rows correspond to the
MFCs while the columns correspond to measured physiological data.
Correlations shown are after FDR correction with Q values < 0.05.
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Supplementary Figure 3. Correlations between serum proteins and OTUs. Yellow colors indicate positive correlations
while blue colors indicate negative correlations. Grey boxes indicate either no correlations or correlations between -0.5 to 0.5
or non-statistically significant correlations. The rows correspond to the OTUs while the columns correspond to serum proteins.

Correlations shown are after FDR correction with Q values < 0.05.
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Supplementary Figure 4. Correlations between serum proteins and MFC’s. Only statistically significant correlations are shown.
Yellow colors indicate positive correlations while blue colors indicate negative correlations. Grey boxes indicate either no correlations or
correlations between -0.5 and 0.5 or non-statistically significant correlations. Categorizations of MFC’s and KEGG descriptions of the
MFC’s are also tabulated. Correlations shown are after FDR correction with Q values < 0.05.
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Supplementary Figure 5. Correlations between MFCs and lipids. Yellow colors indicate positive correlations while
blue colors indicate negative correlations. Grey boxes indicate either no correlations or correlations between -0.35 to 0.5 or
non-statistically significant correlations. The rows correspond to the MFCs while the columns correspond to lipids.
Correlations shown are after FDR correction with Q values < 0.05.
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