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ABSTRACT

Both leukocyte telomere length (LTL) and DNA methylation age are strongly associated with chronological age.
One measure of DNA methylation age— the extrinsic epigenetic age acceleration (EEAA)— is highly predictive of
all-cause mortality. We examined the relation between LTL and EEAA. LTL was measured by Southern blots and
leukocyte DNA methylation was determined using lllumina Infinium HumanMethylation450 BeadChip in
participants in the Women's Health Initiative (WHI; n=804), the Framingham Heart Study (FHS; n=909) and the
Bogalusa Heart study (BHS; n=826). EEAA was computed using 71 DNA methylation sites, further weighted by
proportions of naive CD8" T cells, memory CD8" T cells, and plasmablasts. Shorter LTL was associated with in-
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creased EEAA in participants from the WHI (r=-0.16, p=3.1x10®). This finding was replicated in the FHS (r=-0.09,
p=6.5x107) and the BHS (r=-0.07, p=3.8x 10%). LTL was also inversely related to proportions of memory CD8' T
cells (p=4.04x10""°) and positively related to proportions of naive CD8" T cells (p=3.57x10™"). These findings
suggest that for a given age, an individual whose blood contains comparatively more memory CD8" T cells and
less naive CD8" T cells would display a relatively shorter LTL and an older DNA methylation age, which jointly

explain the striking ability of EEAA to predict mortality.

INTRODUCTION

Aging eludes precise definition at the systemic level and
denotes a multitude of processes at the cellular level.
Two of these processes— age-dependent telomere
shortening [1] and DNA methylation (DNAm) profiles
of cytosine phosphate guanines (CpGs) [2-4] have been
used as indices of biological age. The age estimates
resulting from multivariable regression models of
DNAm profiles are referred to as ‘DNAm age’ or
‘epigenetic age’.

The discrepancy between DNAm age and chronological
age is an estimate of the ‘epigenetic age acceleration’,
which has been found to increase in Down syndrome
[5], obesity [6], HIV [7] and early menopause [8].
Notably, measures of epigenetic age in blood have been
reported to be predictive of all-cause mortality after
adjusting for chronological age and traditional risk
factors such as sex, hypertension, and prior history of
disease [9-11]. A recent meta-analysis showed that
among several estimates of epigenetic age acceleration,
one particular measure, i.e., extrinsic epigenetic age
acceleration (EEAA), was superior in predicting all-
cause mortality [10], but the reason for this has
remained unclear. EEAA is defined as the weighted
average of DNAm age and imputed proportions of naive
CD8" T cells, memory CD8" T cells and plasmablasts
[12]. Here we show a novel correlation between
leukocyte telomere length (LTL) and EEAA. We infer
that this correlation reflects the aging of the immune
system, as expressed in the age-dependent change of the
proportions of naive CD8" T cells and memory CD8" T
cells.

RESULTS

Major characteristics of participants from the WHI (the
discovery cohort), the FHS and the BHS are displayed
in Table S1 and Figure S1 (available as Supplementary
data on line).

In WHI, LTL was negatively correlated with
chronological age (= -0.33, p = 1.9 x 10?%) (Figure 1).
LTL, adjusted for age, was also negatively correlated
with EEAA (r=-0.22,p=2.7x 10"10). This correlation
persisted after further adjustment for race/ethnicity, sex,

BMI and current smoking status (» =-0.16, p = 3.1 x 10
%) and was replicated in both FHS (r = -0.09, p = 6.5 x
10*) and BHS (r = -0.07, p = 3.8 x 10 (Figure 1). In
sensitivity analyses using the WHI sample, the
relationship remained significant (p = 0.005) after
additional adjustment for the covariates: systolic and
diastolic blood pressure, education level, income,
diabetes, high density lipoprotein cholesterol, low
density lipoprotein cholesterol, triglycerides, and C-
reactive protein. Tests for interaction showed no
differences in LTL and EEAA associations by sex
(Table S2) or race/ethnicity (Table S3) after adjusting
for age, BMI, and current smoking status. Thus,
subsequent analyses were conducted on the pooled data
from all three cohorts.

As EEAA was built on specific 71 CpG sites described
by Hannum et al. [3] and further modified for imputed
proportions of naive CD8" T cells, memory CD8" T
cells, and plasmablasts [12], its correlation with LTL
may be due to an intrinsic property of the CpG sites, the
leukocyte proportions, or both.

We therefore examined (first in WHI and then in FHS
and BHS) the relationship between LTL and imputed
proportions of these three cell populations. In WHI, the
proportion of naive CD8 T cells was positively
correlated with LTL (» = 0.19, p = 2.84 x 10™) after
adjusting for age, sex, BMI, race/ethnicity, and current
smoking status (Table 1). This finding was consistent in
the two replication cohorts (+ = 0.19, p = 3.53 x 107 in
FHS and r = 0.21, p = 2.47 x 10 in BHS). The
proportion of memory CDS" T cells was negativelgy
correlated with LTL in WHI (» = -0.20, p =1.76 x 107)
and the replication cohorts (r = -0.16, p =1.06 x 10 in
FHS, and » =-0.18, p =1.50 x 107 in BHS). Plasmablast
proportion was negatively correlated with LTL in WHI
(r = -0.09, p = 0.01) but was not significant in the
replication cohorts (» = 0.03, p = 0.41 in FHS and » =
0.03, p = 0.35 in BHS). No sex or racial/ethnic
differences were detected in any of these correlations (p
>0.05).

Meta-analyses, combining the three cohorts (Table 1),
showed that after adjustment for age, sex, race/ethnicity,
BMI and current smoking status, LTL was negativel;r
correlated, r = -0.12, with the EEAA atp =7.32 x 107,
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positively correlated with the proportion of naive CD8" Chen et al. introduced a measure of epigenetic age

T cells, r = 0.20, p = 3.57 x 10" and negatively acceleration that was independent of cell proportions,
correlated with the proportion of memory CDS8" cells, r known as IEAA [10]. We examined the relation
= -0.18, p = 4.04 x 10™"°. No significant correlations between LTL and two versions of IEAA—one using the
were found between LTL and the proportion of Horvath set of CpGs [13] and one using the Hannum et
plasmablasts. al. CpGs [3]. The IEAA using the Hannum CpGs was
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Figure 1. Plots of leukocyte telomere length (LTL) against chronological age (upper row) and extrinsic epigenetic age
acceleration (EEAA) (second and third rows). Second row displays unadjusted EEAA. Third row displays EEAA adjusted for BMI,
sex, race/ethnicity, and current smoking status. First column displays associations for the Women's Health Initiative (WHI, n=804).
Second column displays associations for the Framingham Heart Study (FHS, n=909). Third column displays associations for the Bogalusa
Heart Study (BHS, n=826).
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not associated with LTL (WHI: » = -0.05, p = 0.16;
FHS: »=0.01, p = 0.88; BHS: » = 0.02, p = 0.66). The
IEAA using the Horvath CpGs was not associated with
LTL in WHI (» =-0.05, p =0.12) and FHS (=0, p =
0.95) but was significant in BHS (»=0.08, p = 0.016).

Finally, we performed two additional sets of analyses to
ascertain that the correlation between LTL and EAAA
arises from correlation between LTL and CD8 " T cells.
First, we adjusted for the proportions naive CD8" T
cells, memory CD8" cells and plasmablasts. This led to
non-significant correlations between LTL and EEAA in
all cohorts (WHI: r =-0.04, p = 0.28; FHS: r =0, p =
0.99; BHS: r = 0.04, p = 0.31). Second, we also
examined EEAA using another set of CpG sites,
described by Horvath [14]. This latter measure of
EEAA showed similar associations in WHI (r =-0.18, p
=1.9x 10"y and FHS (r=-0.11, p = 1.1 x 10-") but was
not significant in BHS (r =-0.03, p = 0.36).

DISCUSSION

The two key observations of this study are: (a) LTL is
inversely correlated with EEAA; and (b) the LTL-EEAA

correlation largely reflects the proportions of imputed
naive and memory CD8" T cell populations in the
leukocytes from which DNA was extracted. These
correlations were independently replicated in two well-
characterized cohorts, providing confidence in their
validity. To our knowledge, this is the first study
showing association between LTL and a specific
formulation of the epigenetic age, but only when it was
weighted by the proportions of T naive cells, T memory
cells and plasmoblats (i.e., the EEAA). A previous
study, using the Hannum formulation [3], showed no
significant association between LTL and epigenetic age
[14]. Overall, these findings might explain the ability of
EEAA to predict all-cause mortality, given that EEAA
captures not only leukocyte DNAm age but also a key
aspect of immune senescence (principally naive and
memory T cells), which increases risks of a host of age-
related diseases and of death [15].

TL in every leukocyte lineage generally reflects the
individual’s TL across somatic cells [16,17], which is
highly heritable [18,19], but highly variable between
individuals. Such variability (SD ~ 0.7 kb) is already
displayed across newborns [20-22]. After birth, TL

Table 1. Partial correlation coefficients (Pearson) and linear regression
coefficients for associations of leukocyte telomere length with blood cell
subpopulations in three cohorts (WHI, FHS, BHS).

CDS8" naive CD8" memory | Plasmablasts
WHI* r (Pearson) 0.19 -0.20 -0.09
beta 0.0023 -0.031 -0.229
p-value 2.8x107 1.8x107 0.01
FHS 7 (Pearson) 0.19 -0.16 0.03
beta 0.0026 -0.025 0.076
p-value 3.5x10” 1.1x10® 0.41
BHS r (Pearson) 0.21 -0.18 0.03
beta 0.0037 -0.038 0.148
p-value 2.5x10” 1.5x107 0.35
Meta-analysis’ | » (Pearson) 0.20 -0.18 -0.01
beta 0.0027 -0.030 -0.018
p-value 3.6x10™ 4.0x10"° 0.88

* Discovery cohort; TMeta—analysis of correlation coefficients was conducted using the
DerSimonian-Laird random-effects meta-analytical approach. Meta-analysis of linear
regression beta coefficients was conducted using a random effects model with the
DerSimonian-Laird estimator. WHI = Women’s Health Initiative; FHS = Framingham Heart

Study; BHS =

Bogalusa Heart Study. All associations adjusted for age, sex, BMI,

race/ethnicity, and current smoking status (regression model: Telomere length in kb =
Cell Proportion + age (in FHS and BHS) + sex + BMI + race (in WHI and BHS) + current

smoking).
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shortening in leukocyte lineages reflects hematopoietic
stem cell replication. In a subset of leukocyte lineages,
replication continues in sites outside the bone marrow,
including the thymus and secondary lymphoid organs,
where antigenic stimulation induces their further
proliferation and differentiation [23].

The involution of the thymus with aging brings about
the progressive, age-dependent decline in the proportion
of naive CD8" T cells with the concomitant increase in
the proportion of memory CD8" T cells (Figure S2) [23-
26]. Decreasing naive T-cell number may affect
immune function and competence and in part explains
the declining cellular immune function observed with
aging [27]. For example, both the number and diversity
of T cell populations correlate with vaccine response
and resistance to opportunistic infections [28,29]. As
TL is shorter and (in vitro) proliferative potential is
compromised in memory compared to naive cells
[21,30], LTL would be comparatively shorter when a
high proportion of memory CD8" T cells is present in a
sample of leukocytes. In contrast, LTL would be
comparatively longer when a high proportion of naive
CD8" T cells is present in the sample. From this
perspective, for a given age, an individual with com-
paratively more memory CD8" T cells and less naive
CD8" T cells appears to have an older biological profile
of the immune system; such an individual also displays
a shorter age-adjusted LTL and an older EEAA profile.

This inference has considerable ramifications for the two
competing views about the biological meaning of LTL
dynamics (LTL at birth and its shortening thereafter).

The first and more popular view considers LTL as a
biomarker— a ‘telomeric clock’— of human aging.
However, given that LTL variation across newborns is
as wide as that in adults [20-22], the ‘telomeric clock’
does not start at the same zero ‘biological time’ in
different individuals [31].

For this reason, the second view suggests that although
in itself LTL is an inadequate marker of human aging, it
can forecast major aging-related diseases [32]. As LTL
is highly heritable [18,19], having constitutively short
(or long) telomeres precedes the onset of LTL-
associated diseases by decades [33,34]. It is thus likely
that TL might play an active role in disease
development. This conjecture is supported by findings
that not only LTL but also LTL-associated alleles are
associated with the incidence of two major disease
categories— cardiovascular disease and cancer [32,35].
Such findings largely exclude reverse causality, i.e., the
possibility that cardiovascular disease, major cancers or
their underlying causes bring about changes in LTL.

These competing interpretations of the biological
meaning of LTL are not mutually exclusive for the
following reasons: Because of wide LTL variation
between newborns, only a fraction of the inter-
individual variation in LTL between adults reflects
variation in age-dependent LTL shortening after birth.
Herein lies the relevance of the correlations of LTL
with EEAA and with the relative numbers of naive and
memory CD8" T cells. As TL shortening in T cells of
adults reflects their antigen-mediated replicative
histories, the associations of LTL with EEAA (and
naive and memory CD8" T cells) suggest that the
shortening of LTL with age captures, in part, the aging
of the immune system. Thus, age-dependent variation in
LTL shortening might partially record different histories
of the immune responses in different individuals under
different environmental settings.

Notably, in the FHS, LTL and DNAm were measured
10 years apart (Materials and Methods), but we doubt
that this 10-year gap had major influence on the
findings, given that LTL in adults displays strong
tracking, such that individuals maintain their
comparative LTL ranking throughout adulthood
[33,34]. In fact, the age-dependent trajectories of not
only LTL [17,33,34] but also DNAm age [36] are
largely determined prior to adulthood. As the immune
system is primarily fashioned during early life [37], it is
reasonable to propose that to gain further mechanistic
insight, the focus of studying both LTL and epigenetic
age should be shifted from adults to children.

Finally, our findings are based on imputation using the
DNA Methylation Age Calculator (Materials and
Methods) rather than direct measurements of the
numbers of T cells. There is no reason to believe that
direct measurements of T cells would have generated
different conclusions, albeit the absolute values of the
LTL-EEAA might have been slightly different. In fact,
DNAm profiling may provide a valuable tool to follow
LTL dynamics under different environmental settings in
relation to changing proportions of naive and memory
CD8" T cells without the necessity to resort to direct
measurements of the numbers of these cells. Such an
approach may enable stored DNA samples to be
reexamined for the study of LTL and lymphocyte
population dynamics.

MATERIALS AND METHODS

Participants originated from the Women’s Health
Initiative (WHI), the Framingham Heart Study (FHS)
and the Bogalusa Heart Study (BHS); all signed
informed consents approved by respective institutional
review boards. All participants consented for the use of
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their DNA in genetic research. Analytic codes can be
obtained from authors (BHC, CLC) upon request.

Women's Health Initiative

Details on the WHI have been published previously [38-
40]. The cohort comprised white (of European ancestry)
and African American postmenopausal women with
both LTL and DNAm age measures in blood samples
collected at baseline (1993-98). These women were part
of two WHI ancillary studies measuring LTL or DNAm
age. Data are available from this page:
https://www.whi.org/researchers/Stories/June%202015
%20WHI%20Investigators'%20Datasets%20Released.a
spx; also see the following link:
https://www.whi.org/researchers/data/Documents/WHI
%?20Data%20Preparation%20and%20Use.pdf

Framingham Heart Study

The FHS Offspring Cohort began enrollment in 1971
and included offspring and spouses of the offspring of
the FHS original cohort. LTL was measured in samples
from the sixth examination (1995-1998); DNAm
analysis was performed on samples from the eighth
examination (2005-2008). These populations were
described previously [41-43]. The FHS data are
available in dbGaP (accession number
"phs000724.v2.p9").

Bogalusa Heart Study

The BHS is a study of the natural history of
cardiovascular disease beginning in childhood in the
biracial community (65% white, 35% African American)
of Bogalusa, Louisiana [44]. LTL data were available for
participants, who had blood samples collected on 2
occasions, a baseline examination in 1995-1996 and a
follow-up examination in 2001-2006. The LTL and
DNAm analyses were performed on samples from the
latter examination. The longitudinal cardiovascular risk
factor phenotype and genotype data of the BHS cohort
are available via application through the NHLBI Biologic
Specimen and Data Repository Information Coordinating
Center website ( https: //biolincc.nhlbi.nih.gov/studies/
bhs). The longitu-dinal datasets of risk factor variables
since childhood, calculated variables, LTL and genome-
wide DNA methylation data generated from the proposed
study will be made available to outside researchers on
this website.

Leukocyte telomere length measurements
LTL was measured by the mean length terminal

restriction fragments using the Southern blot method, as
previously described [45]. The inter-assay coefficient of

variation for blinded pair sets was 2.0% for the WHI,
1.4% for the BHS and 2.4% for the FHS.

Extrinsic Epigenetic Age Acceleration (EEAA) and
Intrinsic Epigenetic Age Acceleration (IEAA)

EEAA was defined as the residual variation resulting
from a univariate model regressing the epigenctic age
described by Hannum et al. on chronological age [3],
which was further weighted by the proportions of 3 cell
types: naive (CD8'CD45RA'CCR7") T cells, memory
(CD8'CD28 CD45RA") T cells, and plasmablasts; the
weights were determined by the correlation between the
respective variable and chronological age [46]. The cell
proportions were estimated from the DNAm data, as
implemented in the online DNA Methylation Age
Calculator (https://dnamage.genetics.ucla.edu/).

By construction, EEAA is positively correlated with the
memory CD8" T cells, plasmablast cells, and negatively
correlated with naive CD8" T cells. Thus, EEAA
captures both age-related DNAm changes and age-
related changes in the composition of naive T cells,
memory T cells and plasmablasts.

We have also examined the correlation between LTL
and IEAA, which was calculated as the residual
resulting from multivariate regression of the epigenetic
age on chronological age and estimated numbers of
naive CD8" T cells, memory CD8" T cells, plasma-
blasts, CD4" T cells, natural killer cells, monocytes, and
granulocytes. By definition, IEAA is not correlated with
chronological age and is, at most, only very weakly
correlated with measures of leukocyte counts. IEAA is
meant to capture properties of the aging process that
exhibit some preservation across various cell and tissue
types and organs.

DNA methylation quantification

Bisulfite treated genomic DNA was hybridized to the
lumina Infinium HumanMethylation450 BeadChip
(Illumina, Inc, San Diego, CA, USA). Background-
corrected DNAm beta values were uploaded to the
online DNA Methylation Age Calculator to obtain age
acceleration measures.

Statistical analysis

Cohort differences for continuous and categorical
variables were tested using one-way ANOVA or
Fisher's exact tests, respectively. Sex and race
interactions were tested using a Wald test. Beta
coefficients were estimated using linear regression with
DNAm age as the dependent variable and LTL as the
independent variable, adjusted for age, body mass index
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(BMI), and current smoking status. Partial correlation
coefficients were adjusted for age, BMI, and current
smoking status using the pcor command in the ppcor R
package [47]. Meta-analysis of correlation coefficients
was conducted using the DerSimonian-Laird random-
effects meta-analytical approach using the metacor.DSL
command in the metacor R package. Meta-analysis of
linear regression estimates was conducted using the
DerSimonian-Laird random-effects model implemented
in the rma command in the metafor R package. Tests
for differences between two correlations was con-
ducted using the r. test command in the psych R
package [48].
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SUPPLEMENTAL MATERIAL

Table S1. Study population characteristics.

Variable WHI FHS BHS
Sample size, n 804 909 826
Median age in years, (25" and 66 (60, 70) 66 (61, 74)* 44 (40, 47)
75™ percentiles)
Female sex (n, %) 804 (100%) 469 (52%) 470 (57%)
Median BMI in kg/m* (25" and 29.31 27.58 29.34
75™ percentiles) (25.51, 33.50) (24.69, 30.66) (25.62, 34.65)
Current smoker (n, %) 95 (12%) 91 (10%) 224 (27%))
Race/ethnicity (n, %)
White 467 (58%) 917 (100%) 576 (70%)
African American 337 (42%) 0 (0%) 250 (30%)
Median biomarker distributions (25™ and 75™ percentiles)
LTL (kb) 6.87 (6.47,7.31) 6.96 (6.58, 7.39) 6.85 (6.45,7.39)
EEAA (years)" -0.83 (-4.94, 2.89) -0.21 (-3.69, 3.14) -0.27 (-2.81, 2.72)

" Extrinsic epigenetic age acceleration (EEAA) ® Represents age at sample collection for DNA methylation.
Age at LTL sample collection was median=57, 25™" percentile=52, and 75" percentile=65 years of age.

Table S2. Sex-specific associations for leukocyte telomere length (kb)
and extrinsic epigenetic age acceleration (years). All models adjusted
for age, body mass index, race (BHS only) and smoking status.

Cohort  Sex Partial correlation Beta* (p-value)
coefficient (p-value)
FHS Male -0.08 (0.09) -0.78 (0.09)
Female -0.11(0.02) -1.03 (0.02)
BHS Male -0.04 (0.47) -0.24 (0.47)
Female -0.11(0.02) -0.63 (0.02)

* Regression model (stratified by sex): EEAA = leukocyte telomere length +
age + BMI + race (in BHS) + smoking.**Wald test for differences in beta
coefficients across sexes were p=0.58 for FHS and p=0.34 for BHS.
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Table S3. Race-specific associations for leukocyte telomere length (kb) and
extrinsic epigenetic age acceleration (years). All models adjusted for age,
body mass index, sex (BHS only) and smoking status.

Cohort Sex Partial correlation coefficient Beta* (p-value)
(p-value)

WHI White -0.17 (0.0003) -1.72 (0.0003)
African -0.19 (0.0004) -2.21 (0.0004)
American

BHS White -0.06 (0.15) -0.35(0.15)
African -0.10 (0.12) -0.65 (0.12)
American

* Regression model (stratified by race/ethnicity): EEAA = leukocyte telomere length +
age + BMI + sex (BHS only) smoking. ** Wald test for differences in beta coefficients
across racial/ethnic groups were p= 0.33 for WHI and p=0.50 for BHS.
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Figure S1. Kernel density distributions across study populations for (A) chronological age,
(B) leukocyte telomere length, (C) extrinsic epigenetic age acceleration. Blue=Bogalusa Heart
Study. Red=Framingham Heart Study. Black=Women's Health Initiative.
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Figure S2. Plots of cell abundances for naive CD8" T cells (row 1) and memory CD8" T cells (row 2) against chronological age by
cohort. Women's Health Initiative (WHI) in column 1. Framingham Heart Study (FHS) in column 2. Bogalusa Heart Study (BHS) in
column 3. Cell proportions were estimated from DNA methylation data. The lack of significant correlation in the BHS between
memory CD8'T cells and age may be attributable to the younger age and narrower age range in BHS compared to WHI and FHS.
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