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ABSTRACT

Aging is accompanied by an increase in markers of innate immunity. How aging affects neutrophil functions
remains of debate. The adenosine A, receptor (A;4R), essential to the resolution of inflammation, modulates
neutrophil functions. We sought to determine whether or not A,,R protects against the effects of aging. We
monitored neutrophil influx, viability, and activation as well as cytokine accumulation in wild-type (WT) and
AzaR-knockout mice (KO) at three different ages.

Several readouts decreased with aging: neutrophil counts in dorsal air pouches (by up to 55%), neutrophil
viability (by up to 56%), elastase and total protein in exudates (by up to 80%), and local levels of cytokines (by
up to 90%). Each of these parameters was significantly more affected in A,sR-KO mice. CXCL1-3 levels were
largely unaffected. The effects of aging were not observed systemically. Preventing neutrophil influx into the air
pouch caused a comparable cytokine pattern in young WT mice. Gene expression (mRNA) in leukocytes was
affected, with CXCL1 and CCL4 increasing and with TNF and IL-1a decreasing.

Conclusion: Aging has deleterious effects on the acute inflammatory response and neutrophil-related activities,
and defective migration appears as an important factor. A functional AR signaling pathway delays some of
these.

INTRODUCTION

Aging is often associated with a chronic, low-grade
inflammation characterized by increases in circulating
pro-inflammatory  cytokines.  Originally  coined
"inflammaging" by Franceschi et al. [1], this pheno-
menon has been linked to age-related disorders and
earlier mortality [2, 3]. Aging is also associated with
immunosenescence, a progressive deterioration of the
adaptive immune system, characterized by reduced
responsiveness to preventive vaccination or by increas-
ed susceptibility to cancer, autoimmune and infectious
diseases. Infections and sepsis rank among the top
causes of mortality in the elderly [4].

An early feature of the acute innate response is the
recruitment of polymorphonuclear leukocytes (neutro-

phils) [5]. In response to specific activating signals,
these short-lived cells migrate across the endothelium
and often accumulate in large numbers at the site of a
lesion, where they contribute to host defenses by
phagocytosing pathogens and cell debris, generating
cytotoxic oxygen-derived reactive agents, and by
releasing proteolytic enzymes and antimicrobial
proteins. Inflammatory neutrophils also produce and
release an array of specific soluble mediators of
inflammation. Eicosanoids, cytokines, and chemokines
[6-8] may each influence the course of immune
reactions in a multi-pronged fashion, by soliciting and
regulating different cell types involved in the normal
development and resolution of an effective inflam-
matory response [9]. Aging reportedly affects important
receptor-driven  functions of neutrophils  [10].
Extracellular trap formation, phagocytosis, degranula-
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tion, ROS production and the microbicidal capability of
neutrophils all decline with age [11]. However, the
effects of aging on these and other innate immune
responses remain incompletely understood, particularly
regarding the recruitment of neutrophils and their role in
the local build-up of cytokines.

Adenosine is an autacoid with a broad spectrum of
activities. Its formation increases under conditions such
as sepsis, inflammation and hypoxia and plays an
important role in the resolution of inflammation [12,
13]. The adenosine A5 receptor (A;aR) constitutes a
non-redundant  physiological negative feedback
mechanism that terminates inflammatory responses
[14]. Engagement of A;,R in young mice inhibits
phagocytosis, neutrophil adhesion to endothelial cells
and generation of cytotoxic oxygen metabolites.
Neutrophils have been identified as an important target
of the anti-inflammatory actions of A;sR (reviewed in
[15]). In human neutrophils, A;aR activation depresses
the expression of inflammatory mediators such as
leukotriene B4 and inflammatory cytokines, particularly
TNF [6, 7, 9], while potentiating the COX-2 dependent
generation of prostaglandin E,; [16]. Study of the
involvement of A;5R in normal aging has been confined
largely to effects on nervous tissues [17], while the
relationship between aging and the clear role for
immune-cell-borne Aj;sR in the resolution of inflam-
mation has received little attention [18].

In the present study, we examined the impact of aging
on an acute inflammatory response. We measured
neutrophil influx, viability, activation and gene
expression as well as cytokine accumulation in dorsal
air pouches raised on wild-type (WT) and A;aR-knock-
out (KO) mice. Results reveal that the quality of several
neutrophil-dependent local responses declines with age
and that functional A;sR provides some protection
against this decline.

RESULTS

A shown in Figure 1A, the mice gained weight steadily
over the experimental period. Body weight was
significantly smaller in A;4R-KO mice at the age of 6
months, and these animals were 12 % lighter than the
WT group at the age of 15 months.

Aging has a negative impact on the accumulation
and viability of neutrophils in the air pouch

Injection of LPS into a dorsal air pouch (500 ng/pouch)
elicits the recruitment of neutrophils [8]. Fractions of
Ly6G" neutrophils remained relatively constant
throughout age groups, ranging from 70% to 82% in
WT mice (Fig. 1B, left panel). In 3-month-old WT

mice, approximately 1.5 x 10° neutrophils had
accumulated 4 h after injection (Fig. 1B, right panel).
Neutrophil infiltration was 52 % greater in KO mice.
However, by the age of 15 months, the numbers had
dropped by more than half for both genotypes. No such
decrease was observed in the bloodstream of WT mice:
counts of leukocytes, including lymphocytes,
monocytes, and neutrophils, were all even higher at 15
months (Suppl. Fig. S1). The LPS injection caused
bloodstream neutrophil counts to double in young and
old mice, while lymphocyte and monocyte counts were
unchanged. The viability of Ly6G™ neutrophils
harvested from the air pouches dropped as the mice
aged (Fig. 1C, top panel). This occurred faster in KO
mice, in which the final counts were approximately 30
% lower than in WT, and is reflected in the proportions
of early apoptotic neutrophils and late apoptotic/dead
cells. Increased neutrophil apoptosis in A;xR-KO mice
is consistent with earlier reports indicating that
activation of AjsR delays apoptosis in human
neutrophils [19, 20]. The viability of non-neutrophil
leukocytes (Ly6G") similarly decreased with aging (fig
1C, bottom panel).

Local tissue permeability and  neutrophil
degranulation decrease with aging

The permeability of local interstitial tissues decreased
markedly as the animals aged, based on the total protein
content of the air pouch fluid, both in saline-injected
(basal condition) and LPS-injected animals (Fig. 1D). In
WT mice injected with LPS, total protein decreased by
83 % between the ages of 3 months and 15 months. The
corresponding decrease in KO mice was more
pronounced. Measured as an indication of neutrophil
azurophilic degranulation [21], elastase activity also
decreased as the mice aged (Fig. 1E), noticeably more
in KO mice.

Aging affects the profile of cytokine accumulation at
the inflammatory site

Levels of each cytokine and chemokine measured in air
pouch exudates of WT and KO mice at three months of
age were for the most part comparable, whether the
mice were injected with LPS or not (Fig. 2A). However,
as the animals aged, levels of TNF, IL-6, IL-10,
CXCL1, and CCL2-4 and G-CSF decreased markedly
while CXCL2-3 remained elevated. Figure 2B
illustrates the changes observed respectively in LPS-
injected WT and KO mice, relative to cytokine status at
3 months. The decrease was faster and greater in KO
mice than in WT mice, with levels of CXCL 1, 2 and 3
dropping more slowly. An age-matched comparison
between the two genotypes shows that the effect of
AsaR knockout was most apparent at the age of 6
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months and that CXCL 1, 2 and 3 were the least
affected (Fig. 2C). Additional cytokines and growth
factors were measured, including IL-1a, IL-1pB, IL-2 to
IL-5, IL-7, IL-9, IL-12, IL-13, IL-15, IL-17, LIF, M-
CSF, GM-CSF, IFN-y, and VEGF, but their con-
centrations were stable and remained below 50 pg/ml
consistently under all conditions tested (data not
shown).

Such clear age-related decreases in cytokine
concentrations were not observed in the bloodstream.
Basal circulating levels remained quite constant over

the 1-year period of study (Suppl. Fig S2). Only IL-15
and to a lesser extent CXCL 1, 2 and 3 and CCL 2 and 3
tended to decrease with age, but not to a significant
extent. Injection of LPS into the pouch increased the
levels of several cytokines in the bloodstream. The
highest levels measured were by far for G-CSF, in
young and older mice. Levels of IL-6, CXCL9 (MIG),
CXCL10 (IP-10), CCL2 and to a lesser extent CCL4
also increased. For most analytes, blood levels in LPS-
injected mice were comparable at 3 and 15 months.
Exceptions included IL-6, which increased significantly
in older mice, while levels of G-CSF and CXCL10
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Figure 1. Animal body weight, air pouch leukocyte counts, and viability. (A) Body weight of wild-type (WT) and A,AR-
knockout mice aged 3, 6 and 15 months (n = 30 per group). (B) Ly6G+ neutrophils among cells recovered from LPS-injected
dorsal air pouches (n = 12 mice per group) were enumerated as described in Methods. (C) Ly6G-positive (+) neutrophil (top
panel) and Ly6G-negative (-) leukocytes (bottom panel) viability was assessed as described in Methods. (n = 12 mice per group).
All values are expressed as mean + SEM. *Significantly different from 3 months within a genotype. #Significantly different from
the age-matched WT group. (D-E) Cell-free exudates were analyzed for total protein and neutrophil elastase concentrations.
Phosphate-buffered saline (Basal) or buffer + LPS was injected into air pouches raised on wild-type (WT) and A,sR-knockout
mice (aged 3, 6 or 15 months) as described in Methods. All values are expressed as mean + SEM for n = 12 mice per group.
*Significantly different from 3 months within a genotype. ”Significantly different from the age-matched WT group.
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decreased. Levels of CCL3, CCL4, and IL-15 tended to
increase in older mice but did not reach significant
levels. IFN-y, IL-2, IL-3, IL-4, IL-5, IL-7, IL-9, IL-10,
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Figure 2. Cytokine/chemokine levels in dorsal air pouches. (A) Concentrations of cytokine, chemokine or growth factor in
cell-free exudate recovered from WT and A,,R KO mice after injecting air-pouches with phosphate buffered saline (-) or with
buffer + LPS. Mice were aged 3, 6 or 15 months (m). Concentrations were measured using a multiplex immunoassay as described
in Methods and are expressed as mean + SEM for n = 12 mice. *Significantly different from the concentration measured at 3m. #
Significantly different from the age-matched wild-type group. (B) Changes (%) in concentrations measured at 6m and 15m relative
to 3m, in LPS-injected air pouches. (C) Variations between wild-type and A,,R-knockout mice concerning cytokine concentrations
measured in LPS-injected dorsal air pouches. Values are % changes relative to age-matched WT. (D) The effect of neutrophils
influx on cytokine/chemokine levels in dorsal air pouches. WT mice aged 3m were injected with anti (a)-Ly6G before injection of
LPS into air pouches. Cytokine concentrations and neutrophil counts (insert) in the pouches are expressed as the change (%)
relative to control mice (not injected with the antibody). Values are expressed as mean = SEM (n = 5).
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Incoming neutrophils are required for normal
cytokine production at the site of inflammation

To hinder neutrophil migration to the inflammation
sites, 3-month-old WT mice that were to be treated with
LPS received an intravenous injection of anti-Ly6G,
which works via a P2-integrin-dependent mechanism
[22]. Neutrophil counts in LPS-injected pouches were
thus decreased by as much as 80 % (Fig. 2D, insert).
Subsequent accumulation of TNF, IL-6, IL-10, CCL2-4,
CXCL9-10 and G-CSF was also decreased, often by
more than 75 % (Fig. 2D), while levels of CXCL 1, 2
and 3 increased by 2-4 fold. Preventing neutrophil
migration thus appears to replicate the effects of aging
on the local accumulation of cytokines.

Aging affects gene expression profiles in migrated
leukocytes

Increased expression of genes encoding transcription
factors, cytokines, enzymes, regulatory elements and
receptors is an additional indication of leukocyte
activation [7, 8]. We calculated the stimulation indexes
of various genes in neutrophils as a function of age
under basal and inflamed (LPS) conditions, WT and KO
mice (Suppl. Figs. 3 & 4). Consistent with our previous
observations [8], mRNA encoding the cytokines IL-1f,
CXCL2, CCL 3 & 4 and phosphatase DUSP1 were
among the most abundant, under basal and LPS-
inflamed conditions. Messenger RNA encoding IL-1a,
IL-1B, CCL 3 & 4, CXCL 2 & 3, MAPK signaling
factor GADD45B and suppressor signals SOCS3 and
TNFAIP3 had the highest stimulation indexes. CCL3,
CCL4, CXCL1, and CXCL3 mRNA levels increased in
leukocytes recovered from air-pouches of WT mice
aged 6 and 15 months, under basal and LPS conditions,
by more than 10-fold in the case of CCL4 (Fig. 3A & B,
top and middle panels). In contrast, TNF mRNA
diminished consistently. IL-loo mRNA faded under
conditions of LPS stimulation. The CCL4 stimulation
index increased at six months, while indexes for
CXCL1 and IL-la decreased (Fig. 3A & B, bottom
panels). Increases in CXCL2 and CXCL3 and decreases
in TNF under basal and LPS conditions were greater in
KO than in WT mice (Figure 4A & B). Stimulation
indexes of IL-la, IL-1B, CCL3, CCL4, CXCL2,
CXCL3, EDNI, and TNF were affected negatively as
the animals aged. Age-matched com-parisons between
KO and WT revealed CCL4 expression up to 16 times

Figure 3. Effect of age on gene expression in leukocytes recovered from dorsal air pouches raised on WT mice. Gene mRNA
transcripts were quantitated as described in Methods and categorized as transcription factors, receptors, cytokines or enzymes. In each
category, genes are ranked from the largest increase to the largest decrease under basal conditions (saline injection only). (A) 6-month to
3-month age comparison. (B) 15-month to 3-month comparison. “Stimulation index” is the change due to stimulation by LPS injection,
relative to the basal condition. Dotted lines indicate one doubling or halving of gene expression. Values are expressed as the base-2 logarithm.
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higher in leukocytes recover-ed from dorsal air pouches
of KO compared to WT mice (Fig. 5), while CXCL2
and IL-o decreased. Stimulation indexes for CCL3,
CCL4 were higher. In 15-month-old mice, the vast

majority of the affected genes were expressed more
weakly in KO than in WT mice. A compilation of the
most salient gene expression trends is presented in
Table 1.

Table 1. Genes most affected by aging in leukocytes harvested from LPS-injected air pouches.
WT A;AR-KO

Up-regulated

Up-regulated

At 6m, bothin At 15m, both Stimulation At 6m, bothin At 15m, both Stimulation
basal and LPS in basal and indexes basal and LPS  in basal and indexes
conditions LPS (6m or 15m) conditions LPS (6m or 15m)
conditions conditions
CCL4 CCL4 CCL4 CXCL2 CXCL2 -None
CXCL3 CXCL3 CXCL3 CXCL3
EDN1 EDN1 EGR2 CREM
CREM CCL3
EGR2 CXCL1 GPR84
CD83
GADD45B
Down- Down-
regulated regulated
At 6m, both in At 15m, both Stimulation At 6m, bothin At 15m, both Stimulation
basal and LPS  in basal and indexes basal and LPS  in basal and indexes
conditions LPS conditions LPS
conditions conditions
EGR1 EGR1 BTG2 BTG2 BTG2 NR4A1
NR4A1 NR4A1 IL-10a TNF TNF NR4A3
TNF TNF CISH CXCL1 CISH CCL3
GADD45B DUSP5
TNFAIP3 CCL4
CXCL1 CXCL2
CXCL3
EDNI1
IL1B
DUSP1
TNFAIP3

Genes expressed differentially in 6-month-old and 15-month-old mice, based on comparison to genotype-
matched 3-month-old mice. Criterion: gene expression was at least doubled (Up-regulated), or halved

(Down-regulated), compared to the expression at 3m.

In bold: affected both at 6m and 15m.
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plasma protein interacting with neutrophil receptors for
complement-derived chemoattractants might influence
neutrophil responses to infection and inflammation in
the elderly [33]. More recently, Hazeldine et al.
observed an impaired LPS-induced neutrophil extra-

Figure 4. Effect of age on gene expression in leukocytes
recovered from dorsal air pouches raised on A,,R KO
mice. Please refer to the legend for Figure 3.
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cellular trap formation in aged individuals while TLR4
expression was not affected, suggesting a defect in
proximal signaling to explain the age-related decline
[11]. Although genetic and environmental influences
and the complexity of the immune system are likely
involved, the mechanisms that cause age-associated
imbalances remain unclear. Moreover, our results
around neutrophil decaying responses must be taken in
a larger context of age-related immune and host defense
decline. Insufficient innate responses in aging may lead
to longer, or even chronic, inflammatory episodes
causing harm to tissues [34, 35] and promoting inflam-
mation further. Nonetheless, an ineffective inflammato-
ry response is clearly at play in older subjects.

A key observation in the present study is that preventing
neutrophil migration to the lesion by immunological
means largely reproduced in young mice the effects of
aging on local cytokine/chemokine accumulation,
implying that neutrophils are the principal source of
cytokines found in the air pouch. However, support for
such a role is scant, and it has been shown that
cytokines such as TNF can accumulate before
neutrophil infiltration [23]. What our results do indicate
is that unhindered accumulation of neutrophils promotes
the optimal production of local mediators of
inflammation [23] and that deficient migration to the

lesion might be a significant cause of the diminished
responses seen in aging individuals. The cytokine G-
CSF, a factor involved directly in neutrophil formation,
mobilization and activation [36], was one of the few
analytes for which blood concentrations diminished
significantly as the mice aged. Whether or not this
explains the sluggish migration of neutrophils in older
animals remains to be demonstrated. It nonetheless
raises the possibility that imbalances extrinsic to
neutrophils contribute to altering cellular responses as
animals age. A better understanding of the roles of such
factors will likely be important in the treatment of age-
related immune dysfunction.

Aging also affected the gene expression profile of
leukocytes recovered from the air pouch. Messenger
RNA encoding the monocyte-chemoattractants CCL4
(MIP-1B) and to a lesser extent CCL3 (MIP-1a), al-
ready ranking among the most abundant transcripts in
resting or stimulated polymorphonuclear cells,
increased more in aging WT mice. One of the critical
chemokines for granulocyte recruitment, namely
CXCL3, increased in both genotypes, suggesting an
attempt to compensate for otherwise insufficient
leukocyte migration. These results suggest that under
conditions of unhindered migration, a yet unidentified
feedback signal is generated to modulate the transcrip-
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Figure 5. Age-matched comparisons of gene expression in leukocytes recovered from dorsal air pouches raised on
wild-type (WT) and A,,R-knockout (KO) mice. Ratios were determined for the basal condition (injection of PBS only, top row),
the LPS-stimulated condition (middle) and the stimulation indexes (bottom).
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tion of genes encoding leukocyte-attracting chemokines.
In both genotypes, TNF mRNA was among the
transcripts that decreased most in abundance with aging,
which is consistent with a diminished inflammatory
response, given the important role of this cytokine.

To our knowledge, the present study is one of the first
to address the effects of aging on Aj;sR-dependent
neutrophil responses [18]. The results show that the
effects of aging are more pronounced in A, R-KO
mice. At all ages examined, neutrophil viability was
decreased in mice devoid of functional AjsR,
confirming previous findings of an anti-apoptotic role
for AR in human neutrophils [19, 20]. Moreover, total
proteins, neutrophil elastase, and cytokines were all
decreased significantly in air pouches in older A;AR-KO
mice, which is consistent with increased neutrophil
death. While many readouts were affected in A;AR-KO
mice, differences between age-matched genotypes were
more subtle than those caused by aging. While it is too
early to speculate on the physiological consequences of
AsaR-deficiency in aging, the trend in worsening effects
of aging remains intriguing. A;aR is recognized as a
termination signal in several in vitro and in vivo models
of the acute inflammatory response [14, 15, 37]. In
young mice without a functional A,sR, pro-
inflammatory signals reach higher concentrations or
persist for longer periods of time [14, 38]. This has been
shown for local production of TNF in 6-8 week-old
mice [6]. The absence of such a pivotal stop-signal
pathway is likely to cause prolonging of inflammatory
episodes, which might eventually desensitize portions
of the immune system. This is consistent with the
concept of inflammaging, in which chronically elevated
concentrations of inflammatory markers lead to the
diminishing of neutrophil-associated inflammatory
responses [39]. Proper termination of local inflam-
matory responses by functional A;sR might thus
contribute to maintaining immune response efficiency
as the subject ages. A;aR deficiency also affected
bodyweight in aging, presuming effects beyond
neutrophil responses. Studies focused on low-level
chronic inflammation as a possible contributing factor
to diminishing acute inflammatory response in aging
subjects are in progress in our laboratory.

In conclusion, aging brought a clear decrease in some
important aspects of a local acute inflammatory
response in mice, including neutrophil migration,
viability, and activation. Sluggish neutrophil migration
itself appeared to be a possible causative agent. The
absence of the A,aR stop-signaling pathway worsened
much of the observed decline associated with aging,
indicating the importance of a proper resolution process
for maintaining the effectiveness of innate immune
responses as age advances.

MATERIALS AND METHODS
Experimental design

AxsR heterozygotes (AxxR™) CD1 mice were paired.
Offsprings were genotyped to select AsuR™” (KO) and
AsnR"™" (wild-type) animals, as described previously
[6]. Mice were kept for up to 15 months in groups of 4
per cage at 20 °C and 60 % relative humidity with a
light-dark cycle of 12 h. Access to food and water was
ad libitum. Age groups (3, 6, 15 months old), genotypes
and age-matched genotypes were compared. The
dependent variables were: counts and viability of
granulocytes recovered from the dorsal air pouch,
expression (mRNA) of inflammatory genes in leuko-
cytes and in the tissue lining the air pouch,
accumulation of cytokines/chemokines and elastase
activity in the pouch exudates.

Dorsal air pouches

The Universit¢é Laval animal protection committee
approved all air-pouch experiments. These were
conducted as described previously [8]. Briefly, dorsal
pouches (one per mouse) were raised by subcutaneous
injection of 5 mL of sterile air on day 0 and 3 mL on
day 3. On day 6, individual air pouches were injected
with 500 pL of pre-warmed, endotoxin-free phosphate-
buffered saline (PBS), or PBS containing 500 ng of
lipopolysaccharide from Escherichia coli (LPS, E. coli
0111:B4, Sigma-Aldrich Canada Co., Oakville, ON,
Canada). Mice were sacrificed 4 h after LPS injection,
and air pouches were washed twice with ice-cold PBS
(total of 2 mL). Leukocyte suspensions were assayed
for cell enumeration with a Cellometer Auto T4 Plus
cell counter (Nexcelom Bioscience LLC, Lawrence,
MA, USA). Blood was collected by cardiac puncture.
The experimental groups contained an average of 8
mice and equal numbers of females and males. The
entire experiment was repeated five times.

Cell subtyping

Identification of leukocyte and subtypes were
performed using V450-conjugated rat anti-mouse CD45
IgG2b, k (leukocyte marker), APC-conjugated rat anti-
mouse Ly6G (1A8) IgG2a, k (granulocyte marker),
FITC-conjugated rat anti-mouse CD3 IgG2b, k (BD
Biosciences, Mississauga, ON, Canada; lymphocyte
marker), and PE-Cyanine7-conjugated rat anti-mouse
CD115 IgG2a, k (eBioscience, San Diego, CA, USA;
monocyte marker). Briefly, 100 puL of cell suspension
was incubated with 0.2 pg of anti-CD45, 0.2 pg of anti-
Ly6G, 0.5 pg of anti-CD3 and 0.2 pg of anti-CD115 for
30 min in the dark. PBS was added (400 pL) and
samples were analyzed using a FACS Canto II flow
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cytometer with FACSDiva software, version 6.1.3 (BD
Biosciences).

Neutrophil viability

Cell viability was assessed using V450-conjugated rat
anti-mouse CD45, APC-conjugated anti-Ly6G, and a
FITC Annexin V Apoptosis Detection Kit (BD
Biosciences). Briefly, 100 pL of cell suspension was
incubated with 0.2 pg each of anti-CD45 (leukocyte
marker) and anti-Ly6G for 30 min in the dark. After
centrifugation, cell pellets were suspended in 100 pL of
the binding buffer 1X provided with the apoptosis
detection kit. Annexin V (5 pL) and 5 pL of propidium
iodide were added to each sample. After 15 min, 400 pL
of binding buffer was added, and samples were analyzed
using a FACS Canto II flow cytometer with FACSDiva
software, version 6.1.3 (BD Biosciences). Gating was
determined using control samples labeled individually
with either Annexin V or propidium iodide.

Elastase, and total proteins

Mouse elastase and total proteins in air pouch exudates
were measured using respectively an ELISA method
(R&D Systems, Minneapolis, MN, USA) and a protein
assay (Bio-Rad, Mississauga, ON, Canada) per the
manufacturers' instructions.

Metabolites

Cytokine/chemokine levels in cell-free supernatants
recovered from dorsal pouch exudates were measured
using a multiplexed bead-based immunoassay (BDTM
Cytometric Bead Array) according to the manufacturer's
protocol. TNF (C8), IL-6 (B4), IL-10 (C4), IL-1p (ES),
GM-CSF (B9), CCL2/MCP-1 (B7), CCL3/MIP-1a
(C7), CCLA/MIP-18 (C9) and CXCL1/KC (A9) levels
were determined using a FACS Canto II flow cytometer
with FCAP Array software, version 3.0 (BD
Biosciences). CXCL2-3/MIP-2 measurements were per-
formed using a commercially available ELISA kit
(R&D systems Inc., Minneapolis, MN, USA) according
to the manufacturer's instructions. Plasma cytokines and
G-CSF were measured using Eve Technologies
(Calgary, AB, Canada).

RNA isolation

Total RNA was isolated from approximately 5x10°
leukocytes (pellet of centrifuged dorsal pouch cell
suspension) using Ribozol™ (Amresco, Solon, OH,
USA) according to the manufacturer's protocol, with
modifications [8, 9]. Briefly, the sample was
homogenized in 1 mL of Ribozol™, and 200 pL of
chloroform were added. Samples were mixed and then

centrifuged at 12,000 x g for 15 min (4 °C), and the
aqueous phase (450 pL, on top) was transferred to a
tube containing an equal volume of isopropanol, mixed
thoroughly using a vortex device and centrifuged at
12,000 x g for 10 min (4 °C). The supernatant was
discarded, and the precipitated RNA pellet was washed
twice in 500 pL of 75 % ethanol with centrifugation at
12,000 x g for 5 min (4 °C). The final pellet was
allowed to air-dry for 5-10 min and then re-suspended
in RNase-free water. RNA was quantitated using a
Qubit® Fluorometer (Life  Technologies Inc.,
Burlington, ON, Canada).

Comparative real-time PCR

Gene expression (MRNA transcript abundance) was
monitored in leukocytes using real-time PCR. Reverse
transcription was performed using 1 pg of total RNA
with a Transcriptor First Strand cDNA Synthesis Kit
(Roche Applied Science, Laval, QC, Canada) following
the manufacturer's instructions. Real-time PCR was
performed as described previously [40]. Briefly, cDNA
amplification was carried out in a Rotor-Gene Q
operated with Q-series software version 2.0.2 (Qiagen
Inc, Mississauga, ON, Canada) using 35 cycles of 95 °C
for 17 seconds, 58 °C for 25 seconds and 72 °C for 25
seconds. Each reaction mixture contained 40 ng of
cDNA, 2 pL of 10X buffer (100 mM Tris, 500 mM
KCl, 30 mM MgCl,, 1.5 % Triton X-100), 100 uM
dNTP, 500 nM of primers, 0.1 unit of 7ag DNA
polymerase (Roche Applied Science) and SYBR"
Green I dye (Life Technologies Inc.) diluted 1:30 000 in
a volume of 20 pL. Reaction specificity was ascertained
by performing the Melt® procedure (58-99 °C, 1 °C per
5 s) at the end of the amplification protocol, according
to the manufacturer's instructions. For each gene of
interest, specific primers were designed as described
previously [8]. Briefly, primers were selected
systematically within the coding region, with a
theoretical melting point of 58 °C, GC content of 50 %
(= 10 %) and 18-24 base pair length, for an average
product length of 200 base pairs. Primers thus designed
were all tested with gradient PCR before use in real-
time PCR [8]. Internal control genes were ranked using
RefFinder, a web-based tool (http://150.216.56.64/
referencegene.php?type=reference)  developed  for
reference gene screening and evaluation based on
published datasets and four ranking methods [8]. The
RefFinder overall final ranking of each gene is a
weighting calculated as the geometric mean of the
rankings obtained from each method. Six genes were
selected as candidate control genes: GAPDH, GUSB,
H2AFZ, PPIA, TUBB4A, and UBC. The gene with the
best ranking was used as the normalizing factor for
presenting relative mRNA expression. In this study,
GAPDH consistently ranked best.
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Statistical analysis

Where applicable, values are expressed as mean + SEM.
Unless stated otherwise, statistical analyses were
performed using Student's two-tailed unpaired #-test.
The criterion for declaring a difference to be significant
was p < 0.05.
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SUPPLEMENTARY MATERIAL
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Supplementary Figure S1. Blood cell counts. Dorsal air pouches raised
on wild-type (WT) mice aged 3 or 15 months were injected with either saline
(Basal) or LPS for 4 h. Circulating lymphocytes, monocytes, and neutrophils
were then enumerated as described in Methods. Results are expressed as
mean = SEM for n = 12 mice per group. *Significantly different.
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Supplementary Figure S2. Plasma cytokine levels. Dorsal air pouches raised on wild-
type (WT) mice aged 3 or 15 months were injected with either saline (Basal) or LPS. Circulating
plasma cytokine levels reached 4 h later were measured as described in Methods. Results are
expressed as mean + SEM for n = 12 mice per group. *Significantly different.
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Supplementary Figure S3. Gene expression in leukocytes
recovered from dorsal air pouches raised on wild-type (WT)
mice. The abundance of mRNA transcript 4h after injection with saline
(Basal) or LPS was measured for each gene as described in Methods.
(A) Basal; (B) LPS; (C) Ratios of stimulated to basal expression levels
(stimulation index). Values were calculated from the mean threshold
cycle £ SEM (cells from 8 mice were pooled for each value, n = 5
experiments), relative to COX-1 in 3-month-old WT mice.
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Supplementary Figure S4. Gene expression in leukocytes
recovered from dorsal air pouches raised on A,,R-knockout
(KO) mice. Please refer to the legend for Suppl. Fig. S3.
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