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ABSTRACT

Aging is now at the forefront of major challenges faced globally, creating an immediate need for safe, widescale
interventions to reduce the burden of chronic disease and extend human healthspan. Metformin and
rapamycin are two FDA-approved mTOR inhibitors proposed for this purpose, exhibiting significant anti-cancer
and anti-aging properties beyond their current clinical applications. However, each faces issues with approval
for off-label, prophylactic use due to adverse effects. Here, we initiate an effort to identify nutraceuticals—
safer, naturally-occurring compounds—that mimic the anti-aging effects of metformin and rapamycin without
adverse effects. We applied several bioinformatic approaches and deep learning methods to the Library of
Integrated Network-based Cellular Signatures (LINCS) dataset to map the gene- and pathway-level signatures of
metformin and rapamycin and screen for matches among over 800 natural compounds. We then predicted the
safety of each compound with an ensemble of deep neural network classifiers. The analysis revealed many
novel candidate metformin and rapamycin mimetics, including allantoin and ginsenoside (metformin),
epigallocatechin gallate and isoliquiritigenin (rapamycin), and withaferin A (both). Four relatively unexplored
compounds also scored well with rapamycin. This work revealed promising candidates for future experimental
validation while demonstrating the applications of powerful screening methods for this and similar endeavors.

INTRODUCTION

By 2030, the US Census Bureau projects that one in
five people in the US alone will be over the age of 65
[1], a major risk factor for many of the most prevalent,
costly, and devastating diseases of today, including
cancer, cardiovascular disease, Alzheimer’s disease, and
Type II diabetes [2]. To offset the burden of this
increase, efforts are underway to develop an anti-aging

drug or other geroprotective intervention that could
extend healthspan, lower disease rates, and maintain
productivity in this age group.

Unfortunately, there are many roadblocks to such an
intervention. While many aging mechanisms are now
catalogued [3] and hundreds of databased drugs extend
lifespan in animal models [4,5], approval and testing of
new drugs in humans is slow, expensive, and prone to
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high failure rates. This is particularly true in longevity
research and exacerbated by a lack of reliable aging
biomarkers [6,7] other than disease itself [6,8]. Even if
successful, to be used preventatively, anti-aging drugs
face extraordinarily high safety and efficacy standards
for approval [9].

One strategy to hasten the process has been the
repurposing of existing, FDA-approved drugs that show
off-label anti-cancer and anti-aging potential [10,11],
and at the top of that list are metformin and rapamycin,
two drugs that mimic caloric restriction [12].

Caloric restriction is a well-known intervention for
extending lifespan across species [13], but has limited
practical value in humans [14]. Mimetics of caloric
restriction would theoretically exert its beneficial effects
without actual reduction in caloric intake. Hallmarks of
caloric restriction include reduced levels of circulating
glucose and insulin as well as beneficial responses to
these reductions in nutrient- and energy-sensing net-
works, such as activation of AMP-activated protein
kinase (AMPK) and inhibition of mammalian target of
rapamycin (mTOR) [15]. The mTOR pathway is a
particularly important growth pathway essential for
early development but also potentially detrimental in
later years if not suppressed, contributing to gero-
conversion, cellular senescence, disease and decline
[16]. Inhibition of the mTOR pathway slows conver-
sion to senescence [16] and extends longevity across
species, including Saccharomyces cerevisiae (yeast)
[17], Caenorhabditis elegans (nematodes) [18,19], and
Mus musculus (mice) [12,20-22].

Rapamycin and metformin, while distinct in clinical
use, are both mTOR inhibitors and exhibit multiple anti-
aging, anticancer, and anti-cardiovascular disease
benefits [23].

Rapamycin (sirolimus) is an immunosuppressant used
following renal transplantation, but also has life-
extending properties in multiple animal models,
including yeast [24], Drosophila melanogaster (fruit
flies) /25], and mice [26,27], though effects can be sex
and genotype-dependent [28]. In renal transplant
patients, rapamycin has been shown to reduce cancer
risk post-surgery [29-34]. It also has significant anti-
cancer properties in mice [35-37]. While the extent to
which its anticancer properties underlie its anti-aging
effects and/or vice versa remains a point of discussion
[15,38,39], as an anti-aging agent it has also been
reported or theorized to protect against a number of
other aging-related diseases in humans: cardio-vascular
disease, osteoporosis, obesity, autoimmune disease and
arthritis, macular degeneration, diabetes, Alzheimer’s
disease, and Parkinson’s disease [16]. While rapamycin

interacts with various nutrient signalling-related
pathways, it acts primarily as an mTOR inhibitor, via
direct inhibition of mTOR complex 1 (mTORC1) [23].
Analogs of rapamycin, or rapalogs (e.g. everolimus),
are currently in use as anticancer drugs [40]. Also,
mTORins, dual mTOR kinase inhibitors, are in
development as anticancer agents, but much remains
undetermined, such as proper dosage, toxicity, and
adverse effects [15,38].

Like rapamycin, metformin is also an mTOR inhibitor,
although indirectly so and via multiple mechanisms
[41-45]. Metformin is a biguanide most renowned as
the first-line treatment for type Il diabetes and meta-
bolic syndrome. It corrects hyperglycemia primarily by
lowering hepatic gluconeogenesis but also by increasing
insulin sensitivity and lowering levels of circulating
lipids [9]. Its effects, however, appear to be pleiotropic,
with benefits extending to a number of other age-related
conditions in humans, including cancer [46,47] and
cardiovascular disease [10]

In animal models as well, multiple beneficial effects of
metformin have been reported across species with
varying anticancer and prolongevity effects, including
AMPK-mediated improvements in cutanecous wound
healing [48]. Results, however, depend on dosage, sex,
and age at onset of treatment [49-53], factors relevant
to widescale, prophylactic metformin use in humans
[49,50].

Metformin’s mechanisms of action have been
extensively studied but are complex and remain only
partially understood. Although metformin inhibits
mTOR [43-45], its primary mode of action may be
inhibition of mitochondrial complex I [54—62]. This
action leads, among other things, to beneficial changes
in cellular energy status and activation of AMPK
[51,59, 62-66], a cellular energy sensor with a broad
range of downstream effects on cellular function [67].
Through a combination of AMPK-dependent and -
independent mechanisms [68], metformin influences a
number of signaling pathways, including IGF-1 [69],
hepatic sirtuin 1 (SIRT1) [70-73] and mTOR complex
1 (mTORC1) [74], that contribute directly or indirectly to
its clinical response and multiple anticancer effects.

Taken together, rapamycin and metformin are
promising candidates for life and healthspan extension;
however, concerns of adverse side effects have
hampered their widescale adoption for this purpose.
While short term rapamycin use is considered safe, it
has been reported to be associated with more adverse
events than cyclosporin A in renal transplant patients,
including wound complications, mouth ulcers, diarrhea,
hypokalemia, bronchopneumonia, and proteinuria and
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higher discontinuation rates (28.2% vs 14.9%) [75-77].
In addition, chronic rapamycin use can lead to hepatic
gluconeogenesis, insulin resistance, and severe glucose
intolerance in rats [78], impaired glucose tolerance in
mice [79], and even diabetes in male mice [80]. While
rapamycin-induced diabetes is argued to differ from
true type II diabetes [81], rapamycin may require
pairing with metformin to counter induced hyper-
glycemia [40]. Metformin, while relatively safe, is
poorly tolerated in one fourth to one half of patients due
to gastrointestinal side effects [82], although prelimi-
nary findings suggest these can be alleviated in some
with an extended-release form of the drug [83].
Metformin also carries a slight risk of lactic acidosis in
certain individuals [84-86]. Interestingly, rapamycin
lowers lactate production, so may buffer this risk [87].
Metformin and rapamycin in combination may have
additional benefits; in vitro they potentiate chemo-
therapy with mitotic inhibitors while protecting normal
cells [41]. One suggestion has been varying dosage
schedules and combinations of rapamycin with
metformin and five other anti-aging compounds per
individual to reduce side effects [40]. However, the
best preventative, widescale intervention would be one
for which risk is negligible.

Given the urgency of the present need for anti-aging,
disease preventive interventions, it may be beneficial to
look to natural alternatives, such as nutraceuticals, that
would be safe enough to administer widely with little to
no risk of harm and with fewer regulatory hurdles than
drugs.  Nutraceuticals have received considerable
attention in recent years for potential roles in preventing
or treating a number of age-related diseases [88].

In this work, we initiate an effort to identify safe,
natural alternatives to metformin and rapamycin. Our
work is done entirely in silico and entails the use of
metformin and rapamycin transcriptional and signaling
pathway activation signatures to screen for matches
amongst natural compounds. We have shown previous-
ly that the transcriptional signature of a given drug
response, disease state, or other physiological condition,
when mapped to the signalome, can be useful for
biomarker development [89-91] and drug screening
[7,92,93]. Transcriptional signatures have been
suggested by others as well for aiding in biomarker
development [94], cancer drug screening [75] and
repositioning [11], and diabetes management [95].

The transcriptional signature of metformin is
particularly well-suited to this type of analysis, as it
includes thousands of AMPK-dependent and AMPK-
independent changes in gene expression related to a
diverse set of signaling pathways [96]. AMPK itself
acts in part by directly and indirectly regulating

metabolic gene expression when activated [97].
Metformin’s transcriptional signature also shows
considerable similarity to the gene expression signature
of long term caloric restriction [98,99,49], which is

thought to play a role in mediating its effects on lifespan
[100,101].

Gene expression data is in general a highly valuable
resource that is still underutilized in drug discovery.
With the public banking of data such as the LINCS
project resulting in large repositories of cellular
signatures of drug responses and disease states, large-
scale screening, signalome analysis, and deep learning
can be employed at little cost to make new discoveries
[102]. Yet due to the size, difficulty in cross-platform
analysis, and high dimensionality of microarray
datasets, much information remains unparsed.

To overcome and even exploit these challenges, we
have developed bioinformatic methods including
Oncofinder [92,103], Geroscope [93], and in silico
Pathway Activation Network Decomposition Analysis
(iIPANDA) [104], which extract robust, biologically
relevant pathway activation signatures from the data by
combining various elements of previous approaches.
The iPANDA method in particular was recently shown
to outperform other methods in cross-platform micro-
array analysis, noise and dimensionality reduction, and
production of robust sets of biomarkers and reliable
pathway signatures [93]. Illustratively, it was used
successfully to identify biomarkers for breast cancer
subtypes by stratifying samples by pathway activation
[104], however it has many other potential applications,
including drug discovery and drug mimicry, as we will
demonstrate herein. We are currently using iPANDA in
several other applications, including mapping the
transcriptional signature of senescence and screening
for novel senolytics, drugs that would selectively
eliminate senescent cells [8]. We have also previously
developed deep learning methods involving training of
deep neural networks (DNNs) to recognize trans-
criptional signatures and pathway activation signatures
of drugs or disease states from microarray data or to
predict adverse effects [93].

In the present study, we apply these methods to screen
for nutraceuticals that mimic metformin and/or
rapamycin. Using LINCS perturbation data, we reduce a
list of over 800 natural compounds to a shortlist of
candidate nutraceuticals that show both similarity to the
target drugs and low adverse effects profiles [93]. We
then discuss the top candidates in light of shared
mechanisms and previously reported anticancer and
other health benefits that may deem them particularly
promising for future experimental validation.
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RESULTS

To screen for potential candidate nutraceuticals, we
used gene expression data from the Library of
Integrated Network-based Cellular Signatures (LINCS)
L1000 dataset to investigate similarity to metformin
and/or rapamycin at the gene and pathway level (Figure
1). We employed several complementary approaches,
including conventional statistical methods, pathway
scoring-based methods, and training of deep neural
networks  (DNN)  for  signature  recognition.
Additionally, to evaluate potential adverse effects of top-
scoring natural compounds we utilised a set of deep
learned predictors, trained on drug-induced trans-
criptional response data. One important attribute of
natural compounds we also looked closely at was GRAS
(Generally Recognized As Safe) status and safety data.

Selection of natural compounds for screening

Prior to analysis, we filtered the LINCS dataset for
compounds of mnatural origin by combining the
compound lists from UNPD [105] and KEGG BRITE
[106] databases and using the resulting list to select
compounds in the LINCS dataset. In total, this resulted
in 871 natural compounds with transcriptional response
data across various times, concentrations, and cell lines.
We utilized all available gene expression profiles for
each compound, including metformin and rapamycin.

Deep learning-based scoring of compounds at gene
level

For similarity scoring, we first used deep learning to
train binary classifiers to recognize perturbations similar
to metformin or rapamycin in transcriptional signature.
A five fold cross-validation classifier for metformin and
rapamycin achieved an Fl-score of 0.725 and 0.905 and
Matthews correlation of 0.705 and 0.896, respectively.
Each sample corresponding to perturbation with a
natural compound was run through each DNN classifier
and assigned a probability. We used a threshold of 0.5
to determine the significant hits and then performed a
Fisher’s exact test to estimate the statistical significance
for each compound (Figure 2, Supplementary Tables 1
and 2).

The compound exhibiting the highest similarity to
metformin according to the metformin classifier (Fig.
2A) was allantoin, a key beneficial compound in yam
(Dioscorea spp.). Like metformin, allantoin is a
guanidinium derivative with anti-hyperglycemic effects
[107,108]. It is an important metabolic intermediate of
purine metabolism in many species across Eukarya and
Bacteria domains [109,110]. Being a guanidinium
derivative, allantoin is similar to metformin in structure
and has been shown to induce glucose lowering effects
via imidazoline I-2 receptors [107,108]. Other top hits
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Figure 1. Workflow diagram showing multi-level analysis for screening and ranking nutraceuticals that mimic metformin and
rapamycin in transcriptional and pathway activation response. A subset of 871 LINCS compounds were selected from the UNPD
and KEGG BRITE databases. Perturbations with those compounds in cancer cell lines were compared with perturbations with
metformin and rapamycin to estimate similarity at the gene and pathway level and deep learning techniques were employed to
recognize the transcriptional signature of metformin and rapamycin and screen for matches amongst the LINCS compounds.
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for metformin included glucosamine, a compound used
in the treatment of osteoarthritis [111,112], and car-
damonin, a member of the anti-inflammatory chalcones
found in plant-based foods [113], which inhibits mTOR
and exhibits antitumor effects in vitro and in vivo [114].

With the rapamycin classifier, the most significant hit
was geldanamycin (Fig. 2B). Geldanamycin is an anti-

biotic belonging to Ansamycins family and targets the
ADP/ATP binding site of heat shock protein 90
(Hsp90). Similarly to rapamycin, it has been shown to
suppress the mTOR pathway through inhibition of the
interaction between Hsp90 and RAPTOR [115].
Interestingly, the second most significant hit was
withaferin A, which aligned with our subsequent results
of gene- and pathway-level scoring for metformin and
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Figure 2. DL-based similarity to metformin (A) and rapamycin (B). Significance of natural compound was
determined as the -log10(p-value) and odds ratio for compound according to Fisher's exact test performed on the
DNN output for each perturbed sample. Only compounds with -log10(p-value)>4 and odds ratio > 1 are shown.
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rapamycin, respectively. Other compounds with
significant similarity to rapamycin according to the
DNN classifier included another Hsp90 inhibitor,
radicicol, several members of the anthracyclines
antibiotic family used in cancer treatment (dauno-
rubicin, idarubicin, doxorubicin, epirubicin) [116],
cerulenin, a fatty acid synthase inhibitor with potential
anticancer effects [117], chaetocin, being investigated
as a histone lysine methyltransferase inhibitor
[118,119], phloretin, an anti-tumor agent found in plant-
based foods that shows effectiveness in inducing
apoptosis in human lung cancer cells [120] and
staurosporine, which also exhibited metformin simila-
rity in subsequent results. The highest odds ratios were
observed with four relatively unexplored compounds
(BRD-A35769934, BRD-K85565420, BRD-A15501135,
BRD-A37501891). Notably, 24 of 24 profiled samples
for each of these compounds reached statistical sig-
nificance.

Similarity at gene and pathway level

We next determined gene-level similarity of each
compound to metformin and rapamycin using
conventional statistical methods. First, this involved
comparing each distinct time- and concentration-
specific compound perturbation measured across
various cell lines to corresponding DMSO-treated
reference samples. We performed differential gene
expression  analysis to determine  statistically
significantly perturbed genes. Then, to screen for
compounds with high similarity to metformin or
rapamycin in terms of individual gene expression
changes, we used Fisher’s Exact Test to directly
compare all metformin or rapamycin perturbations to
individual perturbations of other natural compounds
(Supplementary Table 3).

To determine pathway-level similarity, we applied the
iPANDA algorithm [104] to acquire pathway activation
profiles for the same set of individual perturbations.
For each compound, perturbation pathway activation
scores (PAS) were calculated for 378 pathways.
Similarity of pathway activation signatures of natural
compounds to metformin and rapamycin was evaluated
by the number of commonly up- and down-regulated
pathways (Supplementary Table 4).

Combined results of gene- and pathway-level analysis
are depicted in Figure 3. Gene-level analysis of
similarity to metformin (Fig. 3A) showed that the most
significant perturbation was associated with withaferin-
A, a steroidal lactone that exhibits antidiabetic and
anticancer properties [121] Pathway-level scoring, on
the other hand, demonstrated ginsenoside Rc, a
compound isolated from ginseng, to be the top hit.

Other compounds at the top of the list for significant
gene- and pathway-level similarity to metformin
included umbelliferone, a coumarin with antihyper-
glycemic, anti-inflammatory, and antitumor properties
[122], coumaric acid, the p- isomer of which shows
immunosuppressive, anti-inflammatory, and anti-
diabetic properties [123,124], staurosporine, a kinase
inhibitor with promising antitumor properties but poor
selectivity [123—-125], bile acids, which have been
shown to have anti-cancer properties and specifically
anti-hypoxic tumor effects [126], and ellipticine, a
plant-derived compound with significant anticancer
effects but issues with toxicity [127].

For rapamycin (Fig. 3B), the most significant hits at the
gene level were epigallocatechin gallate (EGCG), a
compound underlying the aging-related benefits of
green tea, including protection against cancer,
cardiovascular events, and UV-mediated skin aging
[128], sphingosine, the precursor to sphingosine 1-
phosphate, a second messenger implicated in several
diseases, including multiple sclerosis, sepsis, cancer,
and cardiovascular disease [129], and isoliquiritigenin, a
compound shown to act as an anticancer, anti-cardio-
vascular disease, antioxidant, antimicrobial, hepato-
protective, and immunoprotective agent [130]. A num-
ber of other compounds were highly similar to
rapamycin at the pathway level. These included
strophanthidin, a compound recently identified in a
similar LINCS screening as being likely to reverse
cancer-related gene expression, which was validated in
the liver hepatocellular carcinoma (LIHC) cell line [75],
cyclosporin A, an immunosuppressant alternative to
rapamycin following transplantation [75,76] cyclo-
heximide, a highly toxic protein synthesis inhibitor used
primarily in basic research, including cancer research
[131], ochratoxin A, a potentially carcinogenic myco-
toxin found and regulated in a wide variety of foods
[111], and, notably due to its gene-level similarity to
metformin above, withaferin A.

Effective combinations of natural compounds

Often, natural remedies with proven -effectiveness
consist of one or several plant species which can
account for hundreds of natural compounds [132].
Accumulating evidence suggests that a combination of
several compounds targeting multiple pathologic
signaling circuits might be more advantageous than
single agent treatments [133—137]. Examples of syner-
gistic anti-aging effects of drug combinations with
different targets have been reported [37,138]. This is
particularly relevant to natural compounds with GRAS
status, since the likelihood of serious adverse reactions
is low.
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For these reasons, we also estimated the similarity of pathway level and to calculate the combinatorial res-

different combinations of natural compounds to ponse as the sum of individual PAS values cor-
metformin. This required us to predict the trans- responding to individual perturbations. We fully
criptional response after perturbation with a given considered that additive effects on a pathway may be
combination of compounds. We chose to do this on the limited and other types of effects (e.g. synergistic, com-
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Figure 3. Gene- and pathway-level similarity to metformin (A) and rapamycin (B). Significance of natural compound
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petitive, etc.) may be at play. Our rationale for
assuming additivity was required for simplification, but
we tested the additivity assumption for its predictive
value with an external dataset and the results supported
the approach. We used external dataset E-MEXP-3192
(http://www.ebi.ac.uk/arrayexpress Supplementary
Figure 1) [139], where the pathway activation signature
of two compounds, retinoic acid and lapatinib, was
explored, both individually and in combination, to
predict their combinatorial drug effects by taking the
sum of individual PAS values. Results, at least in the
case of these two compounds, showed high similarity
between the predicted and actual combinatorial pathway
activation signatures, supporting the use of PAS
additivity in this context (Supplementary Figure 1).

To investigate whether any of the natural compound
combinations would produce better similarity scores
than each compound independently, we selected four
compounds with known beneficial effects and good
safety profiles: withaferin-A, ginsenoside, apigenin and
gamma linolenic acid (GLA).

We used our previously established database of aging-
associated pathways and calculated PAS values for each
compound (Supplementary Table 5). Then we devised all
possible combinations of these compounds and estimated
the resulting pathway activation as the sum of PAS
values of individual compounds. Each of the
combinations was compared to the profile of metformin
and Pearson correlation coefficient was used as a
similarity metric (Supplementary Table 6). Combina-
tions outperformed the individual compounds, with
similarity of the top 10 combinations ranging from 0.73-
0.80 (Supplementary Table 6). As an example, we
selected a combination of three nutraceuticals with high
similarity to metformin, good safety profiles, and/or
previously reported anti-aging, anticancer, or anti-disease
potential: ginsenoside, GLA, and withaferin A. Overall
pathway level similarity between metformin and the top
combination of nutraceuticals is depicted in Sup-
plementary Figure 2. Pathways with shared activation
between metformin and the combination of these three
compounds and each compound individually are shown
in Supplementary Figure 2; the most significant of these
were upregulation of JNK, cAMP, AKT, MAPK, ERK,
and ILK pathways and down-regulation of ubiquitin
proteosome signaling. To investigate whether similarity
varied among met-activated, met-neutral, and met-
inhibited pathways, we also examined correlations
between metformin and the nutraceuticals and nutra-
ceutical combination among these groups, with a
designated threshold of 1 or -1 to define met-activated or
met-inhibited pathways, respectively; results showed the
strongest correlations with pathways inhibited by
metformin (Supplementary Table 7).

Deep learning-predicted adverse effects

Additionally, to estimate the safety of investigated
natural compounds we utilized our deep learned adverse
effects prediction approach [93]. For every sample
corresponding to perturbation with a natural compound,
we ran an ensemble of 305 predictors each correspond-
ing to a particular side effect category. Resulting
probabilities were averaged for each side effect of each
natural compound. Then, to estimate the overall adverse
effects prediction of a compound, we calculated mean
probability across all adverse effects and the number of
adverse effects with probability >0.5 (Supplementary
Table 8).

Interestingly, rapamycin was near the top of the list of
compounds with the highest probability of adverse
effects, with a maximum mean probability of 0.41
across all potential adverse effects and 134 total effects
categories for which probability exceeded 0.5. Of
these, the top ten adverse effects categories included
cardiac and vascular, lipid, testicular and epididymal,
skin, general, immunodeficiency, obstetric and
gynecological, eye, neurological, and vascular/hyper-
tensive, all with probabilities >0.9. Metabolic (0.86)
and glucose/ diabetic (0.75) effects probabilities were
also high for rapamycin. Other compounds with high
mean adverse effects probabilities included anthra-
cycline  antibiotics,  oligomycin-c,  tacrolimus,
paroxetine, benzethonium, wortmannin and triptolide.
The safest compounds, on the other hand, with <3
significant adverse effects categories and mean overall
probabilities <0.05, turned out to be the compounds
with highest odds ratios for rapamycin similarity
scoring (BRD-A35769934, BRD-K85565420, BRD-
A15501135, BRD-A37501891) as well as tert-
butylhydroquinone, lanatoside-c, syringic acid, morin,
niacin and gossypetin (mean probabilities <0.10, 11 or
fewer significant adverse effects categories).
Metformin was predicted to have relatively few adverse
effects, as well, with mean probability 0.2 and 25
significant adverse effects categories.

We then searched the adverse effects table against the list
of candidate compounds selected above for metformin
and rapamycin similarity to investigate predicted adverse
effects. For metformin-like compounds, we found the
following mean adverse effects probabilities and number
of adverse effects categories: withaferin A (0.14, 52),
staurosporine  (0.17, 126), ginsenoside (0.25, 29),
umbelliferone (0.24, 19), ellipticine (0.17, 69), allantoin
(0.14, 28), glucosamine (0.25, 58), cardamonin (0.26,
66). For rapamycin-like compounds, we found similar
probabilities and numbers of categories: ECGC (0.25,
31), sphingosine (0.20, 46), isoliquiritigenin (0.23, 88),
strophanthidin (0.17, 38), cyclosporin A (0.26, 62),
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ochratoxin A (0.19, 39), geldanamycin (0.20, 57),
radicicol (0.20, 87), cerulenin (0.22, 49), and chaetocin
(0.09, 23).

DISCUSSION

In this work, we introduce a rapid, low-cost route to
drug mimicry via screening public gene expression
datasets for compounds with shared transcriptional and
signaling pathway activation signatures. The methods
we employ [104] combine and outperform previous
methods for pathway activation scoring and capitalize
on vast, valuable but underutilized public repositories of
microarray data, overcoming significant analytical
challenges that have previously hindered their wide-
scale use.

In an application of these methods, we focused on
mimicry of metformin and rapamycin, seeking
nutraceuticals that could preserve their anti-aging and
disease-preventive potential while being better suited
for wide-scale prophylactic use.

One of the most significant findings was withaferin A,
one of only two only compounds topping the list for
similarity to both metformin and rapamycin. Withaferin
A was the top-scoring compound for gene-level
similarity to metformin using the conventional
statistical approach and also displayed significant
pathway- and gene-level similarity to rapamycin using
both the pathway activation approach and the deep
learning approach. Withaferin A is a steroidal lactone
derived from members of the Solanaceae family (e.g.
Acnistus arborescens and Withania somnifera),
commonly used in Ayurveda (traditional Indian
medicine) for arthritis and menstrual disorders.
Mounting evidence in rodent and cell-culture models
indicate that it is an anti-diabetic, anti-obesity and anti-
cancer agent with potent anti-oxidative, anti-
inflammatory, anti-proliferative, apoptosis-inducing and
leptin-sensitizing properties [121].

Mice with diet-induced obesity (DIO) have seen 20-
25% reductions in body weight as a result of withaferin
A treatment [140], as well as a decrease in obesity-
associated pathology, e.g. hepatic steatosis. Withaferin
A also has beneficial effects on glucose metabolism that
are independent of its leptin-sensitizing effect.

Many of its anticancer properties result from its ability
to inhibit cell proliferation and decrease glucose
utilization, glycolysis and tricarboxylic acid (TCA)
cycle intermediates [141]. Additionally, it has been
found to be a potent inhibitor of angiogenesis. It inhibits
cell proliferation via inhibition of cyclin D1 expression,
as well as inhibition of NF-kappa B, which is thought to

occur via interference with the ubiquitin-mediated
proteasome pathway [142], as suggested by increased
levels of polyubiquitinated proteins in cancer cells
following treatment with withaferin A. It has also been
found to selectively induce cell death in multiple types
of tumor cells [143,144]. Its anticancer effects are
mediated through modulation of a number of pathways,
including inhibition of Notch 1 [145], inhibition of
STAT3 activation [146-148], downregulation of the
MTOR signalling components pS6K and p4E-BP1
[145], downregulation of the prosurvival pathway
Akt/NF-kappaB/Bcl-2 [145], induction of c-Jun-NH(2)-
kinase-mediated apoptosis [145], induction of apoptosis
via upregulation of Bim, t-Bid, caspase-8, and DRS5
[149], suppression of constitutive and IL-6-induced
phosphorylation of STAT3 (on Tyr705) and consequent
down-regulation of the STAT3 regulated genes Bel-xL,
Bcl-2, cyclin D1 and survivin [150], inhibition of heat
shock protein 90 [151], downregulation of COX-2 and
iNOS by blocking NF-kB activity [121], and down-
regulation of TNF-a [152].

Withaferin A was one of three compounds we included
in the combination explored for metformin similarity.
The other two were ginsenoside and GLA, which also
demonstrate anti-aging, anticancer, and anti-disease
potential in a number of studies.

Ginsenoside was the most similar compound to
metformin at the pathway level. Used in traditional
Chinese medicine, ginsenosides comprise a group of
over 150 naturally occurring compounds isolated from
plants of the Panax species (ginseng) [153]. Although
the family is relatively diverse in term of chemical
structure, most of its members share similar properties.
A wide variety of benefits have been reported [153],
including  anticarcinogenic  [154-157], immuno-
modulatory [157-161], anti-inflammatory [162], anti-
allergic [163—-165], antiatherosclerotic [166], anti-
hypertensive [167,168], antidiabetic [169], anxiolytic
[170,171] and antidepressant effects [172]. Ginseno-
sides activate AMPK [154,156,169,173] PI3K [169]
and Sirtl [169,174] pathways, promoting autophagy
[154-156] and apoptosis [154—156] in cancer cells.

Another clear standout for metformin similarity was
revealed by the DNN classifier, and that was allantoin,
one of the active compounds mediating beneficial
effects of yam. Yam powder, yam extract, and allantoin
have been shown to improve B-cell function in
maintaining insulin and glucose in a rat model of Type
II diabetes, with antioxidative effects as well, improved
lipid profiles, and increased release of glucagon-like
peptide 1 (GLP1) [175]. In another study using the
same rat model of diabetes, allantoin lowered plasma
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glucose levels by increasing B-endorphin secretion,
increasing GLUT4 expression, and increasing glucose
uptake [108,176,177].

Overall, the most remarkable aspect of the metformin
results was that, like metformin, several of the
compounds scoring high in similarity exhibit glucose-
lowering properties (withaferin A [121], umbelliferone
[122], and allantoin [107,108]) or anti-inflammatory
effects (glucosamine [111,112] and cardamonin
[113]) in previous studies, and almost all of the top
hits have shown anticancer potential, including
withaferin A [141-144], ginsenoside [154-157],
umbelliferone [122], staurosporine [123—-125], bile
acids [126], ellipticine [127], cardamonin [113], and
allantoin [177]. This not only lends preliminary
support to the validity of our methods, but also adds
support to the evidence of metformin-like health
benefits with these compounds.

Scoring for rapamycin overall revealed a larger number
of significant hits compared to metformin, but more
variation in the range of known effects, from beneficial
to highly toxic. These also included several unnamed,
novel candidates. Four of these relatively unexplored
compounds  (BRD-A35769934, BRD-K85565420,
BRD-A15501135, BRD-A37501891) were the most
significant in similarity to rapamycin and were also top-
ranking in terms of safety, with extremely low
probability of predicted adverse effects. These would
be excellent novel candidates for characterization and
validation in future work.

Like the metformin DNN classifier, the rapamycin
classifier also revealed a clear standout amongst the
compounds for rapamycin similarity, geldanamycin.
Geldanamycin is an inhibitor of Hsp90 [178], which is
an oncogenic target molecule overexpressed in many
tumors [115,179]. Geldanamcyin is an inhibitor of
mTOR signaling as well [115]  While initially
promising as an potent anticancer agent [115,179,180],
its hepatotoxicity has precluded its clinical use
[180,181]; however, several less toxic derivatives have
been developed [182], with 17AEP-GA and 17DMAG
recently demonstrating growth suppression of multiple
myeloma cells similar to geldanamycin [181].
Geldanamycin analog development is still an active area
of research [182-185], with other analogs being
recently shown to be effective against breast cancer
cells [182,185]. In addition to geldanamycin, at least
two of the other rapamycin hits in this study, radicicol
and EGCG are also Hsp90 inhibitors [183,184].
Recently, a radicicol derivative, NW457, was shown to
be effective against colorectal cancer both in vitro and
in vivo [186].

Many of the other top hits for rapamycin show
anticancer effects, including anthracyclines [116],
cerulenin [117], isoliquiritigenin [130], strophanthidin
[75], ECGC [128], phloretin [120], staurosporine [123—
125], and withaferin A [141-144]. Several of the
rapamycin-like compounds identified are known to
modulate mTOR signaling. These include geldana-
mycin, which suppresses mTOR phosphorylation of
downstream protein regulators [115], phloretin, a
common flavonoid capable of inducing cell cycle arrest
and apoptosis in part via suppression of AKT/PI3K/
mTOR cascades [187], and isoliquiritigenin, another
flavonoid that induces autophagic and apoptotic cell
death in cancer cells via mTOR signaling [188]. Thus,
like metformin, many of the compounds identified as
being similar to rapamycin in transcriptional signature
have been previously shown to have rapamycin-like
properties. Other rapamycin-like compounds identified
have mTOR-independent mechanisms, such as chae-
tocin, a histone H3K9 methyltransferase inhibitor [119].

Finally, rapamycin had a remarkably high number of
predicted adverse effects with our methods and
significant similarity to at least two compounds known
to be toxic, ochratoxin A and cycloheximide, although
these toxic compounds were not predicted to have a
wide variety of adverse effects (cycloheximide did
score particularly high (0.86) in the toxicity category,
however, as did strophanthidin (0.93)). This under-
scores the need to look for rapamycin alternatives, and
also raises interesting questions about the common (and
distinct) mechanisms between rapamycin and the wide
variety of rapamycin-like compounds, both beneficial
and toxic.

The adverse effects prediction also enabled us to have a
closer look at overall predicted safety of compounds of
interest and likelihoods of specific adverse effects.
None of the compounds discussed as similar to
metformin or rapamycin stood out as extremely likely
or unlikely to cause a wide variety of adverse effects;
most scored in the low-moderate range, although this
does not fully reflect the severity or importance of any
one given adverse effects category for a given
compound. Literature-based assessments of safety were
also helpful; while several compounds are known to be
toxic as noted, others are known to be relatively safe
compounds found in plant-based foods, such as
cardamonin and ECGC, or used in traditional medicine,
such as withaferin A and ginsenosides. Safety in a
preventative, chronic use context for each compound
would have to be independently evaluated. Also, while
there were no standout metformin-like candidates with
an absence of gastrointestinal adverse effects, there
were several rapamycin-like candidates with low
likelihood of glucose/metabolic adverse effects,
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including withaferin A and ECGC. Perhaps the most
notable compounds were the four unnamed compounds
with similarity to rapamycin; their novelty, extremely
low number of predicted adverse effects, including
glucose/metabolic effects, and extremely high odds
ratios for rapamycin similarity make them particularly
intriguing candidates.

The in silico approach, while time- and cost-saving,
does require several considerations in light of its role as
a first-pass screening tool. First, and most importantly,
the health-extending and adverse effects of all candidate
nutraceuticals or other compounds will still require
investigation and validation in vitro and in other cell
lines, followed by validation in vivo in humans. This is
particularly important in the case of nutraceuticals, as
wide variation in their bioavailability and metabolism is
a significant factor influencing the degree to which the
predicted effects actually manifest in vivo [189].
Secondly, our approach hinges entirely upon the
biological relevance of the short term (<48 hours)
transcription-level response to a drug, and as such does
not account for post-transcriptional and post-
translational effects on a given pathway or long term
changes, which may be biologically or clinically more
important [190]. That said, numerous studies have
demonstrated the value in using such expression
signatures in the characterization of drug response [191].

Thus, while it cannot be overstated that our results will
require validation, this work reduces a list of over 800
natural compounds to a manageable shortlist of a few
strong candidates for metformin and rapamycin
mimicry, substantiated by their similarity to the target
drugs in transcriptional response. Several of these
compounds are unnamed, novel candidates. Many of
the others have known anticancer or other beneficial
effects and now are demonstrated to share common
cellular signatures with two known anticancer, anti-
aging drugs, thus supporting previous findings and
further investigation into their potential benefits. That
so many compounds with anticancer and other health
benefits share common transcriptional signatures raises
interesting questions about what pathways are shared
and distinct and which shared pathways are most critical
to their beneficial effects. This has not only direct
practical value in a narrow sense with the search for
metformin and rapamycin mimetics, but has broader
usefulness for any number of applications in drug
discovery. If widely adopted, our approaches have the
potential to significantly expedite drug development
timelines, reducing cost by offering a viable and
biologically-relevant means of screening and ranking
compounds prior to in vitro studies and, since screening
is based on human data, possibly in place of animal
models. Improving our ability to predict the actions of a

nutraceutical or drug in humans will give in silico-based
approaches enormous utility in streamlining drug
discovery, repurposing and development in the years to
come.

METHODS
Transcriptomic data

To obtain transcriptomic and signaling pathway
activation signatures, we utilized transcriptional
response data provided by LINCS Project
(http://www lincsproject.org/). To obtain a list of
natural compounds present in the LINCS data set we
used the UNPD database of natural compounds [105] in
combination with 3 compound classification categories
derived from KEGG BRITE Database [106]:
“Phytochemical compounds”, “Phytochemicals used as
drugs” and “Natural toxins”. The natural compound list
was then compared to the list from the LINCS data set
and 871 compounds were identified.

For each of these compounds, we extracted the level 3
(Q2NORM) gene expression data for each available cell
line perturbed with each concentration of compound
independently for all available timepoints. In the
pathway-level analysis, for each case sample group
perturbed with a compound, we generated a reference
group consisting of samples perturbed with DMSO that
came from the same RNA plate as samples from the
case group. We analysed transcriptional response to
perturbation with metformin, rapamycin, and a number of
nutraceuticals as assayed in various cancer cell lines.

Differential expression

For transcriptome data, a limma test of differential gene
expression was used. Each set of differentially
expressed genes was ordered according to the following
measure, which takes into account both the magnitude
and statistical significance of the effect: FC * max(0, -
log(p-value)), where FC is fold-change of gene
expression between groups and p-value represents the
result of limma test.

Gene level similarity to metformin/rapamycin

A statistically motivated score estimating the similarity
of a compound was designed. Significantly up- or
down-regulated genes were defined as those with an
FDR-adjusted p-value of <0.01. A Fisher’s exact test
was used to measure the association between two
characteristics of each gene: being significantly down-
regulated following metformin/rapamycin treatment and
being significantly downregulated following treatment
with each investigated compound in our compound
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library. The same test was performed for upregulated
genes. The best of p-values of those two tests were
taken as a score for the given drug or compound. A
multiple testing correction of the obtained p-values for
the amount of compound perturbations under study was
performed.

Pathway-level similarity analysis

Pathway activation analysis is a powerful tool for
extracting biologically-relevant properties from large
transcriptomic datasets, enabling the generation of
novel results prior to or in place of in vitro and in vivo
experimentation. We have recently reported on a novel
deep learning-based algorithm, the in silico Pathway
Activation  Network Decomposition Analysis
(iIPANDA), which we applied to large-scale trans-crip-
tomic datasets as a tool for biomarker identification
[104]. In contrast to other methods of pathway
activation analysis, iPANDA generates pathway
activation scores (PAS) by using precalculated gene
coexpression data in combination with gene importance
factors quantified according to the degree of differential
gene expression and pathway topology decomposition.
Here, we applied the same general approach to the task of
drug mimicry, ranking existing nutraceutical compounds
and compound combinations according to their
transcriptomic signature’s degree of similarity to the
known transcriptomic signature of metformin and
rapamycin.

For pathway-level similarity analysis we chose gene
expression samples of drug induced transcriptional
response from AS549 cell line. Signaling pathway
activation scores for 378 total pathways from
SABiosciences collection (http://www.sabiosciences.
com/pathwaycentral.php) were calculated for each
perturbation of 871 natural compounds, including
Metformin and Rapamycin, using iPANDA algorithm
[104]. Similarity of two perturbations was measured as
percent of commonly up- or down-regulated pathways
between them.

Combination scoring. Additivity hypothesis was
checked on the dataset E-MEXP-3192 (http://www.ebi.
ac.uk/arrayexpress). Preprocessed gene expression data
corresponding to samples that underwent 12 hour
treatment with 100nm retinoic acid, 100 nm lapatinib
and their combination was analysed with iPANDA
algorithm. For several selected compounds pathway
analysis was done for 97 age-related pathways [93].
PAS values for withaferin-A, ginsenoside, apigenin and
GLA were measured in PC3 cells perturbed for 24
hours with 10uM of the compound with the exception
of To estimate the combinatorial effect of 5 selected
natural compounds with GRAS status PAS scores were

summed for each combination of two or more
compounds. Then we used Pearson correlation coef-
ficient between metformin and the combination to
estimate the similarity.

Deep learning prediction of metformin/rapamycin
signature and adverse effects

Deep neural networks (DNNs) were trained with
transcriptional response data from the LINCS L1000
dataset. All available perturbations from MCF7, PC3,
VCAP, A549, A375 and HT29 cell lines related to
Metformin (perturbation id: BRD-K79602928) and
Rapamycin (perturbation ids: BRD-A23770159, BRD-
A50287119, BRD-A79768653, BRD-K84937637,
BRD-K89626439, BRD-K99369265) were indepen-
dently used and contributed to two training sets.
Training and test sets were split at 80/20 ratio. For the
Metformin prediction we used 67309 samples as the
training set (98 samples are labeled as positive class)
and 15788 samples as the test set (24 samples are
labeled as positive class). For the Rapamycin prediction
we used 68421 samples as the training set (517 samples
are labeled as positive class) and 14677 samples as the
test set (114 samples are labeled as positive class). The
DNN was built by adjusting its hyperparameters (e.g.
number of layers, activation function, etc.) on the
training set and subsequently measuring the perfor-
mance of the trained neural network on the test set. All
experiments were conducted using an NVIDIA Titan X.

We used multilayer feed-forward neural networks as
deep models (i.e. having more than 3 layers).
Gridsearch algorithm was used for multiple hyper-
parameters optimization in order to achieve the greatest
predictive accuracy. We minimized the binary cross
entropy loss function wusing a backpropagation
algorithm. We used the Leaky ReLU activation function
[192] in each layer, ADAM as optimizer of the cost
function [193], dropout with 25% probability after each
layer for the purposes of regularization [194] and
additional L1 penalty on layer parameters.

Adverse effects for drugs were derived from SIDER
database [83]. Side effect categories were mapped onto
321 preferred term from MedDRA v16.0 ontology [84].
An ensemble of class-specific DNNs with binary output
was trained in a similar way to the methodology describ-
ed previously [85]. All probabilities related to in a single
side effect and perturbation id of the drug were
aggregated.
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Supplementary Figure 1. Additivity analysis using E-MTAB-3192 dataset. PAS values are calculated independently for
each perturbation of SKBR3 cells: 100nM Retinoic acid, 100nM Lapatinib and their combination. PCA analysis and heatmap
demonstrate how close the predicted pathway perturbation of a combination is to the experimentally measured.
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Supplementary Figure 2. Shared pathway activation between metformin and selected compound combination. Selected
compounds for mimicking metformin included ginsenoside, gamma-linolenic acid, and withaferin-A. Here, metformin-
activated or -inhibited aging pathways were selected, dependent on a metformin pathway activation strength (PAS)
threshold of +/-1 and shared directionality of PAS for all three nutraceutical compounds comprising the selected
combination. Predicted combination PAS for each pathway was defined as the sum of PAS for the individual nutraceuticals.
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