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ABSTRACT

Chronic low grade inflammation is a fundamental mechanism of aging. We estimated biologic age using nine
biomarkers from diverse inflammatory pathways and we hypothesized that genes associated with
inflammatory biological age would provide insights into human aging. In Framingham Offspring Study
participants at examination 8 (2005 to 2008), we used the Klemera-Doubal method to estimate inflammatory
biologic age and we computed the difference (AAge) between biologic age and chronologic age. Gene
expression in whole blood was measured using the Affymetrix Human Exon 1.0 ST Array. We used linear mixed
effect models to test associations between inflammatory AAge and gene expression (dependent variable)
adjusting for age, sex, imputed cell counts, and technical covariates. Our study sample included 2386
participants (mean age 679 years, 55% women). There were 448 genes significantly were associated with
inflammatory AAge (P<2.8x10°), 302 genes were positively associated and 146 genes were negatively
associated. Pathway analysis among the identified genes highlighted the NOD-like receptor signaling and
ubiquitin mediated proteolysis pathways. In summary, we identified 448 genes that were significantly
associated with inflammatory biologic age. Future functional characterization may identify molecular
interventions to delay aging and prolong healthspan in older adults.
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INTRODUCTION

Non-communicable diseases remain a major contributor
to morbidity and mortality in older ages. Inflammation
appears to be a common pathway underlying multiple
causes of death in old age [1]. Inflammatory biomarkers
predict mortality [2] and age-related disease such as
cardiovascular disease [2-4] as well as worsening
mobility and frailty in the community [5]. Efforts to
identify therapies to target chronic low grade
inflammation in older adults and evaluate the impact of
reduction of inflammation on important outcomes are
needed [6].

Chronic low grade inflammation characterized by an
imbalance of inflammatory and anti-inflammatory
pathways called “inflamm-aging” is a fundamental
mechanism of aging [7, 8]. Genes involved in the
immune and inflammatory response pathway are
associated with longevity [9] and genetic regulation of
immunity is associated with human healthspan [10].
Gene expression is considered an important bridge to
connect genetic variation, environmental exposures, and
lifestyle factors with aging-related diseases and traits.
More than one thousand genes are differentially
expressed in blood in relation to chronological age, with
many involved in innate and adaptive immunity, cyto-

kine and chemokine signaling, and immune function

[11].

Biological age is a measure of an individual’s predicted
age based on multiple biomarkers and may prove more
useful in studying the biology of aging as compared to
studying chronological age alone [12]. Given the
importance of inflammation to aging biology, we
developed a biologic age estimate based on inflammatory
biomarkers representing pro-inflammatory and anti-
inflammatory processes in a sample of older adults. We
reported that our inflammatory biologic age measure was
significantly associated with age-related morbidity and
mortality [13]. The objective of the present study was to
assess the association of genome-wide gene expression
with inflammatory biologic age in participants from the
community-based Framingham Heart Study. We
hypothesized that genes associated with inflammatory
biologic age would provide mechanistic insights into
understanding human aging biology.

RESULTS

Our study sample included 2386 participants (mean age
6719 years, 55% women) from the Framingham
Offspring Cohort. Descriptive characteristics of the
participants are provided in Table 1.
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Figure 1. Volcano plot of association with inflammatory Aage. Each dot represents one gene. The x-axis
represents the beta estimation (B) of each gene, whereas the y-axis represents the log,o(P). Positive effects represent
that the genes were positively associated with inflammatory Aage, whereas negative effects represent that the genes

were negatively associated with inflammatory Aage. The red dash line indicates P<0.05/17873=2.8x10°°.
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Table 1. Clinical characteristics of the study sample.

Characteristics

Women, n (%)

Age, year = SD

Inflammatory BA

AAge

Smoker, n (%)

Systolic blood pressure, mm Hg
Diastolic blood pressure, mm Hg
Hypertension treatment

BMI kg/m’

Total cholesterol mg/dL

HDL cholesterol mg/dL

Lipid treatment, n (%)

Diabetes mellitus, n (%)
Cardiovascular disease, n (%)
C-reactive protein (mg/L)
Intercellular adhesion molecule 1 (ng/mL)

Interleukin-6 (pg/mL)

Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Mass

(ng/mL)
Lp-PLA2 Activity (nmol/mL/min)

Monocyte chemoattractant protein-1 (pg/mL)

Osteoprotegerin (pmol/L)
P-Selectin (ng/mL)

Tumor necrosis factor receptor II (pg/mL)

N=2386
1304 (55%)
66.8 £ 8.9
66.8 £11.5
0.02£7.1
198 (8.3%)

129 £17

74+ 10
1166 (49%)
284+54

186 + 38

58+18
1044 (44%)
406 (17%)
194 (8.9%)

1.5(0.8,3.2)
277 (234, 342)
1.8(1.2,2.9)
202 (171, 231)

137 (115, 160)
368 (302, 444)
47(3.9,5.7)

40 (33, 48)

2383 (1940, 3050)

*Characteristics are represented by mean + SD or n (%); biomarkers are median and first, third

quartile

AAge=Inflammatory biologic age — chronologic age

Association of inflammatory Aage with gene
expression

We identified 448 genes significantly associated with
the difference (AAge) between biologic age and
chronologic age (P<2.8x10'6). Among them, 302 genes
were positively associated with inflammatory Aage,
whereas the remaining 146 genes were negatively
associated (Supplemental Table 1). Figure 1 shows the
volcano plot of all studied genes, and the top 25
associations are shown in Table 2. The most significant
gene was FCGRIA (P=3.5x107), which encodes a
fragment of Immunoglobulin G, known to play an
important role in immune processes.

We created an expression score to represent the overall
association between the expression profile and
inflammatory Aage using the weighted sum of all the
448 significant genes. To explore the potential utility of
the expression score, we examined its association with
mortality with up to ten years follow-up (mean 7.9
years, 270 deaths observed). The expression score was
significantly associated with mortality after adjusting
for age and sex (P=3.2x10", HR=1.62, 95% CI: 1.18-
2.23). The association remained significant (P=0.048)
after additionally adjusting for other mortality-related
covariates, suggesting that not only the inflammatory
Aage itself, but also the expression score, might be a
useful biomarker to predict mortality.
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Table 2. Top 25 genes associated with inflammatory Aage.

Affymetrix . .
Transcript Cluster Gene Beta SE P-value
ID
2357845 FCGRIA 0.0154 0.0014 3.5E-26
2636626 GRAMDIC -0.0098 0.0011 1.3E-19
3527514 PNP 0.0094 0.0011 8.1E-18
3161082 CD274 0.0140 0.0016 1.1E-17
3696142 DPEP? -0.0051 0.0006 2.6E-17
3157660 TSTA3 0.0101 0.0012 4.4E-17
3941793 KREMENI 0.0071 0.0008 9.3E-17
2951730 SLC26A48 0.0062 0.0007 1.2E-16
4009849 ALAS2 0.0152 0.0019 9.6E-16
3709685 NDELI -0.0040 0.0005 1.9E-15
3061456 SAMDYL 0.0093 0.0012 2.1E-15
3576284 RPS6KAS5 -0.0049 0.0006 3.0E-15
3690550 SIAH] -0.0046 0.0006 3.2E-15
2421925 GBP7 0.0054 0.0007 5.1E-15
2700828 SIAH?2 0.0052 0.0007 9.1E-15
2584258 KCNH7 0.0043 0.0005 1.1E-14
3628832 DAPK?2 -0.0048 0.0006 1.1E-14
2828479 SLC2244 0.0056 0.0007 2.0E-14
2369463 FAM20B 0.0055 0.0007 2.5E-14
2964200 UBE2J1 0.0052 0.0007 5.2E-14
3090053 SLC25437 0.0094 0.0012 6.5E-14
2438531 HDGF 0.0065 0.0009 9.6E-14
3651955 METTL9 0.0054 0.0007 1.1E-13
2421883 GBPI 0.0098 0.0013 1.4E-13
2909404 CD24P 0.0066 0.0009 1.4E-13

"The analyses were adjusted for age and sex

*Beta is in units of one standard deviation change in gene expression per year of inflammatory

Aage; "SE: standard error

Pathway analysis

We then examined the enrichment of inflammatory
Aage associated genes in biological pathways. The top
10 enriched pathways are shown in Table 3. Two
pathways were significant after correction for multiple
testing, including NOD-like receptor signaling pathway
(P:2.0x10'6, false discovery rate=6.0x10'4) and
ubiquitin  mediated proteolysis (P=1.7x10", false
discovery rate =0.03). The NOD-like receptor signaling
pathway remained significant (P=4.6x107, false
discovery rate =1.4x10™") if we included only positively
associated genes.

Interaction between genes associated with

inflammatory Aage

We also applied a dense module searching strategy [14]
to identify a subnetwork containing genes associated
with inflammatory Aage. As shown in Figure 2, the
subnetwork is comprised of 34 nodes and 47 edges, in
which each node represents one gene, and each edge
represents the interaction between two genes. Two
genes, GRB2 and CBL, play a pivotal role in the
network. GRB? itself was not associated with inflam-
matory Aage (P=0.55), but it was connected with 10
other genes, of which five (KCNH7, ALAS2, FLT3,
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CD2A4P, MAPK14) were associated with inflammatory
Aage. Similarly, CBL was not associated with
inflammatory Aage (P=0.07), but four (FCGRIA,
IGFIR, CD2AP, MAPK14), out of its seven neighbors
were associated with inflammatory Aage.

Comparison  with genes associated  with
chronological age

It has been long recognized that aging is an important
factor affecting gene expression. An earlier meta-
analysis of whole blood gene expression in 14,983
individuals reported 1,497 genes that were differentially
expressed with chronological age [11]. Among them, 56
genes also were associated with inflammatory Aage,
showing a significant enrichment (P=0.0023) by the

Fisher’s exact test (Supplemental Table 1), suggesting
that some common mechanisms might be involved in
the regulation of chronological age and inflammatory
Aage.

Enrichment of inflammatory Aage in methylation
genes

Among 448 genes whose expression was associated
with inflammatory Aage, 223 genes contained at least
one CpG site in which methylation was associated with
inflammatory Aage (defined as differentially methylated
genes [DMGs], Supplemental Table 1). Among the 223
DMGs, 147 were positively associated with inflamma-
tory Aage, and the remaining 76 genes were negatively
associated with inflammatory Aage. These gene loci

Table 3. Ten most significant canonical pathways enriched with genes associated with inflammatory Aage.

False
#Genes in Ratio of . Inflammatory Aage related genes
KEGG pathway Pathway enrichment Pvalue dls:::'eery in the pathway
NOD ke GABARAP; GBP4; GBP5; MAPK4;
recentor CTSB; NLRP1; GABARAPLI; TAB3;
o nghn 170 3.62 2.0E-06 6.0E-04 GBPI; BIRC3; IFI16; ILIB; GBP7;
gnaiing MYDSS; OASI; STAT1; CASPS;
pathway M2
Ubiquitin UBE2F; UBOXS5; NEDDA4L; BIRC3;
, MDM?2; UBE2J1; UBE20;
medlated. 137 3.25 1.7E-04 0.03 SMURF2; SIAHI: ITCH: CUL4A;
proteolysis UBE2L6; CDC34
Legionellosis 55 435 LOE-03  0.10 CLBL ALl [LIB, AX
ARAP2; AP2M1; AP2S1; ZFYVE27;
AP2A41; NEDD4L; IGFIR; IGF2R;
Endocytosis 260 224 1.5E-03 0.11 ARF1; LDLR; MDM?2; PRKCZ;
SMURF?2; ITCH; PIP5K1B; SNX3;
DNAJC6
Central carbon . i . . .
metabolism in 67 3.57 3.2E-03 0.18 AKTS3, Ai{éziL],T ?LZIZSSLCIM ’
cancer ’
Salmonella MAPKI4; KLC3,; ILIB; KLCI;
infection 86 3.18 3.5E-03 0.18 MYD88; PKN2; TLRS; WASF1
TNF siomalin AKT3; MAPK14; AKTI; TAB3;
ghaiing 110 2.80 4.7E-03 0.20 BIRC3; ILIB; ITCH; CASP7;
pathway RPS6KAS
AKT3; PSME3; MAPK14; AKTI;
Hepatitis C 133 2.57 5.4E-03 021 DDX58; EIF2AK1; LDLR; OASI;
PPP2R2D; STATI
AKT3; AKTI: DDX58; EIF2AK]I
Measles 136 2.52 6.3E-03 0.21 IL1B; JAK3; MYD88; OASI; IFIHI
STATI
Pyrimidin CMPK2; DCK; PNP; RRM2B;
mi tabohsfn 105 2.61 1.1E-02 0.32 POLRID; POLR2B; UPPI;
ENTPDS5
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showed two complementary assays demonstrating
altered genomic regulation in relation to inflammatory
Aage. In order to assess whether this is greater than
chance, we generated one million gene sets, containing
448 randomly selected genes. We then checked how
many of the 448 randomly selected genes were DMGs.
As shown in Figure 3, on average, each randomly
matched gene set contained 153 DMGs (min: 109
genes, max: 199 genes), which is much smaller than
that of inflammatory Aage-related genes (empirical p-
value <1x10°), indicating that there was significant
overlap between genes whose expression and whose
methylation were associated with inflammatory Aage.
In addition, of the 56 genes associated with
inflammatory Aage that were previously reported to be
associated with age [11], 35 genes were DMGs
(Supplemental Table 1).

We then tested the association of gene expression with
inflammatory Aage by additionally adjusting for DNA
methylation. Of 223 DMGs, the associations of 154
(69%) genes with inflammatory Aage were slightly
attenuated after adjusting for the most significant CpG
site in the gene, suggesting that DNA methylation might
be a potential mechanism regulating the association
between gene expression and inflammatory Aage.
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DISCUSSION

We investigated the association of gene expression with
inflammatory Aage in more than 2000 older participants
from the community-based Framingham Heart Study
Offspring cohort. A total of 448 genes were found to be
significantly associated with inflammatory Aage with
two-thirds of the genes demonstrating increased
expression with greater inflammatory Aage. The most
significant gene was FCGRIA, encoding the
Immunoglobulin G, which is known to activate or
inhibit various cell functions, and plays a critical role in
immune responses. Many inflammatory Aage-related
differentially expressed genes were found to be
involved in NOD-like receptor signaling pathway and
ubiquitin mediated proteolysis pathway. Among the 448
genes whose expression was associated with inflam-
matory Aage, 223 genes contained at least one CpG site
associated with inflammatory Aage suggesting that
DNA methylation may be a potential mechanism
regulating the association between gene expression and
inflammatory Aage.

As expected, in addition to FCGR 1A several of the most
significant genes were involved in immune and
inflammatory-related functions. For example, mutations
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Figure 2. Inflammatory Aage-related subnetwork derived from protein-protein interaction. Each
node represents one gene, whereas each edge represents the interaction between two genes. The nodes were
colored to represent their association with inflammatory Aage by z-score: red represents genes that were
positively associated with inflammatory Aage, whereas green represents genes that were negatively associated
with inflammatory Aage. The node size is proportional to the number of edges that the node connects to.
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in PNP result in nucleoside phosphorylase deficiency
that in turn produce defective cell-mediated immunity.
Pnp-deficient mice exhibit a progressive T-cell decline
with both reduced numbers of thymocytes and splenic
T-cells [15]. CD274 encodes an immune inhibitory
receptor expressed on T cells, B cells and various tumor
cell types. The usefulness of blocking CD274 to
enhance anti-cancer immunity is under investigation
[16]. Dysregulation of the immune system is one
mechanism underlying inflamm-aging that accelerates
biologic aging and risk for age-related disease [8].

In contrast, among the top results the SIAH1 and SIAH2
genes code evolutionarily conserved E3 ubiquitin
ligases implicated in hypoxia and apoptosis. SIAHI and
SIAH?2 also regulate diverse cellular functions such as
DNA damage response, mitochondrial dynamics and
estrogen receptor signaling [17]. These two genes have
been implicated in a number of age-related diseases
including Parkinson’s disease and several cancers [18,
19]. A SNP in SI4HI was recently reported to reach a
suggestive but not genome-wide level of association

with exceptional longevity (living past the age that less
than 1% of individuals from the 1900 birth cohort
survived) [20]. In that study the longevity allele was
associated with decreased risk for cardiovascular
disease and hypertension. In animal models SIAH2
appears to regulate obesity-related adipose tissue
dysfunction and recruitment of immune cells to adipose
tissue [21]. Adipose tissue dysfunction is an important
physiologic contributor to aging related metabolic
derangements, chronic disease, and frailty [22].

The NOD-like receptor signaling pathway is the
biologic pathway most significantly enriched with genes
associated with inflammatory Aage. In this pathway was
NLRPI (NLR Family Pyrin Domain Containing 1), a
protein coding gene that is part of the NLRPI
inflammasome initiated in response to danger signals
[23]. NLRPI plays a role in generating innate immune
responses and apoptosis. Associations with age-related
diseases remain under investigation but there may be a
role for susceptibility to cancer, atherosclerosis and
Alzheimer disease. Other Nod-like family receptor sen-
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Number of methylation
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Among 448
inflammatory Aage-
related genes, 223 were
also methylation genes
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Figure 3. Enrichment of inflammatory Aage-related genes with corresponding
differences in methylation. Among 448 genes whose expression was associated with inflam-
matory Aage, 223 genes contained at least one CpG where methylation was associated with
inflammatory Aage (defined as differentially methylated genes [DMGs]). In order to assess its
significance, we generated one million gene sets, each one containing 448 randomly selected genes
and determined how many of the 448 randomly selected genes were DMGs. As shown, each
randomly matched gene set contained a mean of 153 methylation genes (min: 109 genes, max: 199
genes), which is much smaller than that of inflammatory Aage-related genes (empirical p-value
<1x10’6). The red triangle indicates the number of DMGs in inflammatory Aage-related genes.
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sors have been associated with aging and amelioration
of NLRP3 mediated inflammation improves age-related
declines in a number of physiologic systems [24].

DNA methylation has been recognized as an important
biomarker associated with aging and age-related
diseases [25-27]. Multiple computational models have
been developed to predict chronological age using
methylation biomarkers [28-30]. We found a significant
overlap between genes whose expression was associated
with inflammatory Aage, and genes that contained at
least one CpG site associated with inflammatory Aage.
Moreover, in more than two thirds of genes, we
observed the association between gene expression and
inflammatory Aage was attenuated after adjusting for
the CpG site within the gene. Our results suggest that
DNA methylation might be an important mechanism to
regulate gene expression and thus inflammatory Aage.
Both genetics and environmental factors influence gene
expression and DNA methylation, which together
demonstrate a dynamic landscape of chronological
changes during the aging process. Future investigation
of the interplay between DNA methylation and gene
expression might uncover important mechanisms
underlying aging, and potentially lead to better
strategies to slowdown or even reverse the aging
process [31, 32].

Several limitations of our study merit comment.
Participants were of FEuropean descent, thus the
generalizability of our findings to other race/ethnicities
is unclear. Gene expression was measured from whole
blood, which contains a variety of cell types and may
have specific cell responses. We thereby accounted for
the relative abundance of each cell type in our analyses.
Our study was limited to association analyses, we
cannot exclude residual confounding, and we cannot
infer causality between inflammatory Aage and gene
expression. In addition, the inflammatory Aage and
gene expression was measured during one examination,
therefore we cannot comment on longitudinal variation
in the relations between gene expression and inflam-
matory Aage. Our results need to be replicated in an
independent sample.

However, our study also had several strengths. Our
study is one of the first efforts to estimate biological age
from a set of robust inflammatory biomarkers. We took
a hypothesis-free approach to study transcriptome-wide
profiling with inflammatory biological age in a large
carefully characterized cohort. Our epigenome-wide
analysis identified CpGs associated with inflammatory
Aage in the many of the same genes as our transcript-
tome-wide association study lending support to our
findings.

In conclusion, we identified 448 genes that were
significantly associated with inflammatory aging in a
large community-based cohort. Future functional
characterization and direct perturbation of the identified
gene regulation network may enable the development of
preventative strategies or therapies to arrest or slow
biological aging or age-related diseases and declines of
physical function.

METHODS
Study sample

The Framingham Heart Study is a multi-generational
study initiated in 1948 to investigate cardiovascular
disease and its risk factors in the community. The
current study is limited to the Offspring cohort
participants, who are the children of the Framingham
Original cohort as well as the offspring spouses [33,
34]. They were enrolled in 1971-1975 and they have
been examined every 4 to 8 years. To be eligible for this
study, participants needed to attend examination 8
(2005 to 2008, n=3021) at which inflammatory
biomarker and gene expression data were obtained.
Participants were excluded if the following data were
missing: inflammatory biomarkers (n= 279), gene
expression (n= 353). The final study sample included
2386 participants. All participants provided written
informed consent, and the study was approved by the
Boston University Medical Center Institutional Review
Board.

Derivation of inflammatory biologic age

The inflammatory biologic age estimate comprised nine
inflammatory biomarkers measured from fasting
morning blood samples. Assay details have been
reported and the intra- and inter- assay coefficients of
variation were below 10% [35]. The inflammatory
biomarkers included c-reactive protein (CRP),
intercellular adhesion molecule-1 (ICAM1), interleukin-
6 (IL6), lipoprotein-associated phospholipase A2 (LP-
PLA2) mass, LP-PLA2 activity, monocyte chemo-
attractant protein-1 (MCP1), osteoprotegerin, p-selectin,
and tumor necrosis factor receptor II (TNFR2). The
inflammatory biomarkers function broadly in the
inflammation pathway including as acute phase re-
actants, chemokines, cytokines, selectins, and cell
adhesion molecules [36]. These biomarkers were
modestly correlated (Pearson correlations 0.06 to 0.27
except C-reactive protein and interleukin-6, 1=0.52)
(Supplemental Table 2). Seven of the nine biomarkers
were significantly correlated with age (Supplemental
Table 2a).
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We used the Klemera and Doubal method [37] to
estimate inflammatory biologic age. The Klemera-
Doubal algorithm includes age as one of the biomarkers
and demonstrates the best performances in the precision
of estimation [37] and predictive ability [12]. We
defined Aage as inflammatory biologic age minus
chronologic age. Thus, individuals with Aage>0 have
greater biologic age than chronologic age, whereas
individuals with Aage<0 have biologic age less than
chronologic age. The chronologic age and Aage were
not correlated (P>0.05) [38].

RNA extraction and gene expression profiling

The details regarding the gene expression profiling have
been described previously [39, 40]. Total RNA was
isolated from whole blood using PAXgene blood tubes
(PreAnalytiX, Hombrechtikon, Switzerland) and
amplified wusing the WT-Ovation Pico RNA
Amplification System (NuGEN, San Carlos, CA)
according to the manufacturers’ standard operating
procedures. The obtained cDNA was hybridized to the
Affymetrix Human Exon 1.0 ST Array (Affymetrix,
Inc., Santa Clara, CA). Signal intensities from the image
scanner were then quantile-normalized and log2
transformed, followed by summarization using Robust
Multi-array Average [41]. The annotation for each
transcript was obtained from Affymetrix NetAffx
Analysis Center (version 31). Transcript clusters that
were not mapped to RefSeq transcripts were excluded.
A total of 17,873 distinct transcripts mapping to 17,562
unique genes were included for downstream analysis. In
order to adjust for the effects of different cell counts on
gene expression, cell counts were imputed using a
partial least squares regression method applied to
mRNA expression [42].

Statistical analyses

Linear mixed effect models were used to test
associations between inflammatory Aage and gene
expression, with gene expression the dependent
measure and the inflammatory Aage the exposure
variable. We treated familial relatedness in the Framin-
gham participants as a random variance-covariance
factor. The models were additionally adjusted for sex,
age, imputed cell counts, and technical covariates. All
analyses were performed using the R software package
(www.r-project.org), and the linear mixed effect models
were implemented in the “Imekin” package. We used
Bonferroni adjustment to correct for multiple testing,
which was defined as 0.05/17873=2.8x10".

We also created an expression score that included genes
significantly associated with inflammatory Aage.
Specifically, for any participant j, the score was defined

as Scorej = Y B; * G; j, where i represented the i"
significant gene, [5; was the beta estimate of the it gene,
and G; ; was the expression level of the it gene for the
jth participant. We then examined the association
between the expression score with mortality using Cox
proportional hazards regression model with clustering
on pedigrees. The model was implemented in the
“coxme” package, and was adjusted for age and sex. We
further adjusted the model for other mortality-related
covariates, including smoking, diabetes, hypertension
treatment, lipid treatment, prevalent cardiovascular
disease, and prevalent cancer.

Pathway analysis

Pathway analyses were performed to identify potential
biologic mechanisms among the significant genes. We
used WebGestalt [43], a web-based pathway analysis
tool. The enrichment was assessed by the Fisher’s exact
test for each KEGG pathway, and the multiple testing
was accounted for by the false discovery rate approach
[44].

Construction of interaction subnetwork associated
with inflammatory biologic age

In order to examine the interaction between
inflammatory Aage-related genes, we constructed an
interaction network using a dense module searching
strategy [14]. The gene interactions were downloaded
from the PINA database [45]. Before searching, each
gene was assigned a score to represent its association
with inflammatory Aage, equivalent to Z(p-value). Each
module starts with one of the top 25 genes associated
with inflammatory Aage. For each of its neighboring
genes, we evaluated if adding it to the module would
increase the overall module score [46], which was

defined as Z,,, = %,

the module, and g; is the score of the gene i. The
searching stopped if no more genes could be added. The
process repeated for each of the top 25 genes, and the
resulting modules were merged to build an interaction
subnetwork.

where k is the number of genes in

Enrichment of inflammatory Aage in methylation
genes

We also examined if DNA methylation might be
involved in the association between gene expression
and inflammatory Aage. For each significant gene
(p<2.8x10°), we examined if the gene contained any
CpG site that was associated with inflammatory Aage.
The details of Framingham DNA methylation were
described previously [47-49]. Briefly, the genomic
DNA was collected from fasting peripheral whole
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blood, bisulfite-treated and hybridized to the Infinium
HumanMethylation450 BeadChip (Illumina, San Diego,
CA) according to the manufacturer’s standard protocols
[50]. The methylation status was represented by the B
value, and the raw data were normalized and corrected
for the background noise by “DASEN” R package [51].
After quality control filters, a total of 443,252 CpG sites
were then tested for the association with inflammatory
Aage, and the significance cutoff for the CpG site was
defined as p<0.05/N, where N was the number of CpG
sites within the tested genes.
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